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15-451 Algorithms  02/20/07   Lecture 11 

Dynamic Programming 

===================================================================== 

 

Dynamic Programming: Powerful technique that often allows you to solve 

a problem in time O(n^2) or O(n^3) where a naive approach would take 

exponential time.  Usually, to get speed down below that (if 

possible), need to add other ideas.  Today: 2 or 3 examples. 

 

There are several ways of thinking about the basic idea. 

 

Basic Idea (version #1): What we want to do is take our problem and 

somehow break it down into a reasonable number of subproblems (where 

"reasonable" might be something like n^2) in such a way that we can 

use optimal solutions to the smaller subproblems to give us optimal 

solutions to the bigger ones. Unlike "divide and conquer" (like 

mergesort or quicksort) it is OK if our subproblems overlap, so long 

as there aren't too many of them.  

 

====================================================================== 

 

Example #1: Longest Common Subsequence 

 

2 strings: S of length n, T of length m.  E.g., 

  S = ABAZDC 

  T = BACBAD 

LCS is longest sequence of characters that appear left-to-right (but 

not necessarily in a contiguous block) in both strings. 

  E.g., here, LCS has length 4: ABAD. 

 

For instance, use in genetics: given two DNA fragments, the LCS gives 

info about what they have in common and the best way to line them up. 

 

Let's solve the LCS problem using Dynamic Programming.  Subproblems: 

look at LCS of prefix of S and prefix of T.  For simplicity, we'll 

worry first about finding *length* of longest and then modify to 

produce the sequence. 

 

So, here's the question: say LCS[i,j] is the LCS of S[1..i] with 

T[1..j].  How can we solve for LCS[i,j] in terms of the LCS for 

the smaller problems?  

   Case 1: what if S[i]!=T[j]?  Then, the answer LCS has to ignore one 

    of S[i] or T[j] so LCS[i,j] = max(LCS[i-1,j], LCS[i,j-1]).  

 

   Case 2: what if S[i]==T[j]?  Then the LCS of S[1..i] and T[1..j] 

    might as well match them up.  If I gave you a CS that matched  

    S[i] to an earlier location in T, for instance, you could 

    always match it to T[j] instead.  So, the solution is 1 + 

    LCS[i-1,j-1]. 

 

 

So, we can just do two loops, filling in the LCS using these rules. 

Here's what it looks like pictorially: 

 

     | B A C B A D 

   --+------------ 

   A | 0 1 1 1 1 1 
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   B | 1 1 1 2 2 2 

   A | 1 2 2 2 3 3 

   Z | 1 2 2 2 3 3 

   D | 1 2 2 2 3 4 

   C | 1 2 3 3 3 4 

 

Just fill out row by row, doing constant amount of work per entry, so 

O(mn) time overall. 

 

To find sequence: walk backwards through matrix to largest of left or 

up. If both are < current, then go diagonally and output character. 

(Or, could modify alg to fill matrix with sequences instead of numbers) 

 

We've been looking at "bottom-up Dynamic Programming".  Here's another 

way of thinking about DP, that also leads to basically the same 

algorithm, but viewed from the other direction.  Sometimes this is 

called "top-down Dynamic Programming". 

 

Basic Idea (version #2): Suppose you have a recursive algorithm for 

some problem that gives you a really bad recurrence like 

T(n)=2T(n-1)+n.  But, suppose that many of the subproblems you reach 

as you go down the recursion tree are the *same*.  I.e., the "tree" is 

really a "DAG".  Then you can hope to get a big savings if you store 

your computations so that you only compute each one once.  Can store 

these in an array or hash table.  Called "memoizing". 

 

E.g., for LCS, using our analysis we had at the beginning, we might 

have produced the following exponential-time recursive program (arrays 

start at 1): 

LCS(S,n,T,m) 

{ 

  if (n==0 || m==0) return 0; 

  if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1); // no harm in matching up 

  else result = max( LCS(S,n-1,T,m), LCS(S,n,T,m-1) ); 

  return result; 

} 

 

Memoized version: start by initializing arr[i][j]=unknown for all i,j. 

LCS(S,n,T,m) 

{ 

  if (n==0 || m==0) return 0; 

  if (arr[n][m] != unknown) return arr[n][m];  // <- added this line 

  if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1); 

  else result = max( LCS(S,n-1,T,m), LCS(S,n,T,m-1) ); 

  arr[n][m] = result;                          // <- and this line 

  return result; 

} 

 

Running time is O(nm).  Why? 

 -> we get to the second-to-last line at most n*m times 

 => at most 2nm recursive calls. 

 => O(nm) running time. 

 

Comparing bottom-up and top-down: top-down (memoized) pays a penalty 

in recursion overhead, but can be faster for problems where a 

reasonable fraction of the subproblems never get examined at all, so 

we can avoid computing them. 
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Discussion and Extensions 

========================= 

Equivalent problem: "minimum edit distance", where the legal 

operations are insert and delete. (E.g., unix "diff", where S and T 

are files, and the elements of S and T are lines of text).  The 

minimum edit distance to transform S into T is achieved by doing  

|S| - LCS(S,T) deletes and |T| - LCS(S,T) inserts. 

 

In computational biology applications, often one has a more general 

notion of sequence alignment.    Many of these different problems all 

allow for basically the same kind of DP solution. 

 

 

============================================================================= 

 

Example #2: knapsack problem 

 

Imagine you have a homework assignment with different parts 

A,B,C,D,E,F,G.  Each part has a "value" (in points) and a "size" 

(time in hours) to do. 

 

EG:      A     B     C    D     E     F    G  

 value:  7     9     5   12    14     6   12 

 

 time:   3     4     2    6     7     3    5 

 

You have: 15 hours.  Which parts should you do?  What's the best total 

value possible? (Assume no partial credit on parts)  (A: 34 -- ABFG) 

 

This is called the "knapsack problem": 

Given n items.  Each has size s_i and value v_i. Knapsack of size S. 

Goal: find subset of items of max possible total value such that sum 

of sizes is <= S. 

 

Can solve in time O(2^n) by trying all possible subsets. Want something 

better.  We'll use DP to solve in time O(n*S). 

 

Let's do this top down by starting with a simple recursive solution 

and trying to memoize. Start by just computing the best possible value 

- then we can see how to actually extract the items needed. 

 

recursive algorithm: either we use the last element or we don't. 

 

 Value(n,S)    // S = space left, n = # items still to choose from 

 { 

   if (S <= 0 || n = 0) return 0; 

   if (s_n > S) result = Value(n-1,S); // can't use nth item 

   else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)}; 

   return result; 

        } 

 

Right now, time is O(2^n).  But, how can we speed up? 

 

Use a 2-d array to store results so we don't end up computing the same 

thing over and over again.  Initialize arr[i][j] to "unknown" 
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 Value(n,S) 

 { 

   if (S <= 0 || n = 0) return 0;  

   if (arr[n][S] != unknown) return arr[n][S];  // <- added this 

   if (s_n > S) result = Value(n-1,S); 

   else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)}; 

   arr[n][S] = result;                          // <- and this 

   return result; 

        } 

 

Running time:  

 same analysis as for LCS: O(nS). 

 

How to get items?  Work backwards:  if arr[n][S] = arr[n-1][S] then we 

*didn't* use the nth item so recursively work backwards from 

arr[n-1][S].  Otherwise, we *did*, so output nth item and recursively 

work backwards from arr[n-1][S-s_n]. 

 

Can also do bottom up. 

============================================================================== 

Example #3:  Matrix product parenthesization 

 

Say we want to multiply 3 matrices X, Y, and Z.  And we're going to 

use the usual algorithm, not Strassen.  We could do it like 

this: (XY)Z or like this X(YZ).  Which way doesn't affect final 

outcome but *does* affect running time to compute it.  

 

E.g., say X is 100x20, Y is 20x100, and Z is 100x20.  So, end result 

will be a 100x20 matrix.  If we multiply using usual algorithm, then 

to multiply lxm matrix by an mxn matrix takes time O(lmn).  So in this 

case, which is better, doing (XY)Z or X(YZ)? 

 

Answer: X(YZ) is better because computing (YZ) takes 20x100x20 steps, 

and produces a 20x20 matrix, then multiplying this by X takes another 

20x100x20 steps, so total is just 2x20x100x20.  But, doing the other 

way, (XY) takes 100x20x100 steps, so already right there you've spent 

more, and then multplying this with Z takes another 100x20x100 steps. 

 

Question: suppose we need to multiply a series of matrices: 

   A_1 x A_2 x A_3 x ... x A_n. 

   What is the best way to parenthesize them? 

 

There are an exponential number of different possible 

parenthesizations: {2(n-1) choose n-1}/n.  So don't want to search 

through all of them.  DP gives us a better way. 

 

Idea: How might you do this recursively?  One way: for each possible 

middle for the final multiplication, optimally solve for the 

parenthesization of the left and right sides, and calculate the total 

cost.  Then take the best middle.  If you keep going, what do the 

subproblems look like?  

 -> For each i,j, what is the best way to multiply A_i x ... x A_j. 

In particular, 

 -> To figure out how to multiply A_i x ... x A_j, consider all 

    possible middle points k. 

