
15-451 Algorithms, Spring 2007

Homework # 2 due: Week February 12 Mon-Thurs, 2007

Ground rules:

• This is an oral presentation assignment. You should work in groups of three. At some
point before Sunday, February 11 at 11:59pm your group should sign up for a 1-hour
time slot on the sign-up sheet on the course web page. Sign-ups will close at that time.

• Each person in the group must be able to present every problem. The TA/Professor will
select which student presents which problem. The other group members may assist the
presenter.

• You are not required to hand anything in at your presentation, but you may if you choose.
If you do hand something in, it will be taken into consideration (in a non-negative way)
in the grading.

Problems:

1. [median of two sorted arrays] Let A and B be two sorted arrays of n elements each. We
can easily find the median element in A — it is just the element in the middle — and
similarly we can easily find the median element in B. (Let us define the median of 2k
elements as the element that is greater than k − 1 elements and less than k elements.)
However, suppose we want to find the median element overall — i.e., the nth smallest
in the union of A and B. How quickly can we do that? You may assume there are no
duplicate elements.

Your job is to give tight upper and lower bounds for this problem. Specifically, for some
function f(n),

(a) Give an algorithm whose running time (measured in terms of number of comparisons)
is O(f(n)), and

(b) Give a lower bound showing that any comparison-based algorithm must make Ω(f(n))
comparisons in the worst case.

In fact, see if you can get rid of the O and Ω to make your bounds exactly tight in terms
of the number of comparisons needed for this problem.

Some hints: You may wish to try small cases. For the lower bound, you should think of
the output of the algorithm as being the location of the desired element (e.g, “A[17]”)
rather than the element itself. How many different possible outputs are there?

2. [tight upper/lower bounds] Consider the following problem.

INPUT: n2 distinct numbers in some arbitrary order.

OUTPUT: an n× n matrix of the inputs having either all rows, or all columns sorted in
increasing order.

EXAMPLE: n = 3, so n2 = 9. Say the 9 numbers are the digits 1, ..., 9. Possible outputs
include:

1



1 4 7 1 4 5 3 2 1

2 5 8 or 3 6 7 or 4 6 5 or ...

3 6 9 2 8 9 8 7 9

It is clear that we can solve this problem in time O(n2 log n) by just sorting the input
(remember that log n2 = O(log n)) and then outputting the first n elements as the first
row, the next n elements as the second row, and so on. Your job in this problem is to
prove a matching Ω(n2 log n) lower bound in the comparison-based model of computation.

For simplicity, you can assume n is a power of 2.

Some hints: Show that if you could solve this problem using o(n2 log n) comparisons (in
fact, in less than n2 lg(n/2e) comparisons), then you could use this to violate the lg(m!)
lower bound for comparisons needed to sort m elements. You may want to use the fact
that m! > (m/e)m. Also, recall that you can merge two sorted arrays of size n using at
most 2n− 1 comparisons.

3. [amortized analysis] Suppose we have a binary counter such that the cost to increment or
decrement the counter is equal to the number of bits that need to be flipped. We saw in
class that if the counter begins at 0, and we perform n increments, the amortized cost per
increment is just O(1). Equivalently, the total cost to perform all n increments is O(n).

Suppose that we want to be able to both increment and decrement the counter.

(a) Show that even without making the counter go negative, it is possible for a sequence
of n operations starting from 0, allowing both increments and decrements, to cost
as much as Ω(log n) amortized per operation (i.e., Ω(n log n) total cost).

(b) To reduce the cost observed in part (a) we’ll consider the following redundant ternary
number system. A number is represented by a sequence of trits, each of which is
0, +1, or −1. The value of the number represented by tk−1, . . . , t0 (where each
ti, 0 ≤ i ≤ k − 1 is a trit) is defined to be

k−1∑
i=0

ti2
i.

For example, 1 0 -1 is a representation for 22 − 20 = 3.

The process of incrementing a ternary number is analogous to that operation on
binary numbers. You add 1 to the low order trit. If the result is 2, then it is changed
to 0, and a carry is propagated to the next trit. This process is repeated until no
carry results. Decrementing a number is similar. You subtract 1 from the low order
trit. If it becomes -2 then it is replaced by 0, and a borrow is propagated. Note that
the same number may have multiple representations (e.g., 1 0 1 = 1 1 -1 ).
That’s why this is called a redundant ternary number system.

The cost of an increment or a decrement is the number of trits that change in the
process. Starting from 0, a sequence of n increments and decrements is done. Give a
clear, coherent proof that with this representation, the amortized cost per operation
is O(1) (i.e., the total cost for the n operations is O(n)). Hint: think about a “bank
account” or “potential function” argument.

2


