Full Name:
Andrew Id:

15-418/618, Spring 2019

Exam 2

April 15, 2019
Instructions:

e Write your answers in the space provided for the problem. If your work gets messy, please clearly
indicate your final answer.

e The exam has a maximum score of 60 points.

e The problems are of varying difficulty. The point value of each problem is indicated. Pile up the
easy points quickly and then come back to the harder problems.

e This exam is CLOSED BOOK, CLOSED NOTES (with the exception of your one sheet of notes.)

Problem Your Score Possible Points
1 9
2 9
3 8
4 10
5 12
6 12
Total 60

Page 1

Interconnection Networks

Problem 1. (9 points):

You are building a packet switched logarithmic network for an eight-core processor. The logarithmic
network is pictured below with the processors numbered 1 to 8 and the switches labeled A to L. Assume
that a packet is 64 bytes.

g

—
.

$53888 s

?

A. (3 pts) Is this network blocking? If it is, list two source-destination pairs that would block each other.

B. (3 pts) With store and forward routing, what is the minimum latency for sending a single packet
from one processor to another? Assume a link can transmit 4 bytes per cycle.

Page 2

C. (3 pts) If the network is designed to use cut-through routing, what it is the minimum latency for
sending a single packet from one processor to another? Assume a link can transmit 4 bytes per
cycle.

Page 3

Heterogeneous Parallelism

Problem 2. (9 points):

You are part of a team that is designing new family of single-chip parallel processors. Your colleagues
have already designed the following two CPUs, which will be the building blocks of your system design:

CPU-Lean: this CPU was designed for area efficiency;

CPU-Fast: this CPU was designed for speed. It is twice as fast as the CPU-Lean design, but it also takes
up four times as much area.

Your team is considering several different machine designs, having an overall area equivalent to that of
N CPU-Lean cores. That is, it will have Py, lean cores and Pr fat cores, such that 4Pr + P;, = N.

Assume the following;:

e The key benchmark that your team cares about takes 200 seconds to run sequentially on a single
CPU-Lean core, and 100 seconds to run sequentially on a single CPU-Fast core.

e The benchmark’s computation consists of parallel and sequential parts, where the fraction of the orig-
inal sequential time that is parallel is f. These two cannot overlap: while the sequential portion is
executing on one core, the others remain idle.

e The parallel portion of the benchmark will experience linear speedup when it runs on multiple
CPUs (i.e., there are no inefficiencies in running in parallel).

A. (1pt) First consider a lean-only machine, where Pr = 0. Write an equation for the total execution
time of the benchmark, as a function of f and Pr, making optimal use of the processing elements.

B. (2pts) Now consider the case where Pr > 0 Write an equation for the total execution time of the
benchmark, as a function of f, P, and Pr, making optimal use of the processing elements.

Page 4

C. (6pts) Using your equations above, calculate the execution time (in seconds) for the benchmark
with the following machine configurations (all with N' = 20), assuming f = 0.90.

As an aid, separately list the time spent for the sequential portion 7}, the time spent for the parallel
portion T}, and the overall time Tio; = Tieq + Tpar-

P, Pp Tseq Toar Tiot
20 0

0 5

4 4

Page 5

Lock-Free Data Structures

Problem 3. (8 points):

Consider the following version of compare-and-swap:

bool CAS (int xaddr, int check, int new) {

atomic {
int old = xaddr; // Read
if (old == check) { // Compare
xaddr = new; // Write

return true;

}

return false;

}
You are given the following sequential code implementing a bounded stack of integers using an array
and a counter indicating the number of elements in the stack.

#define MAXLEN 1000
int stack [MAXLEN];
int count = 0;

void push (int x) {
int ccount = count;
if (ccount >= MAXLEN)
return; // Silently fail if stack is full
stack[ccount] = x;
count = ccount + 1;

void pop (int =xval) {
int ccount = count;
if (ccount == 0)
return; // Silently fail if stack is empty
*val = stack[ccount-17;
count = ccount - 1;

Page 6

Here are attempts at lock-free implementations of push and pop:

void push (int x) {
while (1) {

int ccount = count;

if (ccount >= MAXLEN)
return; // Silently fail if stack is full

if (CAS(&count, ccount, ccount+1l)) {
stack[ccount] = x;
return;

void pop (int *val) {
while (1) {
int ccount = count;
if (ccount == 0)
return; // Silently fail if stack 1is empty
if (CAS(&count, ccount, ccount-1) {
*val = stack[ccount-17;
return;

Page7

A. (4 pts) Identify a problem with the lock-free versions of push and pop.

B. (2 pts) Explain briefly why it is not possible to do lock-free implementations of these operations
using CAS.

C. (2 pts) Suppose you have a double-word CAS with the following prototype:

// Atomic compare-and-swap two Iintegers simultaneously
// Both locations are updated if and only if both existing
// values match their check values.
bool DCAS (int xaddrl, int checkl, int newl,
int xaddr2, int check2, int new2);

Explain (without writing code) how you could implement the push operation using DCAS.

