
 CMU 15-418/618, Fall 2023

Exam details
▪ Closed book, closed notes

▪ A4 paper

▪ Covers all lecture material through Lecture on Snooping-Based
Multiprocessor Design

▪ Must use either blue or black pen (no pencils or other pen colors)

▪ Typical question formats:

- Short answer

- Multiple choice with explanations

 CMU 15-418/618, Fall 2023

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assumes N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[idx] = value;
 }
}

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

ISPC Keywords:
programCount: number of simultaneously
executing instances in the gang (uniform value)

programIndex: id of the current instance in the
gang. (a non-uniform value: “varying”)

uniform: A type modifier. All instances have the
same value for this variable. Its use is purely an
optimization. Not needed for correctness.

sin(x) in ISPC
“Interleaved” assignment of array elements to program instances

 CMU 15-418/618, Fall 2023

sin(x) in ISPC: version 2
“Blocked” assignment of elements to instances

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assume N % programCount = 0
 uniform int count = N / programCount;
 int start = programIndex * count;
 for (uniform int i=0; i<count; i++)
 {

 int idx = start + i;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (j+3) * (j+4);
 sign *= -1;

 }
 result[idx] = value;
 }
}

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

 CMU 15-418/618,
Fall 2023

Grid, Block, and Thread
▪ gridDim: The dimensions of the

grid

▪ blockIdx: The block index within
the grid

▪ blockDim: The dimensions of
the block

▪ threadIdx: The thread index
within the block

Why not have gridIdx and threadDim?

 CMU 15-418/618,
Fall 2023

Basic CUDA syntax

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

“Host” code : serial execution
Running as part of normal C/C++
application on CPU

SPMD execution of device kernel function:

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Regular application thread running on CPU (the “host”)

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + B[j][i];
}

CUDA kernel definition
“CUDA device” code: kernel function (__global__
denotes a CUDA kernel function) runs on GPU

 CMU 15-418/618,
Fall 2023

CUDA synchronization constructs
▪ __syncthreads()

- Barrier: wait for all threads in the block to arrive at this point

▪ Atomic operations
- e.g., float atomicAdd(float* addr, float amount)
- Atomic operations on both global memory and shared memory variables

▪ Host/device synchronization
- Implicit barrier across all threads at return of kernel

 CMU 15-418/618, Fall 2024

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff;
 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 float myDiff = 0.f;
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +
 A[i+1,j], A[i,j+1]);
 myDiff += abs(A[i,j] - prev));
 }
 lock(myLock);
 diff += myDiff;
 unlock(myLock);
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver (SPMD execution model)

• 7

compute per worker partial sum

Now only lock once per thread, not once per
(i,j) loop iteration!

Grid solver example from: Culler, Singh, and Gupta

Improve performance by accumulating
into partial sum locally, then complete
reduction globally at the end of the
iteration.

 CMU 15-418/618, Fall 2024

int N;
int tid = get_thread_id();
int rows_per_thread = N / get_num_threads();

float* localA = allocate(rows_per_thread+2, N+2);

// assume localA is initialized with starting values
// assume MSG_ID_ROW, MSG_ID_DONE, MSG_ID_DIFF are constants used as msg ids

//////////////////////////////////////

void solve() {
 bool done = false;
 while (!done) {

 float my_diff = 0.0f;

 if (tid != 0)
 send(&localA[1,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW);
 if (tid != get_num_threads()-1)
 send(&localA[rows_per_thread,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW);

 if (tid != 0)
 recv(&localA[0,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW);
 if (tid != get_num_threads()-1)
 recv(&localA[rows_per_thread+1,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW);

 for (int i=1; i<rows_per_thread+1; i++) {
 for (int j=1; j<n+1; j++) {
 float prev = localA[i,j];
 localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +
 localA[i,j-1] + localA[i,j+1]);
 my_diff += fabs(localA[i,j] - prev);
 }
 }

 if (tid != 0) {
 send(&mydiff, sizeof(float), 0, MSG_ID_DIFF);
 recv(&done, sizeof(bool), 0, MSG_ID_DONE);
 } else {
 float remote_diff;
 for (int i=1; i<get_num_threads()-1; i++) {
 recv(&remote_diff, sizeof(float), i, MSG_ID_DIFF);
 my_diff += remote_diff;
 }
 if (my_diff/(N*N) < TOLERANCE)
 done = true;
 for (int i=1; i<get_num_threads()-1; i++)
 send(&done, sizeof(bool), i, MSD_ID_DONE);
 }