 -> For each such k, our cost if we decided to split there would be: 

         cost-to-multiply(A_i x ... x A_k)     <- already computed 



 7 

       + cost-to-multiply(A_{k+1} x ... x A_j) <- already computed 

       + cost to multiply the results.   <- get right from the dimensions. 

 -> So, just chose the k that minimizes this sum. 

 

So, we store an nxn matrix.  First solve for all with j-i = 1, then 

solve for all with j-i = 2, and so on.  At most O(n) choices of k to 

consider when filling in any given entry in matrix. 

  

What is the time? 

 -> O(n^2) subproblems. 

 -> O(n) time per subproblem (because you need to consider O(n) choices of k). 

 => O(n^3) time total. 

============================================================================== 

High-level discussion of Dynamic Programming 

 

What kinds of problems can be solved using DP?  One property these 

problems have is that if the optimal solution to the problem includes a 

solution to a subproblem, then it includes the optimal solution to 

that subproblem.  For instance, say we want to find the shortest path 

from A to B in a graph.  And say this shortest path goes through C. 

Then it must be using the shortest path from A to C.  Or, in the 

knapsack example, if the optimal solution doesn't use item n, then it 

is the optimal solution for the problem in which item n doesn't 

exist.    The book calls this the "optimal substructure" property.   

 

Sometimes you need to do a little work on the problem to get this 

property.  For instance, suppose we're trying to find paths between 

locations in Pittsburgh, and some intersections have no-left-turn 

rules (this is even worse in San Francisco).  Then, just because the 

fastest way from A to B goes through intersection C, it doesn't 

necessarily use the fastest way to C because you might need to be 

coming into C in the correct direction.  In fact, the right way to 

model that problem as a graph is not to have one node per 

intersection, but to have one node per (intersection,direction) pair. 

That way you recover the optimal substructure property. 
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  15-451 Algorithms  02/22/07   Lecture 12 

Graph algorithms I 

* Basic notation/terminology 

* DFS for Topological sorting 

* Dynamic-Programming algs for shortest paths 

  - Bellman-Ford, Floyd-Warshall (all-pairs SP) 

===================================================================== 

Graphs 

====== 

A lot of algorithmic problems can be modeled as problems on graphs. 

Today we will talk about a couple basic ones and we will continue 

talking about graph algorithms for a lot of the rest of the course. 

 

Reminder of basic terminology:  

  A graph is a set of NODES, or VERTICES, with edges between some of 

  the nodes.  V = set of vertices, E = set of edges.  If there's an 

  edge between two vertices, we call them NEIGHBORS.  Degree of a 

  vertex is the number of neighbors it has.   

 

  standard notation: n = |V|, m = |E|.  

 

If we don't allow self-loops, what is max number of total edges?  {n \choose 2} 

 

In a directed graph, each edge has a direction.  Can have up to n(n-1) 

edges now.  For each node, can talk about out-neighbors (and 

out-degree) and in-neighbors (and in-degree). 

 

============================================================================== 

 

TOPOLOGICAL SORTING. 

 

A "DAG" or directed-acyclic-graph is a directed graph without any 

cycles.  E.g., 

 

      A----->D--->E 

      |\     ^ 

      | \    | 

      |  \   | 

      |   | /   

      V   V/          

      C<--B<----F 

 

Given a DAG, the "topological sorting" problem is: find an ordering of 

the vertices such that all edges go forward in the ordering. 

Typically comes up when given a set of tasks to do with precedence 

constraints (need to do A and F before you can do B), and want to find 

a legal ordering of performing the jobs. 

 

Here is a nice linear-time algorithm based on depth-first search (can 

also use it to tell if a directed graph has any cycles). 

 

To be specific, by "DFS of G" we mean "pick a node and do DFS from 

there.  If the whole graph hasn't been visited, then pick an unvisited 

node and repeat the process.  Continue until everything is visited". I.e., 

 

DFS_main(G): 

 For v=1 to n: if v is not yet visited, do DFS(v). 
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DFS(v): 

  mark v as visited. // entering node v 

  for each unmarked out-neighbor w of v: do DFS(w). 

  // exiting node v. 

 

How to solve Topological Sorting #2: 

1. Do depth-first search of G, and output the nodes as you *exit* them. 

2. reverse the order. 

 

Claim: If there is an edge from u to v, then v is exited first.  (This 

implies that when we reverse the order, we have a topological sorting.) 

 

Proof of claim: [Think of u=B, v=D above.]  Easy to see if our DFS 

started at u before starting at v.  What if we started at v first?  In 

this case, we would finish v before even starting u since there can't 

be a path from v to u (else wouldn't be acyclic). 

 

=========================================================================== 

SHORTEST PATHS 

 

Now going to turn to another basic graph problem, of finding shortest 

paths, and look at some algs based on Dynamic Programming. 

 

Given: a weighted, directed graph (each edge has a "weight" or 

"length"), a start node S and a destination node T. 

Goal: find shortest path from S to T. 

 

Will allow for negative-weight edges (we'll see later some problems 

where this comes up when using shortest-path algs as a subroutine) but 

will assume no negative-weight cycles (else the shortest path has 

length negative-infinity). 

 

The BELLMAN-FORD Algorithm 

========================== 

(Note: Bellman is the person credited for inventing Dynamic Programming). 

Algorithm will in fact find the shortest path from all nodes v in 

the graph to T (not just from S). 

 

                               30                    15 

Say we have a graph     5-------------------3-----------------4 

like this:              |                   |                 | 

                     10 |                -40|              40 | 

                        |                   |                 | 

                        |                   v                 | 

                        2-------------------1-----------------0--  

                               30                    60       T 

 

How can we use DP to solve? First of all, as usual for DP, let's just 

compute the *lengths* of the shortest paths first, and then we can 

reconstruct the paths.  

 

Alg idea:  

 - find length of shortest path that uses 1 or fewer edges (or infty if none) 

   [easy: if v=T, get 0; if v has edge to T, get length of edge; else infty] 

 

 - Now, suppose for all v we have solved for length of shortest path to T that 
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   uses i-1 or fewer edges.  How can we use to solve for i?  

 

   Answer: shortest path from v to T that uses i or fewer edges will 

   first go to some neighbor x, and then take the shortest path from x to 

   T that uses i-1 or fewer edges, which we've already solved for!  So 

   just take the min over all neighbors x. 

How far do we need to go?  Answer: at most i=n-1 edges. 

 

BELLMAN-FORD pseudocode: 

 - d[v][i] will be the length of the shortest path from v that uses i or 

   fewer edges (if it exists) or else infinity otherwise. ("d" for "distance") 

 - we'll have base case be paths of length 0 instead of length 1. 

 

initialize d[v][0] = infinity for v != T.  d[T][i]=0 for all i. 

for i=1 to n-1: 

  for each v not equal to T: 

    d[v][i] = MIN ( length(vx edge) + d[x][i-1]  ) 

              v->x 

 

(try it on the above graph!) 

 

Inner MIN operation takes time proportional to out-degree of v.  So, 

inner for-loop takes time O(sum of out-degrees of all nodes) = O(m). 

--> total time is O(mn). 

 

How to recosntruct the paths?  Work backwards: if you're at vertex v 

at distance d[v], move to node x such that d[v] = d[x] + len(vx). 

 

======================================================================== 

Here is a generalization we can also solve using Dynamic Programming. 

We'll see how to do it in 2 different ways.  

 

ALL-PAIRS SHORTEST PATHS 

------------------------ 

Say we want to compute length of shortest path between *every* pair of 

vertices.  If we use Bellman-Ford for all n possible starts S, this 

will take time O(mn^2).  Here is a nice algorithm that uses the matrix 

representation of a graph, and runs in time O(n^3 log n).  

 

ALL-PAIRS SHORTEST PATHS via MATRIX PRODUCTS 

-------------------------------------------- 

Given graph G, define matrix A(G) as follows: 

 - A[i,i] = 0 for all i. 

        - if there is an edge from i to j, then A[i,j] = length of that edge. 

 - otherwise, A[i,j] = infinity. 

 

I.e., A[i,j] = length of shortest path from i to j using 1 or fewer edges. 

 

Now, following the basic Dynamic Programming idea, can we use this to 

produce a new matrix B where B[i,j] = length of the shortest path from 

i to j using 2 or fewer edges?  

 

Answer: yes.  B[i,j] = min_k (A[i,k] + A[k,j]) 

[think about why this is true] 

 

I.e., what we want to do is compute a matrix product B = A*A except we 

change "*" to "+" and we change "+" to "min".  
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In other words, instead of computing the sum of products, we compute 

the min of sums.  What if we now want to get shortest paths using 4 or 

fewer edges?  Just need to compute C = B*B.  I.e., to get from i to j 

using 4 or fewer edges, we need to go from i to some k using 2 or 

fewer edges, and then from k to j using 2 or fewer edges. 

 

Just need to keep squaring O(log n) times. 

 

Running time: O(n^3 log(n)).  Need to do log(n) matrix multiplies to 

get all paths of length n or less and standard matrix multiply takes n^3 

operations. 

 

============================================================================== 

All-pairs shortest paths via Floyd-Warshall. 

