
15-451 Algorithms, Spring 2007

Homework # 5 due: Tuesday April 10, 200

Please hand in each problem on a separate sheet and put your name, andrew id and
recitation (time or letter) at the top of each page. You will be handing each problem into a
separate box, and we will then give homeworks back in lecture. If a problem takes up more
than one sheet of paper, you must staple all sheets of paper for that problem together.

If you DO NOT follow these instructions exactly, you will lose up to 30pts.

Remember: Group work is allowed, however each student must hand in a separate write-up.
Moreover, you must explicitly state where you got your ideas from. The answers should
always be in your own words.

Note: For every algorithm that you give briefly explain its correctness and runtime. For
every NP-hardness reduction, you can only reduce from problems given in class or the class
notes (this does not include the textbooks).

1 CMU Graduation (50 pts)

Central Metropolitan University has a list of m graduation requirements r1, r2, . . . , rm, where
each requirement ri is of the form: “you must take at least ki courses from set Si”. A
student is allowed to use the same course to fulfill several requirements. For example, if one
requirement stated that a student must take at least one course from {A, B, C}, another
required at least one course from {C, D,E}, and a third required at least one course from
{A, F,G}, then a student would only have to take A and C to graduate.

Suppose Lazy is an incoming freshman interested in finding the minimum number of courses
that he (or she) needs to take in order to graduate. Specifically, consider the following
decision problem: given n courses labeled 1, 2, . . . , n, given m subsets of these courses
S1, S2, . . . , Sm, and given an integer k, does there exist a set S of at most k courses (for
Lazy to take) such that |S ⋂

Si| ≥ ki for all Si.

Problem 1. Show how you could use a polynomial-time algorithm for the above
decision problem to also solve the search-version of the problem in polynomial time
(i.e., actually find a minimum-sized set of courses to take).

Problem 2. Using the knowledge you have gained during your time at Central
Metropolitan University prove that the decision problem above is NP-complete. Re-
call that you can only reduce from problems given in class or the class notes. Hint:
consider reducing from Vertex Cover.

Problem 3. We could define a fractional version of the graduation problem by imag-
ining that in each course taken, a student gets a score between 0.00 and 1.00, and that
requirement ri now states “the sum of your scores in courses taken from set Si must be

at least ki” (courses not taken count as 0). The student now wants to know the least
total work needed to graduate, defined as the the minimum sum of all scores needed
to satisfy all the requirements.

Show how this problem can be solved using linear programming. Be sure to specify
what the variables are, what the constraints are, and what you are trying to minimize
or maximize.

Now suppose that the new dean Dr. Evil of Central Metropolitan University changes the
graduation policy such that now the same course cannot satisfy more than one require-
ment. For example, if one requirement states that you must take at least two courses from
{A, B, C}, and a second requirement states that you must take at least two courses from
{C, D,E}, then a student who had taken just {B, C, D} would not yet be able to graduate.

Problem 4. All the students are now desperate to work out if they can still graduate!
More formally, the problem is as follows: given a list of requirements r1, r2, . . . , rm

(where each requirement ri is of the form: “you must take at least ki courses from set
Si”), and given a list L of courses taken by some student, decide whether the student
is eligible to graduate. Either give a polynomial time algorithm to solve this problem,
or show that the problem is NP-complete.

2

2 (Generalized) Shortest Supersequence (25 pts)

Problem 5. In homework 3 we introduced the Shortest Supersequence problem for 2
strings. Here we generalize the problem to n strings as follows.

Given n strings {xi = xi
1x

i
2 . . . xi

mi
| mi ≥ 1, i = 1, . . . , n} over some alphabet, a

common supersequence of xi (for all i = 1, . . . , n) is a string z such that each xi

appears in z as a subsequence (as defined in homework 3).

For example, given the strings {abc, bca, dbf} possible supersequences include abcadbf
and adbcaf .

The (generalized) shortest supersequence problem is, given a set of n strings X =
{xi = xi

1x
i
2 . . . xi

mi
| mi ≥ 1, i = 1, . . . , n} and an integer K > 0, to decide whether

there is a supersequence of X of length at most K.

(a) Consider the following reduction from the Vertex Cover problem. Given a graph
G = (V, E) and integer L (the Vertex Cover instance), construct an instance of
(generalized) Shortest Supersequence as follows: for each edge (u, v) ∈ E, create
two strings, uv and vu and add them to the set X of strings in the Shortest
Supersequence instance. Set K = L + |V | and let the final instance be (X, K).
Using this reduction, show that the (generalized) Shortest Supersequence problem
is NP-complete.

Recall, the Vertex Cover problem is as follows: given an undirected connected
graph G = (V, E) and an integer L > 0, you want to decide whether there is a
subset S ⊆ V of size |S| ≤ L such that for every edge (u, v) ∈ E, either u ∈ S or
v ∈ S, or both.

Hint: draw a small example

(b) Suppose that in the reduction above instead of including both uv and vu, you
include only uv in the Shortest Supersequence instance. For example, suppose
that you only include the direction preserving the alphabetical order. Show why
you can’t use this reduction to show that (generalized) Shortest Supersequence is
NP-complete.

3

3 More Flow Problems (25 pts)

Here are some variations of the Maximum Flow problem. Please give short answers.

Problem 6. Suppose each vertex has a capacity on the maximum flow that can enter
it. Show that we can reduce this to the original Max Flow problem to solve it.

Problem 7. Suppose that each edge e also has a lower bound l(e) on the flow it
must carry. Show how to find a Maximum Flow with these restrictions by reducing
the problem to Linear Programming.

Problem 8. Suppose the outgoing flow from each node u is not the same as the
incoming flow but is smaller by a factor of 1 − εu where εu is the loss coefficient
associated with node u. Show how to find a Maximum Flow in this scenario by reducing
the problem to Linear Programming.

4

