
15-451 Algorithms, Spring 2007

Homework # 1 due: January 30, 2007

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each page. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: Group work is allowed, however each student must hand in a separate write-up.
Moreover, you must explicitly state where you got your ideas from. The answers should
always be in your own words.

Problems:

(25 pts) 1. Recurrences. Solve the following recurrences, giving your answer in Θ notation. For
each of them, assume the base case T (x) = 1 for x ≤ 2. Show your work.

(a) T (n) = 4T (n/5) + n.

(b) T (n) = T (n− 4) + n4.

(c) T (n) = 5T (n− 6).

(d) T (n) =
√

n T (
√

n) + n. (E.g., we might get this from a divide-and-conquer
procedure that uses linear time to break the problem into

√
n pieces of size

√
n

each. Hint: write out the recursion tree.)

(25 pts) 2. Recurrences and proofs by induction. Consider the following recurrence:

T (n) = 2T (n/2) + n lg n.

(The base case isn’t so important, but you can think of T (2) = 2 if you like.) We would
like you to solve this recurrence using the “guess and prove by induction” method.

(a) Try to prove by induction that T (n) ≤ cn lg n. In other words, assume inductively
that T (n′) ≤ cn′ lg n′ for all n′ < n and try to show it holds for n. This guess is
incorrect and so your proof should fail. (If your proof succeeds, then there is a
problem!!) Point out where this proof fails.

(b) Use the way the above proof failed to suggest a better guess g(n). Explain why
you chose this guess and prove by induction that T (n) ≤ g(n) as desired.

(c) Now give a proof by induction to show that T (n) ≥ c′g(n) where c′ > 0 is some
constant and g(n) is your guess from (b). Combining this with (b), this implies
that T (n) = Θ(g(n)).

(25 pts) 3. Squaring of a matrix [DPV p.76 Problem 2.27]. The square of a matrix A is its
product with itself, A · A.

(a) Show that 5 multiplications are sufficient to compute the square of a 2×2 matrix.

(b) What is wrong with the following algorithm for computing the square of an n×n
matrix?

“Use a divide-and-conquer approach as in Strassen’s algorithm, except that in-
stead of getting 7 subproblems of size n/2, we now get 5 subproblems of size n/2
thanks to part (a). Using the same analysis as in Strassen’s algorithm, we can
conclude that the algorithm runs in time O(nlog2 5).”

(c) In fact, squaring matrices is no easier than matrix multiplication. Show that if
n× n matrices can be squared in time O(nc), for some constant c ≥ 2, then any
two n× n matrices can be multiplied in time O(nc).

(25 pts) 4. Matrix games. In the game of rock-paper-scissors, two players simultaneously choose
rock, paper, or scissors, and the winner is determined according to the rule “rock beats
scissors, scissors beats paper, and paper beats rock”. Let’s say the loser pays the
winner $1, and if both players choose the same object, then it is a draw.

For a game of this sort, a strategy is a deterministic or randomized method for picking
what to play. The value of a strategy is the amount of money you win (or the expected
amount if the strategy is randomized) against an opponent who plays optimally know-
ing your strategy (he has spies). For instance, the deterministic strategy “play rock”
has value −1 since an opponent knowing this is your strategy could just play paper.
The strategy “flip a coin and with probability 1/2 play rock and with probability 1/2
play paper” has value −1/2 since an opponent who knows this is your strategy could
again play paper, giving you an expected gain of 1

2
· (−1) + 1

2
· 0. The strategy “pick

each of rock, paper, or scissors with probability 1/3” has value 0.

Here is a new game. Player A (Alice) hides either a nickel or a quarter behind her
back. Then, player B (Bob) guesses which it is. If Bob guesses correctly, he wins the
coin. If Bob guesses incorrectly, he has to pay Alice 15 cents. In other words, the
amount that Alice wins can be summarized by the following “payoff matrix”:

Alice hides

Bob guesses
N Q

N −5 +15
Q +15 −25

(a) What is the value to Alice of the strategy “with probability 1/2 hide a nickel and
with probability 1/2 hide a quarter”?

(b) What strategy for Alice has the highest value, and what is its value?

(c) What strategy for Bob has the highest value to Bob (equivalently, the lowest value
to Alice), and what is its value?

(d) Explain in a few sentences why your answer to part (b) proves that your answer
in (c) was optimal (Bob can’t hope to guarantee any better), and vice-versa.

(e) Is it better to be Alice or Bob in this game?

Comment: Matrix games provide an interesting perspective on algorithm design.
Think of a matrix where each row represents some algorithm, each column represents
some possible input, and entry ij is the cost of running algorithm i on input j. (So,

2

matrix entries are like payoffs to the adversarial column-player.) A good randomized
algorithm, like randomized-quicksort, can be thought of as a randomized strategy for
the row-player that has a low expected cost no matter what input the adversary selects.

3