 

Here is an algorithm that shaves off the O(log n) and runs in time 

O(n^3).  The idea is that instead of increasing the number of edges in 

the path, we'll increase the set of vertices we allow as intermediate 

nodes in the path.  In other words, starting from the same base case 

(the shortest path that uses no intermediate nodes), we'll then go on 

to the shortest path that's allowed to use node 1 as an intermediate 

node.  Then the shortest path that's allowed to use {1,2} as 

intermediate nodes, and so on. 

 

/*  after each iteration of the outside loop, A[i][j] = len of i->j  

    path that's allowed to use vertices in the set 1..k  */ 

 

   for k = 1 to n do: 

     for each i,j do: 

       A[i][j] = min( A[i][j], (A[i][k] + A[k][j]); 

 

i.e., you either go through k or you don't.  Total time is O(n^3). 

 

What's amazing here is how compact and simple the code is! 

=================================================================== 
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   15-451 Algorithms  02/27/07   Lecture 13 

Graph Algorithms II 

* Dijkstra's alg for shortest paths 

* Maximum bottleneck path 

* Minimum Spanning Trees: Prim and Kruskal      Midterm in 1 week 

                       1 sheet of notes, no book 

========================================================================= 

 

Shortest paths 

============== 

Given graph G, start node S, destination T, want to find shortest path 

from S to T. 

 

In the last class, we saw a couple Dynamic-Programming algorithms for 

shortest path problems.  In particular, the Bellman-Ford algorithm 

solved for the shortest path tree from a start node S in time O(mn). 

 

Def: the SHORTEST PATH TREE from a start node S is a tree giving the 

shortest path from S to every other node in G. 

 

Q: assuming all other nodes are reachable from S, why must such a tree 

exist?  That is, why must we be able to describe the shortest paths 

from S to every other node using just a single tree?  A: because if 

shortest path from S to u goes through v, then it uses a shortest path 

from S to v.  So, for each node u, just need to indicate the very last 

edge on a shortest path to u.  [This is also an "optimal subproblem" 

property that allows for dynamic programming to work. 

 

First alg for today (which you've seen in 15-211) is an algorithm for 

building a shortest path tree that's faster than Bellman-Ford, called 

Dijkstra's algorithm.  However, it requires that all edge lengths be 

non-negative.  See if you can figure out where proof of correctness of 

alg requires non-negativity. 

 

Example for illustration: 

                 5     8 

              A-----B-----C 

              |     |     | 

             1|    1|     |3     start = A. 

              |  2  |  4  | 

              D-----E-----F 

 

DIJKSTRA's ALG 

-------------- 

initialize: 

 - tree = {start}.  No edges.  label start as having distance 0. 

 

invariant: nodes in tree have correct distance to start. 

 

repeat: 

 - for each nbr x of tree compute an (over)-estimate of distance to start: 

           distance(x) =    min   [  distance(v) + length(e)  ] 

                       edges e=(v,x) 

                         v in tree 

 

   In other words, by our invariant, this is the length of the 

   shortest path to x whose only edge not in the tree is the very last 
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   edge. 

 

 - put x of minimum distance into tree, connecting it via the argmin 

        (the edge e used to get distance(x)) 

 

[do above example] 

 

Claim: even if some of distances are wrong, the *minimum* one is correct. 

           

Proof: say x is neighbor of tree of smallest distance(x).  What does 

the *true* shortest path to x look like?  The key point is that the 

last edge this path takes must come directly from the tree.  Let's 

argue this by contradiction.  Suppose instead the first non-tree 

vertex on the shortest path to x is some node y!=x, and then the path 

goes from y to x.  Then the length of the path must be at least 

distance(y), and by definition, distance(x) is smaller (or at least as 

small if there are ties).  [This is where the "non-negativity" comes 

in.  Technically, the wording of our proof was a little sloppy if we 

allow zero-length edges: think how you would re-word it for that case.] 

 

Running time: if you use a heap and code this up right, you can get 

time of O(m log n).  Start with all nodes on heap, everyone having 

distance of infinity except start having distance of 0.  Repeatedly pull 

off the minimum, then update its neighbors, tentatively assigning 

parents any time the distance of some node is lowered.  Takes linear 

time to initialize, but then we do m updates, at O(log n) cost each.  

If you use something called a "fibonacci heap" (that we're not going 

to talk about) can get time down to O(m + n log n) 

 

Maximum-bottleneck path 

======================= 

Here is another problem you can solve with this type of algorithm, called 

the "maximum bottleneck path" problem.  Imagine the edge weights 

represent capacities of the edges ("widths" rather than "lengths") and 

you want the path between two nodes whose minimum width is largest.  How 

could you modify Dijkstra to solve this?? 

 

Def: width of path = minimum width of edges on the path 

bottleneck(v) = width of widest path to v. 

 

Now, we'd update: 

           bottleneck(x) =    max   [min(bottleneck(v),width(e))] 

                         edges e=(v,x) 

                           v in tree 

 

 - put x of maximum bottleneck into tree, connecting it via the argmax 

 

We'll actually use this later in the course... 

 

=========================================================================== 

 

MINIMUM SPANNING TREE 

--------------------- 

A SPANNING TREE is a tree that touches all the nodes of a graph. (So, 

it only makes sense in a connected graph.)   A Minimum Spanning Tree 

is the shortest spanning tree (size of tree is sum of its edge lengths) 
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For instance, can imagine you're setting up a communication network. 

 

For example: 

                 5     8 

              A-----B-----C 

              |     |     | 

             1|    1|     |6 

              |  2  |  4  | 

              D-----E-----F 

 

What is the MST here? 

 

(Note: our defn is only for undirected graphs). 

 

 

Prim's algorithm 

================ 

 

Prim's algorithm is the following simple MST algorithm:  

- pick some arbitrary start node. 

- add shortest edge to current tree. 

- continue until tree spans all nodes. 

--> what does this do on above graph? 

 

[So, a lot like Dijsktra, except just put in the shortest edge rather 

than adding the length to the distance of endpoint to the start 

node.  But even though the alg is simpler than Dijkstra, the analysis 

is a bit trickier...] 

 

Now we need to prove that this works.  Will prove by induction. 

 

First: useful fact about spanning trees:  If you take any spanning tree 

and add an edge to it, you get a cycle.  That's because there was 

already one path between the endpoints, and now there are two.  If you 

then remove any edge in the cycle, you get back a spanning tree. 

 

Proof of correctness of Prim's alg: 

 

  Proof by contradiction.  Say it fails.  Consider the first edge "e" 

  chosen by the algorithm that is not consistent with an MST.  Let 

  T be the tree we have built just before adding in e, and let M be 

  the MST consistent with T. 

 

  Now, suppose we add e to the M.  This creates a cycle.  Since e has 

  one endpoint in T and one outside T, if we trace around this cycle 

  we must eventually get to an edge e' that goes back in to T.  We 

  know length(e') >= length(e) by definition of the algorithm.  So, if 

  we add e to M and remove e', we get a new tree that is no larger 

  than M was, contradicting our defn of "e". 

 

Running time: To make this efficient, we need a good way of storing 

the edges into our current tree so we can quickly pull off the 

shortest one.  If we use a heap, we can do this in log(n) time.  So, 

the total time is O(m log n) where m is the number of edges and n is 

the number of vertices. 
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Kruskal's algorithm 

=================== 

Here's another nice algorithm, called Kruskal's algorithm.  

 

Algorithm: Sort edges by length and examine them from shortest to 

longest. Put edge into current forest (forest is set of trees) if it 

doesn't form a cycle.  

 

E.g., look at in this graph: 

 

 

                 5     8 

              A-----B-----C 

              |     |     | 

             1|    1|     |6 

              |  2  |  4  | 

              D-----E-----F 

 

 

Proof of correctness: Can basically use same argument as before. 

Let e be the first edge we add that is inconsistent with any MST, and 

let F be the forest just before adding e.  Let M be an MST consistent 

with F.  Put e into M.  This makes a cycle.   Go around until you take 

some edge e' jumping between trees in F.  By definition of our algorithm, 

len(e) <= len(e').  So, putting in e and removing e' can only make M 

better, which is a contradiction to our defn of e. 

 

What about running time?  Takes O(m log m) to sort.  Then, for each 

edge we need to test if it connects two different components.  This 

seems like it should be a real pain: how can we tell if an edge has 

both endpoints in the same component.  Turns out there's a nice data 

structure called "union-find" data structure for doing this.  So fast 

that it actually will be low-order compared to the sorting. 

 

Simple version of Union-Find: total time O(m + n log n) for our series 

of operations.  More sophisticated version of Union-Find: total time 

O(m lg^*(n)) -- or even O(m alpha(n)), where alpha(n) is the 

inverse-Ackermann function that grows even more slowly than lg^*. 

 

-> lg^*(n) is the number of times you need to take the lg until you 

 get down to 1.  So, 

  lg^*(2) = 1 

  lg^*(2^2 = 4) = 2   

  lg^*(2^2^2 = 16) = 3 

  lg^*(2^2^2^2 = 65536) = 4 

  lg^*(2^65536) = 5 

 

[I won't define inverse-Ackerman, but to get alpha(n) to 5, you need n 

to be at least a stack of 256 2's.] 
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15-451 Algorithms  03/01/07   Lecture 14 

 

* Maximum bottleneck path 

* Minimum Spanning Tree recap: Prim and Kruskal      Midterm on Tues 

* Midterm review                    1 sheet of notes, no book 

========================================================================= 

 

One nice thing about Dijkstra's algorithm is that you can modify it to 

solve other related problems.  (This kind of thing often makes a good 

test question) 

 

DIJKSTRA's ALG recap (finds shortest path tree) 

----------------------------------------------- 

E.g.,            5     8 

              A-----B-----C 

              |     |     | 

             1|    1|     |3     start = A. 

              |  2  |  4  | 

              D-----E-----F 

 

Initialize: 

 - tree = {start}.  No edges.  label start as having distance 0. 