Page 8

Memory Consistency

Problem 4. (10 points):

Assume that global variable data has initial value 0, and ready has initial value false. Consider the
following code snippets being executed concurrently by two threads:

Thread 1:

rdata = 1; Thread 2:
x*ready = true;
x*ready = false;
*data = 2;
*ready = true;

A: while (!xready) { /% nothing =/ }
B: printf ("Data = %d\n", =xdata);

g w N

A. (6 pts) For sequentially consistent execution, indicate which of the following outputs is possible.
For each, give an ordering of the 7 steps (1-5 for Thread 1 and A-B for Thread 2) that would lead
to this outcome. For the sequentially consistent cases, the ordering must be sequentially consistent.
For the ones that are not sequentially consistent, give an ordering that minimizes the number of

inconsistencies.
Output Possible (Y/N) Step ordering
Data =0
Data =1
Data =2

B. (2 pts) Now suppose this code runs on a processor with a weak consistency model, where loads and
stores to different memory locations by one thread can appear to occur to other threads as if they
did not occur in program order. Would this change what the program could print? Explain your
answer.

C. (2 pts) Where could you place a minimum set of fences to guarantee that only sequentially consistent
outputs would occur with this program?

Page 9

Transactions on Trees

Problem 5. (12 points):

Consider the binary search tree illustrated below.

total sum =170

The operations insert (insert value into tree, assuming no duplicates) and sum (return the sum of all
elements in the tree) are implemented as transactional operations on the tree as shown below:

struct Node {
Node =xleft, *right;
int value;

}i

Node* root; // root of tree, assume non-null

void insertNode (Nodex n, int wvalue) {
if (value < n->value) {

if (n—>left == NULL)
n—>left = createNode (value);
else
insertNode (n->1left, wvalue);
} else {
if (n—>right == NULL)
n->right = createNode (value);
else

insertNode (n—->right, wvalue);

int sumNode (Nodex n) {
if (n == null) return 0;
int total = n->value;
total += sumNode (n—->left);
total += sumNode (n—->right);
return total;

Page 10

void insert (int value) {

bool done = false;
while (!done) {
xbegin () ;

insertNode (root, value);
done = xend() ;

int sum() {
int rval = 0;
bool done = false;
while (!done) {
xbegin () ;
rval = sumNode (root) ;
done = xend() ;

}

return rval;

}

Consider when the following four operations are executed by different threads, starting with the original
tree.

Tl: insert (10);
T2: insert (25);
T3: insert (24);
T4: printf ("Sum = %d\n", sum());

A. (4 pts) Consider the different orders in which these operations could be executed. Draw all possible
trees that could result. (Note: you can draw just the subtrees rooted at node 20, since that is the only
part of the tree that is affected.)

B. (2 pts) How many different values could thread T4 print? Explain. (You need not list them.)

Page 11

C. (2 pts) Do your answers to parts A or B change depending on whether the implementation of trans-
actions uses optimistic or pessimistic conflict detection? Why or why not?

D. (2 pts) Consider an implementation using lazy data versioning and optimistic conflict detection that
manages transactions at the granularity of tree nodes (the read and writes sets are lists of nodes). As-
sume that the transaction for insert (10) commits when those for insert (24) and insert (25)
are at node 20, and for sum () is at node 40. Which of the four transactions (if any) are aborted?
Please describe why.

E. (2 pts) Now consider a version that uses optimistic conflict detection for reads and pessimistic
conflict detection for writes. Does transactional memory in this case offer any performance benefit
for sum () compared to a fine-grained locking approach? Explain.

Page 12

A Simple Image Processing Pipeline

Problem 6. (12 points):

Consider the following code to perform a vertical convolution on an input image.

float input [H+3] [W];
float output [H] [W];

void convolve (float output[H] [W], float input[H][W]) {
for (int 3=0; Jj<H; J++) {
for (int i=0; i<wW; i++) {

float accum = 0.f;

for (int j3j=0; 3jj<4; JJ++) |
// count as two floating-point operations
accum += 0.25 * input[j+331[i];

}

output[J][1] = accum;

convolve (output, input);
We consider execution under the following conditions:

o H =W =4096.

e The cache is fully associate and uses write-back plus write-allocate policies. It has a capacity of
16,384 bytes and a block size of 32 bytes.

e Both arrays begin on cache boundaries.

A. (2 pts) What is the arithmetic intensity of this program, defined as the number of floating-point
operations divided by the number of load and store operations.

B. (3 pts) Under the conditions described, what would be the cache hit rate for load operations?

Page 13

C. (8 pts) A colleague suggests switching the outer two loops, as follows:

void convolve (float output [H] [W], float input[H][W]) {
for (int i=0; i<w; i++) {
for (int 3j=0; Jj<H; J++) {

float accum = 0.f;

for (int 3j3=0; 3Jj<4; JJ++) |
// count as two floating-point operations
accum += 0.25 % input[j+33]1[i];

}

output[j] [i] = accum;

}

What would be the hit rate for load operations in this case?

D. (4 pts) Describe (in words; no code is necessary) how you could modify the second version of the
program to achieve the maximum possible hit rate on loads, while having the same arithmetic in-

tensity? What would that hit rate be?

Page 14