 }
}

Message passing solver

• 8

Send and receive ghost rows to “neighbor threads”

Perform computation
 (just like in shared address space version of solver)

All threads send local my_diff to thread 0

Thread 0 computes global diff, evaluates
termination predicate and sends result back to all

other threads

Similar structure to shared address space
solver, but now communication is explicit in
message sends and receives

Example pseudocode from: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2024

Static assignment
▪ Assignment of work to threads is pre-determined

- Not necessarily determined at compile-time (assignment algorithm may depend on
runtime parameters such as input data size, number of threads, etc.)

▪ Recall solver example: assign equal number of grid cells (work) to each thread (worker)
- We discussed two static assignments of work to workers (blocked and interleaved)

▪ Good properties of static assignment: simple, essentially zero runtime overhead
(in this example: extra work to implement assignment is a little bit of indexing math)

 CMU 15-418/618, Fall 2024

“Semi-static” assignment
▪ Cost of work is predictable for near-term future

- Idea: recent past good predictor of near future
▪ Application periodically profiles itself and re-adjusts assignment

- Assignment is “static” for the interval between re-adjustments

Adaptive mesh:

Mesh is changed as object moves or flow over object changes,
but changes occur slowly (color indicates assignment of parts
of mesh to processors)

Particle simulation:

Redistribute particles as they move
over course of simulation
(if motion is slow, redistribution need
not occur often)

Image credit: http://typhon.sourceforge.net/spip/spip.php?article22

 CMU 15-418/618, Fall 2024

Dynamic assignment
Program determines assignment dynamically at runtime to ensure a well
distributed load. (The execution time of tasks, or the total number of
tasks, is unpredictable.)

int N = 1024;
int* x = new int[N];
bool* prime = new bool[N];

// initialize elements of x here

for (int i=0; i<N; i++)
{
 // unknown execution time
 is_prime[i] = test_primality(x[i]);
}

int N = 1024;
// assume allocations are only executed by 1 thread
int* x = new int[N];
bool* is_prime = new bool[N];

// initialize elements of x here

LOCK counter_lock;
int counter = 0; // shared variable

while (1) {
 int i;
 lock(counter_lock);
 i = counter++;
 unlock(counter_lock);
 if (i >= N)
 break;
 is_prime[i] = test_primality(x[i]);
}

Sequential program
(independent loop iterations)

Parallel program
(SPMD execution by multiple threads,

shared address space model)

atomic_incr(counter);

 CMU 15-418/618, Fall 2024

Increasing task granularity
const int N = 1024;
const int GRANULARITY = 10;
// assume allocations are only executed by 1 thread

float* x = new float[N];
bool* prime = new bool[N];

// initialize elements of x here

LOCK counter_lock;
int counter = 0;

while (1) {
 int i;
 lock(counter_lock);
 i = counter;
 counter += GRANULARITY;
 unlock(counter_lock);
 if (i >= N)
 break;
 int end = min(i + GRANULARITY, N);
 for (int j=i; j<end; j++)
 is_prime[j] = test_primality(x[j]);
}

Coarse granularity partitioning: 1 “task” = 10 elements
Decreased synchronization cost
(Critical section entered 10 times less)

Time in critical section

Time in task 0

 CMU 15-418/618, Fall 2024

Distributed work queues

▪ Costly synchronization/communication occurs during stealing
- But not every time a thread takes on new work
- Stealing occurs only when necessary to ensure good load balance

▪ Leads to increased locality
- Common case: threads work on tasks they create (producer-consumer locality)

▪ Implementation challenges
- Who to steal from?
- How much to steal?
- How to detect program termination?
- Ensuring local queue access is fast

(while preserving mutual exclusion)

T1 T2 T3 T4

 CMU 15-418/618, Fall 2024

Cache coherence

Why cache coherence?
Hand-wavy answer: would like shared memory to behave “intuitively” when two
processors read and write to a shared variable. Reading a value after another processor
writes to it should return the new value. (despite replication due to caches)

Requirements of a coherent address space
1. A read by processor P to address X that follows a write by P to address X, should return the value of the

write by P (assuming no other processor wrote to X in between)

2. A read by a processor to address X that follows a write by another processor to X returns the written value...
if the read and write are sufficiently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen
in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
 precisely when it is propagated is not defined by definition of coherence.