 

Invariant: nodes in tree have correct distance to start. 

 

Repeat: 

 - for each nbr x of tree compute an (over)-estimate: 

           dist(x) =    min   [  dist(v) + length(e)  ] 

                     edges e=(v,x) 

                      v in tree 

 

   In other words, by our invariant, this is the length of the 

   shortest path to x whose only edge not in the tree is the very last 

   edge. 

 

 - put x of minimum distance into tree, connecting it via the argmin 

        (the edge e used to get dist(x)) 

 

Actual implementation: just update dists of neighbors of the node put 

onto tree, since they are the only ones that can change. 

 

Maximum-bottleneck path 

======================= 

Now consider the following problem called the "maximum bottleneck 

path" problem.  Imagine the edge weights represent capacities of the 

edges (like "widths" rather than "lengths") and you want the path between 

two nodes whose minimum capacity is largest.  How can we solve this? 

 

Def: capacity of path = minimum capacity of edges on the path 

cap(v) = capacity of max capacity path to v. 

 

Now, we'd update: 

           cap(x) =    max   [min(cap(v),w(e))] 

                    edges e=(v,x) 

                      v in tree 

 

 - put x of maximum cap(x) into tree, connecting it via the argmax 
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We'll actually use this later in the course... 

=========================================================================== 

 

MINIMUM SPANNING TREE 

--------------------- 

A SPANNING TREE is a tree that touches all the nodes of a graph. (So, 

it only makes sense in a connected graph.)   A Minimum Spanning Tree 

is the shortest spanning tree (size of tree is sum of its edge lengths) 

 

Prim's algorithm 

================ 

 

Prim's algorithm is the following simple MST algorithm:  

- pick some arbitrary start node. 

- add shortest edge to current tree. 

- continue until tree spans all nodes. 

 

For example: 

                 5     8 

              A-----B-----C 

              |     |     | 

             1|    1|     |6 

              |  2  |  4  | 

              D-----E-----F 

 

[So, a lot like Dijsktra, except just put in the shortest edge rather 

than adding the length to the distance of endpoint to the start 

node.  But even though the alg is simpler than Dijkstra, the analysis 

is a bit trickier...] 

 

Now we need to prove that this works.  Will prove by induction. 

 

  Assume inductively that there exists an MST M that contains our tree 

  T built so far.  Want to show there exists an MST that contains T 

  *and* the new edge e we are about to add.  If M contains e then we're 

  done.  If not, then add e to M.  This creates a cycle.  Since e has 

  one endpoint in T and one outside T, if we trace around this cycle 

  we must eventually get to an edge e' that goes back in to T.  We 

  know length(e') >= length(e) by definition of the algorithm.  So, if 

  we add e to M and remove e', we get a new tree M' that is no larger 

  than M was, and contains both T and e. 

 

Running time: To make this efficient, we need a good way of storing 

the edges into our current tree so we can quickly pull off the 

shortest one.  If we use a heap, we can do this in log(n) time.  So, 

the total time is O(m log n) where m is the number of edges and n is 

the number of vertices. 

 

 

Kruskal's algorithm 

=================== 

Here's another nice algorithm, called Kruskal's algorithm.  

 

Algorithm: Sort edges by length and examine them from shortest to 

longest. Put edge into current forest (forest is set of trees) if it 

doesn't form a cycle.  
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E.g., look at in this graph: 

 

                 5     8 

              A-----B-----C 

              |     |     | 

             1|    1|     |6 

              |  2  |  4  | 

              D-----E-----F 

 

Proof of correctness: Can basically use same argument as before. 

Assume by induction there exists a MST M containing all edges in our 

forest F built so far.  Want to show there exists an MST M' containing 

F and the next edge e we are about to include.  If M contains e then 

we are done.  Else put e into M.  This makes a cycle.  Go around until 

you take some edge e' jumping between trees in F.  By definition of 

our algorithm, len(e) <= len(e').  So, putting in e and removing e' to 

get M' can only make M better. 

 

What about running time?  Takes O(m log m) to sort.  Then, for each 

edge we need to test if it connects two different components.  This 

seems like it should be a real pain: how can we tell if an edge has 

both endpoints in the same component.  Turns out there's a nice data 

structure called "union-find" data structure for doing this.  So fast 

that it actually will be low-order compared to the sorting. 

 

Simple version of Union-Find: total time O(m + n log n) for our series 

of operations.  More sophisticated version of Union-Find: total time 

O(m lg^*(n)) -- or even O(m alpha(n)), where alpha(n) is the 

inverse-Ackermann function that grows even more slowly than lg^*. 

 

-> lg^*(n) is the number of times you need to take the lg until you 

 get down to 1.  So, 

  lg^*(2) = 1 

  lg^*(2^2 = 4) = 2   

  lg^*(2^2^2 = 16) = 3 

  lg^*(2^2^2^2 = 65536) = 4 

  lg^*(2^65536) = 5 

 

[I won't define inverse-Ackerman, but to get alpha(n) to 5, you need n 

to be at least a stack of 256 2's.] 

 

Simple UNION-FIND  O(m + n log n)-time. 

================= 

General picture is we maintain a collection {S_1, S_2, ..., S_k} of 

components, initially each with one element.  Operations: 

 

        Union(x,y) - replace the component S_x containing x and the S_y 

                     containing y with the single component S_x U S_y. 

        Find(x) - return the unique ID for the component containing x (this 

                        is just some representative element in it). 

 

Given this, when we consider some edge (v,w) we just see if 

Find(v)==Find(w).  To put in the edge(v,w) we do a union.  

 

Algorithm 

--------- 
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Each set will be just a linked list: each element has pointer to 

next element in list.  But, augment so that each element also has 

a pointer directly to head of list.   Head of list is the 

representative element.  

 

Initialization: for each x, let x->head = x.   Total time O(n). 

 

Find(x) - constant time: return(x->head).  We do this O(m) times, so 

   total time O(m). 

 

Union(x,y) - to union the two lists (let's call them A and B with 

 lengths L_A and L_B).  We append B onto end of A.  What is 

 is the time needed?  Answer: we first have to walk down A to get to 

 bottom element.  Then hook up head of B to this.  Then walk down B 

 updating the pointers to the head.  So total time is O(L_A + L_B) 

 

Q: Can we get just O(L_B)? 

  

 Method 1: splice B into the middle of A, at x. 

 Method 2: if store pointer to tail in the head, this also avoids 

 walking down A. 

 

Q: Can we reduce this to O(min(L_A,L_B))? 

 

A: Yes.  Just store length of list in the head. Then compare and 

 append shorter one onto end of longer one.  Then update the 

 length count.  

 

Claim: this gives us the O(m + n log n) total running time. 

 

PROOF: We already analyzed the initialization and find operations. 

Each union costs O(length of list we walk down).  Key idea:  

let's pay for this by charging O(1) to each element that we walked 

over.  Think of as a charge for updating its head pointer. 

 

Now, let's look at this from the point of view of some lowly element x 

sitting in a list somewhere.  Over time, how many times does x get 

stepped on and have its head pointer updated?  Answer: at most O(log 

n) times.  Reason: because every time x gets stepped on, the size of 

the list he is in doubles (at least). 

 

So, we were able to pay for unions by charging elements stepped on, 

and no element gets charged more than O(log n), so total cost is O(n 

log n) for unions, or O(m + n log n) overall. 

 

====================================================================== 

 

MIDTERM REVIEW 

============== 

 

- Last year's midterm now up on webpage. 

 

- Main topics: 

 

 - recurrences 

 - probabilistic reasoning 

 - reasoning about upper and lower bounds 



 20 

 - binary search trees 

 - hashing 

 - Dynamic programming 

 - MST and shortest paths 



 21 

 

   15-451 Algorithms   03/08/07  Lecture 15 

* Graphs Algorithms III: fun with BFS and DFS 

 - 2-coloring 

 - properties of BFS and DFS trees 

 - strongly-connected components 

======================================================================= 

Problem 1: Graph Coloring 

------------------------- 

Given a graph, want to give each node a color such that no 

two neighbors have the same color.  Goal is to do this with the fewest 

total number of different colors (easy to do with n colors). 

 

E.g., pentagon. 

 

E.g., consider the problem of scheduling final exams into the fewest 

number of different time-slots.  Each node is a class, and 

there is an edge between two if lots of students are taking both 

classes.  In compilers, this kind of problem comes up when assigning 

variables to registers.  

 

Unfortunately, graph-coloring problem is NP-hard.  In fact, even telling if 

possible to color with <= 3 colors is NP-hard in general.  But, 

2-coloring problem (color with 2 colors if possible else say 

"impossible") is easy.   How to do it? 

 

Turns out it's pretty simple.  Pick some vertex v and give it one 

color (say, red).  Then all its neighbors had better be the other 

color (say, blue).  All their neighbors had better be red, their 

neighbors blue and so forth, sweeping across the graph until 

everything in v's connected component has a color.  Now, we check: if 

there is any bad edge (both endpoints the same color) then G is not 

2-colorable: why? because all our decisions were forced.  Otherwise we 

have a legal 2-coloring of v's component and we run this procedure 

again on any remaining components (which don't interfere with each other 

since there are no edges between components). 

 

Another term for a graph being 2-colorable is that it is bipartite. 

So, this is an algorithm for testing if a graph is bipartite, and if 

so, finding a bipartition. 

 

One way to think of this is we are doing breadth-first search.  (can 

actually use DFS to do this too, but BFS is easier to visualize). 

 

Reminder about BFS and discussion of BFS trees and DFS trees 

------------------------------------------------------------ 

 

Breadth-first search: start at some vertex v.  Then go to all 

neighbors (call them "level 1" since they're distance 1 from v) then 

to their unvisited neighbors (level 2 at distance 2 from v) and so 

on, sweeping this wavefront across the graph. Operationally, we can do 

this by storing current wavefront in a queue.  Something like 

 

BFS(s): 

   mark s as visited and insert s into queue q.  level(s)=0. 

   while (queue not empty): 

      v = q.remove() 
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      for all unvisited neighbors w of v: 

        put edge (v,w) into BFS tree T 

 mark w as visited, level(w)=level(v)+1 

 q.insert(w) 

 

Total time = time for BFS = O(m + n) 

 

Note 1: There are multiple possible BFS trees from a given start s, 

depending on ordering of neighbors. [example]  Same with DFS. 

 

Note 2: What do edges in G that are *not* in the BFS tree look like?  

If G is undirected, then any such edge (u,v) must be between two 

vertices at the same or adjacent levels.  In particular, no 

back-edges, only cross-edges.  [not true if G is *directed*] 

 

In particular, with respect to coloring, if coloring was illegal there 

must be an edge in G between two nodes at the same level i. 

 

How about DFS trees?  Let's write out DFS again since we're going to 

use it later anyway.  Also introduce notion of "DFS numbering" which 

is just the order in which vertices are first visited by the DFS. 

 

DFS_main(G): 

 count = 1. 

 For v=1 to n: if v is not yet visited, do DFS(v). 

 

DFS(v): 

  mark v as visited. // entering node v 

  dfsnum(v) = count++. 

  for each unmarked out-neighbor w of v:  

      put (v,w) into DFS tree T 

      do DFS(w). 

  mark v as exited. 

 

In an *undirected* graph, what do the non-tree edges of G look like? 

Can you have cross-edges?  [between u and v such that neither is an 

ancestor of the other]  No.  Only back-edges. 

 

In a *directed* graph, you *can* have cross-edges, but they have to 

point to a node of lower dfsnum that was already exited. 

 

Say we are at some node v, what can we say about lower dfsnum nodes 

that have *not* yet been exited?  They are exactly the ancestors. 

 

======================================================================== 

PROBLEM 2: strong connectivity. 

 

A directed graph G is strongly-connected if you can get from any node 

to any other node.  Equivalently, for every unordered pair {u,v}, you 

can get from u to v and v to u (they are mutually-reachable). 

 

Linear-time alg to tell if G is strongly-connected?   

 - pick some node v. 

 - see if v can reach everybody (DFS or BFS). 

 - compute reverse graph G^R (reverse all edges) 

 - do it again (i.e., see if every vertex can *reach* v in G). 
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If either one fails (v can't reach everybody or not everybody can 

reach v) then clearly G is not strongly-connected.  If both succeed, 

then G *is* strongly-connected.  Why?   

 

 

======================================================================== 

PROBLEM 3: strongly-connected components (SCCs). 

 

Given any graph G, can decompose into strongly-connected components. 

 

Def: u and v are in the same SCC if u and v are mutually-reachable. 

 

Claim: notion of SCCs is well-defined: if u and v are in same SCC and 

v and w are in same SCC then u and w are in same SCC.  Why? 

 

        [insert example] 

 

So, the SCCs form a partition of the vertices of G.  If you view each 

SCC as a "super-node" then what's left is a DAG.  Why? 

 

In fact, if you run depth-first-search on G, it will behave at the 

high-level like it is running on this DAG.  In particular, once you 

enter some SCC, say at vertex v, you won't exit your recursive call 

until you have visited all of v's component.  This suggests we might 

be able to use DFS to actually *find* all the SCCs, which in fact we 

can, though it ends up being pretty tricky. 

 

Let's define the "head" of an SCC to be the first vertex v in it 

reached by the DFS.  Let's now give some observations.   

 

Observation #1: Each SCC is a connected subtree of the DFS tree, with 

its head as the root of the subtree.  [Why can't the DFS go from the 

current component, off into some other component and then back before 

popping?]  So, if you chopped the tree at every edge leading into a 

head, you would decompose it into the strongly connected components. 

So, all we need to do is identify the heads, then we can chop away... 

 

Observation #2: v is head of an SCC iff v cannot reach a lower 

dfsnum w that can also reach v. 

 

Now, let's try to use these to construct an algorithm.  First of all, 

our goal will be to identify the heads as they are exited in the DFS. 

When we do identify a head, let's at that point output the SCC and 

mark all vertices in it as "outputted" (can do in time proportional to 

the size of the component).  So we will be outputting SCCs in reverse 

topological order.   One more observation: 

 

Observation #3: Assuming we are acting as claimed, all vertices 

visited but not yet outputted are either in the current SCC or in some 

ancestor SCC.  In particular, any such vertex can reach our current 

node! 

 

So, this would be great if we could somehow get DFS to output the 

lowest reachable non-outputted vertex when it returns.  Could then use to 

identify v as head when it's time to exit and chop away.  Unfortunately, 

this is not so easy.... 

 



 24 

                                          +----->o-------+ 

                                          |              v 

 Example:                       o--->o--->o--->o--->o--->o 

                                     ^         ^    |    | 

                                     +----+----|----+    | 

                                               +---------+ 

 

But, what if we change "reachable" to "reachable with only at most 

non-tree edge". 

 

Define low(v) = lowest dfsnum non-outputted vertex reachable from v by 

a path that uses at most one non-tree edge.  [by "non-outputted we 

mean not yet outputted by the time we exit v]  

 

This we *can* get DFS to return, since we can compute it at the leaves 

of the DFS tree, and if we know the answers for all children of v, we 

can compute it for v. 

 

Claim: low numbers are sufficient.  v is head iff low(v)=v. 

 

   Direction 1: if low(v) < v then v is not head. 

   Proof: Let w = low(v).  w is not yet outputted so by observation 3, 

   it can reach v.  So by observation 2, v is not a head. 

 

   Direction 2: if v is not head then low(v) != v. 

   Proof: if v is not head then there must be a path from subtree of v 

          to an ancestor of v.  This entire path must be inside v's 

   SCC, so the first back- or cross-edge on it must be to an 

   unoutputted vertex of lower dfsnum. 
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   15-451 Algorithms   03/20/07    Lecture 16 

* network flow 

* bipartite matching 

======================================================================= 

 

Today and next time we are going to talk about an important 

algorithmic problem called the Network Flow problem.  It's important 

because it can be used to express and solve a lot of different things. 

In O.R. they have entire courses devoted to the topic. 

 

NETWORK FLOW 

------------ 

- directed graph.  Source node. Sink node.  Each (directed) edge has a 

capacity.  (Let's say these are integers.)  Goal is to flow as much 

stuff as possible from source to sink [not just one path].  E.g., 

 

s-->a, cap = 4.   a-->c, cap=3.  c-->t, cap = 2. 

s-->b, cap = 2.   b-->d, cap=3.  d-->t, cap = 4. 

c-->b, cap = 1.   b-->c, cap=2. 

 

E.g., want to route message traffic from source to sink, and the 

capacities tell us how much bandwidth we're allowed on each edge. 

 

Formally, rules are:  

 Capacity constraint: on any edge, f(u,v) <= c(u,v) 

 Flow conservation: for any vertex except s and t, flow in = flow out.  

 

What is the max flow here?  Answer: 5. 

 

How can you see that above max flow was really maximum?  Notice, this 

flow saturates the a-->c and s-->b edges.  And, if you remove these, 

you disconnect t from s.  In other words, the graph has a "s-t cut" of 

size 5. (a set of edges of total capacity 5 that if you remove 

disconnects the source from the sink).   So, the point is that any 

unit of stuff going from s to t must take up at least 1 unit of 

capacity in these pipes.  So, we know we're optimal. 

 

We just argued that in general, max flow can't be larger than any s-t cut. 

 

DEFINITION: an s-t cut is a set of edges whose removal disconnects t from s. 

Or, formally, a cut is a partition of vertex set into A and B where s 

is in A and t is in B.  (The edges of the cut are then all edges going 

from A to B). 

 

DEFINITION: the capacity of cut (A,B) is the sum of capacities of edges in 

the cut.  Or, in the formal viewpoint, it is the sum of capacities of 

all edges going from A to B.  (Don't include edges from B to A.) 

 

Easy fact we showed above: max s-t flow <= min s-t cut. 