Condition 3: write serialization

 CMU 15-418/618, Fall 2024

Implementing cache coherence

Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.
Good: simple, low latency
Bad: broadcast traffic limits scalability

 CMU 15-418/618, Fall 2024

MSI state transition diagram

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / flush

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

 CMU 15-418/618, Fall 2024

Assignment 2, Problem 3

CMU 15-418/618,
Fall 2024

Example Execution

31

X and Y have
value 0 at start
of execution.

Action P0 X P0 Y P1 X P1 Y

Initial I I I I

P0: LD X S/0

P1: LD X

P0: ST X ← 1

P0: ST X ← 2

P1: ST X ← 3

P1: LD X

P0: LD X

P0: ST X ← 4

P1: LD X

P0: LD Y

P0: ST Y ← 1

P1: ST Y ← 2

S/0 S/0

M/1 I

M/2

I M/3

M/3

S/3 S/3

IM/4

S/4 S/4

S/0

M/1S/4 S/4

M/2I

 CMU 15-418/618, Fall 2024• 18 CMU 15-418/618,
Fall 2024

Inclusion property of caches
All lines in closer [to processor] cache are also in farther [from processor] cache
- e.g., contents of L1 are a subset of contents of L2
- Thus, all transactions relevant to L1 are also relevant to L2, so it is sufficient

for only the L2 to snoop the interconnect

If line is in owned state (M in MSI/MESI) in L1, it must also be in owned state in L2
- Allows L2 to determine if a bus transaction is requesting a modified cache line

in L1 without requiring information from L1

43

 CMU 15-418/618, Fall 2024

Artifactual vs. inherent communication

ARTIFACTUAL
COMMUNICATION

INHERENT
COMMUNICATION

FALSE SHARING

P1 P2

Cache line

Problem assignment as shown. Each processor
reads/writes only from its local data.

 CMU 15-418/618, Fall 2024• 20 CMU 15-418/618,
Fall 2024

Impact of cache line size on miss rate

53

M
iss

 Ra
te

 %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 Ra
te

 %

12

10

8

6

4

2

0

Upgrade

False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Sim Radix Sort

Cache Line Size

Results from simulation of a 1 MB cache (four example applications)

* Note: I separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2024

Implementing cache coherence

Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.

DIRECTORIES Information about location of cache line and number of shares is stored in a
centralized location. On a miss, requesting cache queries the directory to
find sharers and communicates with these nodes using point-to-point
messages. Different implementation of directories.

Good: simple, low latency
Bad: broadcast traffic limits scalability

Good: coherence traffic scales with number of sharers, and number of
sharers is usually low
Bad: higher complexity, overhead of directory storage, additional latency
due to longer critical path

 CMU 15-418/618,
Fall 2023

CMU 15-418/618,
Fall 2024

A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. .
.

One cache line of memory

One directory entry per
cache line of memory

P presence bits: indicate whether processor P
has line in its cache

Dirty bit: indicates line is dirty
in one of the processors’ caches

8

 CMU 15-418/618,
Fall 2023

CMU 15-418/618,
Fall 2024

Example 3: write miss

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P2

4b. Response: ack from P1

After receiving both invalidation acks, P0 can perform write
18

 CMU 15-418/618,
Fall 2023

CMU 15-418/618,
Fall 2024

Reducing storage overhead of directory
Optimizations on full-bit vector scheme
- Increase cache line size (reduce M term)
- What are possible problems with this approach?

(consider graphs from last lecture)
- Group multiple processors into a single directory “node” (reduce P term)
- Need only one directory bit per node, not one bit per processor
- Hierarchical: could use snooping protocol to maintain coherence among

processors in a node, directory across nodes

We will now discuss two alternative schemes
- Limited pointer schemes (reduce P)
- Sparse directories

24