 

How to find a maximum flow and prove it's correct?  Here's a very 

natural strategy: find a path from s to t and push as much flow on it 

as possible.  Then look at the leftover graph and repeat until there 

is no longer any path with capacity left to push any more flow on. 

Of course, we need to *prove* that this works: we can't somehow end up 

at a suboptimal solution by making bad choices along the way.  
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This is called the Ford-Fulkerson algorithm. 

 

 

Basic Ford-Fulkerson algorithm 

------------------------------ 

While there exists an s-->t path P of positive residual (leftover) capacity: 

   push maximum possible flow along P (saturating at least one edge on it) 

[These are called "augmenting paths"] 

 

 

Definition: "RESIDUAL CAPACITY" c_f(u,v)  = c(u,v) - f(u,v) 

 where we make the convention that f(v,u) = -f(u,v).  

 

Definition: the RESIDUAL GRAPH is the directed graph with all edges of  

        positive residual capacity, each one labeled by its residual 

        capacity.  Note: may include "back-edges" of original graph. 

 

--> Example on above graph: start with path s-->b-->c-->t.  Draw flow using 

    "[flow/capacity]" notation, and draw residual graph. 

 

Note: residual capacity can be *larger* than original capacity if we 

had flow going in opposite direction.  E.g., residual capacity on the 

c-->b edge is now 3. 

 

CLAIM: Any legal flow in the Residual Graph can be added to the flow 

so far and get a legal flow in the original graph.   

 

PROOF: (1) flow-in = flow-out condition is always satisfied when you 

add two flows.  (2) Capacity constraints satisfied by defn of residual. 

 

Why is the residual graph good to have?  One reason: now left with 

same type of problem we started with.  Can use any black-box 

path-finding method (e.g., DFS). 

 

--> Note: running time is not necessarily so great - it depends on the 

choices we make.  E.g., standard bad-choice graph.  After we prove 

correctness, we'll worry about about algorithms to fix this problem 

(next time). 

 

Algorithm by design finds a legal flow.  Why is it maximum? 

 

Proof: Let's look at the final residual graph.  This graph must have s 

and t disconnected by definition of the algorithm.  Let A be  

component containing s and B = rest. Now, let C = capacity of the (A,B) 

cut in the *original* graph --- so we know we can't do better than C. 

The claim is that we in fact *did* find a flow of value C (which 

therefore implies it is maximum).  Here's why: let's look at what 

happens to the residual capacity of the cut after each iteration of 

the algorithm. Say in some iteration we found a path with k units of 

flow.  Then, even if the path zig-zagged between A and B, every time 

we went A-->B we added k to flow from A to B (and subtracted k from 

the residual capacity) and every time we went B-->A we took away k 

from this flow (and added k to the residual capacity). And, we went 

from A-->B  exactly one more time than we went from B-->A.  So, the 

residual capacity went down by exactly k.  So, the drop in capacity is 

equal to the increase in flow.  Since at the end the residual capacity 

is zero (remember how we defined A and B) this means the total flow is 
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equal to C.   

 

So, we've found a flow of value EQUAL to the capacity of this cut.  We 

know we can't do better, so this must be a max flow, and C must be a 

minimum cut. 

 

Note, we've actually proven the nonobvious MAXFLOW-MINCUT theorem: 

 

      In any graph, max flow from s to t = capacity of minimum (s,t)-cut. 

 

We started with saying max flow <= min cut. But now we've argued that 

this algorithm finds a flow of value equal to SOME cut, so it can't be 

less than the MINIMUM. 

 

We have also proven the INTEGRAL-FLOW THEOREM:  if all capacities are 

integers, then there is a max flow in which all flows are integers. 

[This seems obvious, but you'll use it to show something that's not at 

all obvious on hwk 5.] 

 

Bipartite Maximum matching problem 

---------------------------------- 

 

Say we wanted to be more sophisticated about assigning homework 

presentation slots to groups.  We could ask each group to list the 

slots acceptable to them, and then draw this as a bipartite graph: 

 

  group       slot 

                -----         ---- 

  A  1 

  B  2 

  C  3 

 

Edge if acceptable: e.g, (A 1) (A 2) (B 1) (B 3) (C 2) (C 3) 

 

This is a BIPARTITE GRAPH: a graph with two sides L and R, and all 

edges go between L and R. 

 

A MATCHING is a set of edges with no endpoints in common.  What we 

want here is a PERFECT MATCHING - a matching that connects every point 

on the left hand side with some point on the right hand side.  What's 

a perfect matching here?  More generally (say there is no perfect 

matching) we want a MAXIMUM MATCHING - a matching with maximum 

possible number of edges. 

 

Algorithm to solve: 

------------------ 

  1. Set up fake "start" node S connected to all in L. Connect all in R to 

     a fake "end" node T.  Orient all edges left-to-right and give each a 

     capacity of 1. 

 

  2. Find a max flow from S to T using Ford-Fulkerson. 

 

  3. Output matching corresponding to flow. 

 

This finds a legal matching because edges from R to T have capacity 1, 

so the matching can't have two edges into same node, and similarly the 

edges from S to L have cap=1, so you can't have two edges leaving same 
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node in L.  It's maximum because any matching gives you a flow of the 

same value.  (So if there was a better matching, we wouldn't be at a 

maximum flow).  

 

What about the number of iterations of path-finding?  This is at most 

the #edges in the matching since each augmenting path gives us 1 new edge. 

 

[Run alg on above example].  Notice a neat fact: say you start 

matching A->1, C->3.  These are bad choices.  But, the augmenting 

path automatically undoes them as it improves the flow! 

 

Matchings come up as subroutines in a lot of problems like matching 

up suppliers to customers, or cell-phones to cell-stations when you 

have overlapping cells.  Also as a basic subroutine in other 

algorithmic problems. 
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   15-451 Algorithms  03/22/07     Lecture 17 

Network Flow II      

- Edmonds-Karp #1     

- Edmonds-Karp #2 

- further improvements... 

- min-cost max flow 

====================================================================== 

 

NETWORK FLOW RECAP: Given a directed graph G, a source s, and a sink 

t.  Each edge (u,v) has some capacity c(u,v).   Goal is to find the 

maximum flow possible from s to t. 

 

Example: 4 nodes {s,a,b,t}.  s-->a has cap 4, a-->t has cap 2, s-->b 

of cap 2, b-->t of cap 3, and a-->b of cap 3.  (all non-edges can be 

viewed as edges of capacity 0). 

 

Last time: looked at Ford-Fulkerson algorithm.  Used to prove 

maxflow-mincut theorem, also integral flow theorem. 

 

Key idea: Given a flow f so far, we describe the capacities left over 

in a "residual graph".  Specifically, the residual graph has all edges 

of positive "residual capacity", defined as:  

                 c_f(u,v) = c(u,v) - f(u,v) 

where we define   

                   f(v,u) = -f(u,v) 

 

FF alg is: find path of positive residual capacity; push flow to 

saturate; repeat.  

 

Point of this is that any legal flow in the residual graph, when added 

to f (edge by edge) is a legal flow in the original graph (satisfies 

capacity constraints; obeys flow in = flow out from each node).  And, 

this is true vice-versa.   This means that the maximum flow in the 

residual graph, plus f, is a maximum flow in the original graph. 

 

[run algorithm on example.  Draw flow using flow/cap notation in orig graph] 

 

IMPROVING THE RUNNING TIME OF NETWORK FLOW 

========================================== 

Assuming capacities are integers, the basic Ford-Fulkerson algorithm 

could make up to F iterations, where F is the value of the max flow. 

Each iteration takes O(m) time to find a path (e.g., DFS or BFS) 

and to compute the residual graph.  So, total time is O(mF).  

 

This is fine if F is small, like in the matching case.  Not good if 

capacities are in binary and F could be very large. 

 

[Note: let's assume graph has been pre-processed to delete any 

disconnected parts.  So, m >= n-1, and can say DFS runs in time O(m) 

instead of O(m+n)]. 

 

 

Edmonds-Karp #1 

--------------- 

Idea: don't just choose an arbitrary path.  Instead, pick the path of 

largest (or approximately largest) capacity. 
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Two versions: 

(1.1) use maximum bottleneck path (path with largest residual 

      capacity).  We saw how to do this using a Prim-like algorithm in 

      time O(m log n). 

 

(1.2) Define a "capacity threshold" c, and then just try to find an 

      s-t path of residual capacity >= c.  Advantage of this: can do 

      in O(m) time.  Just do DFS over edges of residual capacity >= c. 

 

      How to set c?  Can start at max capacity over all edges, and if 

      that fails you then divide by 2. This guarantees you are within 

      a factor of 2 of max capacity path.  You waste some time with 

      the unsuccessful runs, but you have at most O(log C) of them in total 

      (C = max edge capacity).  Can reduce to O(log F) using doubling idea 

      from midterm.   

 

Claim: Either way, this causes FF to make at most O(m log F) 

       iterations.  So total time using version 1.2 is O(m^2 log F). 

 

Proof of claim:  First, if the current residual graph has max flow f, 

then if we drop all edges of res cap < f/m, there must still exist a 

path from s to t (why? because let A be the component containing s. 

If doesn't have t, then since there at most m edges out of A, this 

would be a cut < f).  So, max bottleneck path has capacity at least 

f/m, and (if using version 1.2) this means c is at least f/(2m). 

 

Let's just focus on version 1.2 (since then 1.1 follows directly).  We 

have c is at least f/(2m).  So can have at *most* 2m iterations before 

c gets cut down by factor of 2.  Since c <= F at the start, we can cut 

down c at most log(F) times, so total number of iterations is at most 

2m*log(F).  

 

 

Can we remove dependence on F completely? 

 

EDMONDS-KARP #2 

--------------- 

Edmonds-Karp #2: always pick the *shortest* path (rather than the 

   max-capacity path) 

 

Claim: this makes at most mn iterations.  So, run time is O(nm^2) 

since we use BFS in each iteration.  Proof is pretty neat. 

 

Proof:  Let d(t) be the distance from s to t in the current residual 

graph.  We'll prove the theorem by showing that every m iterations, 

d(t) has to go up by at least 1.   

 

Let's lay out the graph in levels according to a BFS from s.  I.e., 

nodes at level i are distance i away from s, and t is at level d(t). 

Now, notice that so long as d(t) doesn't change, the paths found WILL 

ONLY USE FORWARD EDGES IN THIS LAYOUT.  Each iteration saturates (and 

removes) at least 1 forward edge, and adds only backward edges (so no 

distance ever drops).  This can happen at most m - d(t)+1 <= m times 

since after that many times, t would become disconnected from s.  So, 

after m iterations, either t is disconnected (and d(t) = infinity) or 

else we must have used a non-forward edge, implying that d(t) has gone 
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up by 1. 

 

Since d(t) can increase at most n times, there are at most nm iterations. 

 

DINIC & MPM  

=========== 

Can we do this a little faster? (this part won't be on any tests and 

it's not crucial you get the details, but the idea is pretty nice.) 

 

Previous alg: mn iterations at O(m) each for O(m^2 n) total.  Let's 

see if we can reduce to O(mn^2) and finally to O(n^3).  Idea: Given 

the current BFS layout (also called the "level graph"), we'll try in 

O(n^2) time all at once to find the max flow that only uses forward 

edges. This is sometimes called a "blocking flow".  Guarantees that 

when we take the residual graph, d(t) has gone up by 1.  So, <= n iterations. 

 

Define c(v) = capacity of vertex v to be: min[c_in(v), c_out(v)], where 

c_in(v) is sum of capacities of in-edges and c_out is sum of 

capacities of out-edges. 

 

The Algorithm: 

 

- In O(m) time, create BFS layout from s, and intersect with backwards 

  BFS from t.  Compute capacities of all nodes. 

 

- Find vertex v of minimum capacity c.  If it's zero, that's great: we 

can remove v and incident edges, updating capacities of neighboring nodes. 

 

- if c is not zero, then we greedily pull c units of flow from s to v, 

and then push it along to t.  This seems like just another version of 

the original problem.  But, there are two points here:  

 

  (1) because v had *minimum* capacity, we can do the pulling and 

  pushing in any greedy way and we won't get stuck.  E.g., we can do 

  BFS forward from v and backward from v, pushing the flow 

  level-by-level, so we never examine any edge twice.  [do example] 

  This right away gives us an O(mn) algorithm for saturating the level 

  graph (O(m) per node, n nodes), for an overall running time of 

  O(mn^2).  So, we're half-way there. 

 

  (2) To get O(n^2), the way we will do the BFS is to examine the 

  in-edges (or out-edges) one at a time, fully saturating the edge 

  before going on to the next one.  This means we can allocate our 

  time into two parts: (a) time spent pushing through edges that get 

  saturated, and (b) time spent on edges that we didn't quite saturate 

  [at most one of these per node].  We only take time O(n) on type-b 

  operations.  Type-a operations result in deleting the edge, so the 

  edge won't be used again in the current level graph.  So over *all* 

  vertices, the *total* time of these is just O(m). 

 

So, our running time per iteration is O(n^2 + m) = O(m).  [O(n^2) for 

the type-b and O(m) for the type-a]  Once we've saturated the 

level graph, we recompute it (in O(m) time, but this can be put into 

the O(n^2)) and re-solve.  Total time is O(n^3). 

 

 

MIN-COST MATCHINGS, MIN-COST MAX FLOWS 
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-------------------------------------- 

 

We talked about the problem of assigning groups to time-slots where 

each group had a list of acceptable versus unacceptable slots.  A 

natural generalization is to ask: what about preferences?  E.g, 

maybe group A prefers slot 1 so it costs $0 to match to there, their 

second choice is slot 2 so it costs us $1 to match the group here, and 

it can't make slot 3 so it costs $infinity to match to there.  And, so 

on with the other groups.  Then we could ask for the MINIMUM-COST 

PERFECT MATCHING. This is a perfect matching that out of all perfect 

matchings has the least total cost. 

 

Generalization to flows is called the MIN-COST MAX FLOW problem. 

 

Here, each edge has a cost w(e) as well as a capacity c(e).  Cost of a 

flow is the sum over all edges of the flow on that edge times the cost 

of the edge.  I.e.,  

 

          cost of flow f  =  SUM_e w(e)*f(e).   

 

Goal is to find, out of all possible maximum flows, the one with the 

least total cost.  Can have negative costs (or benefits) on edges too.   

 

- These are more general than plain max flow so can model more things. 

 

There are a couple ways to solve this.   One way is to add an edge 

from t to s of infinite capacity and large negative cost, and to 

convert this into the "MIN-COST CIRCULATION" problem.  Basically, by 

doing this, we now can just have the goal of finding a circulation (a 

flow that obeys flow-in = flow-out at EVERY node (no s and t anymore)) 

that has smallest cost (this will be a negative number).    This will 

be the min-cost max-flow in the original graph. 

 

 

Algorithm: find a negative cost cycle and saturate it. 

 

Can use Bellman-Ford to find negative cost cycles. 

 

Running time will be like Ford-Fulkerson.  To speed up, ideally would 

like the "most-negative-cost cycle" but that's NP-hard.  

Instead there are various tricks you can use to still do well.  E.g., 

in the Goldberg-Tarjan algorithm, you instead find the cycle that 

minimizes (cost of cycle)/(# edges in cycle), which is something you 

*can* solve.  [add some value k to all edges and check if there's 

still a negative-cost cycle using BF.  Do binary search to find the 

value of k s.t. the min-cost cycle has value 0.  That's the one that 

minimizes (cost of cycle)/(# edges in cycle) in the original graph.] 

 

Then you prove this has a bound roughly like Edmonds-Karp #1. 
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15-451 Algorithms                 03/27/07    Lecture 18 

* Linear programming 

 

============================================================================ 

In last couple of classes we looked at: 

 

- Bipartite matching: Given a bipartite graph, find the largest set 

                of edges with no endpoints in common. 

 

- Network flow. (More general than bipartite matching) 

 

- Min-Cost Max-flow (even more general than plain max flow). 

 

Today, we'll look at something even more general that we can do 

algorithmically: LINEAR PROGRAMMING.  (Except we won't necessarily be 

able to get integer solutions, even when specification of the problem is 

integral). 

 

Linear Programming is important because it is so expressive: many many 

problems can be coded up as linear programs.  Especially problems of 

allocating resources and a lot of business applications.  In GSIA/Tepper 

there are entire courses devoted to linear programming.  We're only 

going to have time for 1 lecture.  So, will just have time to say what 

they are, and give examples of encoding problems as LPs.  We will only 

say a tiny bit about algorithms for solving them. 

 

Before defining, motivate with an example: 

 

There are 168 hours in a week.  Say we want to allocate our time 

between classes and studying (S), fun activities, relaxing, going to 

parties (P), and everything else (E) (eating, sleeping, taking 

showers, etc). To survive need to spend at least 56 hours on E (8 

hrs/day). To maintain sanity need P+E >= 70.  To pass courses, need S 

>= 60, but more if don't sleep enough or spend too much time partying: 

2S+E-3P >= 150.  (e.g., if don't go to parties at all then this isn't a 

problem, but if we spend more time on P then need to sleep more or 

study more). 

 

Q1: can we do this? Formally, is there a *feasible* solution? 

 

A: yes.  For instance, one feasible solution: S=80, P=20, E = 68 

 

Q2: suppose our notion of happiness is expressed by 2P+E.  What is a 

feasible solution such that this is maximized?  The formula "2P+E" is 

called an *objective function*. 

 

This is called a *linear program*.  What makes it linear is that all 

our constraints were linear in our variables.  E.g., 2S+E-3P>=150. 

And our objective function is also linear.  Not allowed things like 

requiring S*E >= 100, since this wouldn't be linear. 

 

More formally, here is the definition of the linear programming problem 

LINEAR PROGRAMMING: 

=================== 

* Given n variables x_1,..., x_n. 

* Given m linear inequalities in these variables (equalities OK too): 
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  E.g., 3x_1 + 4x_2 <= 6, 0 <= x_1 <= 3, etc. 

 

* May also have an objective function: 2x_1 + 3x_2 + x_3. 

 

* Goal: find values for the x_i's that satisfy the constraints and 

maximizes the objective. 

 

"feasibility problem": no objective, just want to satisfy the constraints. 

 

For instance, let's write out our time allocation problem this way. 

Variables are S, P, E.   

Objective is to maximize 2P+E subject to these constraints: 

        S + P + E = 168 

        E >= 56 

        S >= 60 

        2S+E-3P >= 150 

        P+E >= 70 

        P >= 0    (can't spend negative time partying) 

 

MORE EXAMPLES OF MODELLING PROBLEMS AS LINEAR PROGRAMS: 

====================================================== 

 

Typical Operations-Research kind of problem   (from Mike Trick's course notes): 

Have 4 production plants for making cars.  Each works a little 

differently in terms of labor needed, materials, and 

pollution produced per car: 

 

                labor materials pollution 

plant 1  2 3  15 

plant 2  3 4  10 

plant 3  4 5  9 

plant 4  5 6  7 

 

We need to produce at least 400 cars at plant 3 according to labor agreement. 

Have 3300 hours of labor, 4000 units of material available.  Allowed 

to produce 12000 units of pollution.  Want to maximize number of cars 

produced.  How to model?   

 

First step: What are the variables? 

 x_1,x_2,x_3,x_4, where x_i = # cars at plant i. 

 

Second step: What is our objective? 

 maximize x_1+x_2+x_3+x_4 

 

Last step: what are the constraints? 

 x_i >= 0 for all i 

 x_3 >= 400 

 2x_1 + 3x_2 + 4x_3 + 5x_4 <= 3300 

 3x_1 + 4x_2 + 5x_3 + 6x_4 <= 4000 

 15x_1 + 10x_2 + 9x_3 + 7x_4 <= 12000 

 

 

MAX FLOW 

======== 

Can model this as LP too. 

 

Variables: set up one variable x_e per edge e.  Let's just represent 
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  the positive flow. 

 

Objective: maximize        SUM       x_e 

                      edges e into T 

 

Constraints:  

 For all e, x_e <= c_e and x_e >= 0.  [c_e is capacity of edge e] 

 

 For each node v except S and T, 

 

            SUM       x_e  =        SUM        x_e' 

             edges e into v         edges e' leaving v 

 

   Also, delete edges exiting T, or else add the constraint that no 

   flow is allowed to be on them.  Otherwise, the solution can fool the 

   objective function by having flow looping through T.... 

 

Example: 

 S-->A, cap = 4.   A-->C, cap=3.  C-->T, cap = 2. 

 S-->B, cap = 2.   B-->D, cap=3.  D-->T, cap = 4. 

 C-->B, cap = 1.   B-->C, cap=2. 

 

LP is: maximize x_ct + x_dt subject to 

 

   0 <= x_sa <= 4, 0 <= x_ac <= 3, etc. 

   x_sa = x_ac, 

   x_sb + x_cb = x_bc + x_bd, 

   x_ac + x_bc = x_cb + x_ct, 

   x_bd = x_dt 

 

 

How about min cost max flow?  First solve for max flow f.  Then add a 

constraint that flow must equal f, and minimize linear cost function 

sum_e cost(e)*x_e.   Or, you can do both together by adding an 

edge of infinite capacity and very negative cost from t to s, and then 

just minimizing cost (which will automatically maximize flow). 

 

 

2-PLAYER ZERO-SUM GAMES: 

 

Remember back to hwk1, where we looked at 2-player zero-sum games. 

Had Alice hiding a nickel or quarter and Bob guessing, and then based 

on whether the guess was right or wrong, some money changed hands. 

This is called a "zero-sum game" because no money is entering or 

leaving the system (it's all going between Alice and Bob). 

 

A MINIMAX OPTIMAL strategy for a player is a (possibly randomized) 

strategy with the best guarantee on its expected gain --- i.e., one 

you would want to play if you imagine that your opponent knows you well.  

 

Another game: shooting a penalty kick against a goalie who is a bit 

weaker on one side.  Kicker can kick left or right.  Goalie can dive 

left or right.  Here is payoff matrix for kicker (chance of getting goal): 

 

                       goalie 

                     left  right 

              left     0     1 
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      kicker 

             right     1     1/2 

 

minimax optimal strategy for kicker: 1/3 chance kick left, 2/3 chance 

kick right.  Expected gain = 2/3. 

 

How about solving an nxn game? 

 

  20 -10 5 

 

  5 10 -10 

 

  -5 0 10 

 

How can we compute minimax optimal strategy (say, for row)? 

 

Variables: the things we want to figure out are the probabilities we 

  should put on our different choices. Those are our variables: p_1,...,p_n 

 

Need to be legal prob dist: for all i, p_i >= 0.  p_1 + ... + p_n = 1. 

 

Want to maximize the worst case (minimum), over all columns opponent 

can play, of our expected gain.  This is a little confusing because we are 

miximizing a minimum.  So, add one new variable v (representing the 

minimum) and put in constraints that our expected gain has to be at 

least this, then maximize on v.  So this looks like: 

 

 

  maximize v such that: 

 

p_i are a prob dist: (see constraints above). 

for each column j, p_1*M[1][j] + p_2*M[2][j] + ... + p_n*M[n][j] >= v. 

 

E.g., in example above we want: 

 

get at least v if col1:   20*p_1 + 5*p_2 -5*p_3 >= v 

.............. if col2:  -10*p_1 + 10*p_2 >= v 

.............. if col3:    5*p_1 - 10p_2 + 10p_3 >= v 

 

 

HOW TO SOLVE 

============ 

 

How to solve linear programs?  History: the standard algorithm for 

solving LPs the Simplex Algorithm, developed in the 40s.  It's *not* 

guaranteed to run in polynomial time, and you can come up with bad 

examples for it, but in general it runs pretty fast. Only much later 

in 1980 was it shown that linear programming could be done in 

polynomial time by something called the Ellipsoid Algorithm (but it is 

pretty slow). Later on, a faster polynomial-time algorithm Karmarkar's 

Alg was developed, which is competitive with Simplex.  There are a lot 

of commercial LP packages, for instance LINDO, CPLEX, Solver (in Excel). 

 

Won't have time to describe any of these in detail.  Instead, give 

some intuition by viewing LP as a geometrical problem. 

 

Think of an n-dimensional space with one coordinate per variable.  A 
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solution is a point in this space.  An inequality, like x_1 + x_2 <= 6 

is saying that we need solution to be on a specified side of a certain 

hyperplane.  Feasible region is the convex region in space defined by 

these constraints.  Then we want to find the feasible point that is 

farthest in the "objective" direction. 

 

 

Let's go to first example with S, P, E.  To make this easier to draw, 

can use our first constraint that S+P+E = 168 to replace S with 168-P-E.  

So, just draw in 2 dimensions: P and E. 

 

Constraints are: 

 E >= 56 

 P+E >= 70 

 P >= 0 

 S >= 60 which means 168-P-E >= 60 or P+E <= 108. 

 2S-3P+E >= 150  which means 2(168-P-E)-3P+E >= 150 or 5P+E <= 186 

 

For objective of max P, this happens at E=56, P = 26. 

For objective of max 2P+E, this happens at P=19.5, E=88.5 

 

Can use this view to motivate the algorithms.   

 

SIMPLEX ALG: Earliest and most common algorithm called Simplex method. 

Idea: start at some "corner" of the feasible region (to make this 

easier, we can add in "slack variables" that will drop out when we do 

our optimization).  Then we repeatedly do the following step: look at 

all neighboring corners and go to the best one if it is better.  Stop 

when we get to a corner where no neighbor is better than we are.  Neat 

fact is that since the objective is linear, the optimal solution will 

be at a corner (or maybe multiple corners).  Furthermore, there are no 

local maxima: if you're *not* optimal then some neighbor of you is 

better than you are.  That's because this is a convex region.  So, 

Simplex method is guaranteed to halt at the best solution.  The 

problem is that it is possible for there to be an exponential number 

of corners and it is possible for Simplex to take an exponential 

number of steps to converge.  But, in practice this usually works well. 

 

ELLIPSOID ALGORITHM:  Invented by Khachiyan in 1980 in Russia.   

 

Solve "feasibility problem" (Then can do binary search with our 

objective function).  Start with big ellipse (called an ellipsoid in 

higher dimensions) that we can be sure contains the feasible region. 

Then try the center of the ellipse -- see if it violates any 

constraints.  If not, you're done.  If so, look at the constraint 

violated.  So we know the solution (if any) is contained in the 

remaining at-most-half-ellipse. Now, find a new smaller ellipse that 

contains that portion of our initial ellipse.  Then repeat.  Can show 

that in each step, the new smaller ellipse has a volume that's 

significantly smaller -- each ellipse has volume at most (1 - 1/n) of 

the previous one.  If ever get to too small volume can prove there 

can't be a solution. 

 

One nice thing about ellipsoid algorithm is you just need to tell if 

the current solution violates any constraints or not, and if so, to 

produce one.  Don't need to explicitly write them all down.   

 



 38 

KARMARKAR'S ALGORITHM:  Sort of has aspects of both.  Works with 

feasible points but doesn't go from corner to corner.  Instead it 

moves inside the interior of the feasible region.  One of first of a 

whole class of so-called "interior-point methods".    

 

Development of better and better algorithms is a big ongoing area of 

research.  In particular, get a lot of mileage by using good data 

structures to speed up time in making each decision. 

 


