
 

 

 

 

 

 

 

 

 

 

 

 

 

15-451 Algorithms, Spring 2007 
 

Lectures 19-26 

 

 

 

 

Author: Avrim Blum 

Instructor:  Manuel Blum 

 

 

 

March 27, 2007 

 
 

 

 

 



 2 



 3 

                    15-451 Algorithms                 3/27/07 

* Linear programming 

 

============================================================================ 

In last couple of classes we looked at: 

 

- Bipartite matching: Given a bipartite graph, find the largest set 

                of edges with no endpoints in common. 

 

- Network flow. (More general than bipartite matching) 

 

- Min-Cost Max-flow (even more general than plain max flow). 

 

Today, we'll look at something even more general that we can do 

algorithmically: LINEAR PROGRAMMING.  (Except we won't necessarily be 

able to get integer solutions, even when specification of the problem is 

integral). 

 

Linear Programming is important because it is so expressive: many many 

problems can be coded up as linear programs.  Especially problems of 

allocating resources and a lot of business applications.  In GSIA/Tepper 

there are entire courses devoted to linear programming.  We're only 

going to have time for 1 lecture.  So, will just have time to say what 

they are, and give examples of encoding problems as LPs.  We will only 

say a tiny bit about algorithms for solving them. 

 

Before defining, motivate with an example: 

 

There are 168 hours in a week.  Say we want to allocate our time 

between classes and studying (S), fun activities, relaxing, going to 

parties (P), and everything else (E) (eating, sleeping, taking 

showers, etc). To survive need to spend at least 56 hours on E (8 

hrs/day). To maintain sanity need P+E >= 70.  To pass courses, need S 

>= 60, but more if don't sleep enough or spend too much time partying: 

2S+E-3P >= 150.  (e.g., if don't go to parties at all then this isn't a 

problem, but if we spend more time on P then need to sleep more or 

study more). 

 

Q1: can we do this? Formally, is there a *feasible* solution? 

 

A: yes.  For instance, one feasible solution: S=80, P=20, E = 68 

 

Q2: suppose our notion of happiness is expressed by 2P+E.  What is a 

feasible solution such that this is maximized?  The formula "2P+E" is 

called an *objective function*. 

 

This is called a *linear program*.  What makes it linear is that all 

our constraints were linear in our variables.  E.g., 2S+E-3P>=150. 

And our objective function is also linear.  Not allowed things like 

requiring S*E >= 100, since this wouldn't be linear. 

 

More formally, here is the definition of the linear programming problem 

LINEAR PROGRAMMING: 

=================== 

* Given n variables x_1,..., x_n. 

* Given m linear inequalities in these variables (equalities OK too): 

 



 4 

  E.g., 3x_1 + 4x_2 <= 6, 0 <= x_1 <= 3, etc. 

 

* May also have an objective function: 2x_1 + 3x_2 + x_3. 

 

* Goal: find values for the x_i's that satisfy the constraints and 

maximizes the objective. 

 

"feasibility problem": no objective, just want to satisfy the constraints. 

 

For instance, let's write out our time allocation problem this way. 

Variables are S, P, E.   

Objective is to maximize 2P+E subject to these constraints: 

        S + P + E = 168 

        E >= 56 

        S >= 60 

        2S+E-3P >= 150 

        P+E >= 70 

        P >= 0    (can't spend negative time partying) 

 

MORE EXAMPLES OF MODELLING PROBLEMS AS LINEAR PROGRAMS: 

====================================================== 

 

Typical Operations-Research kind of problem   (from Mike Trick's course notes): 

Have 4 production plants for making cars.  Each works a little 

differently in terms of labor needed, materials, and 

pollution produced per car: 

 

                labor materials pollution 

plant 1  2 3  15 

plant 2  3 4  10 

plant 3  4 5  9 

plant 4  5 6  7 

 

We need to produce at least 400 cars at plant 3 according to labor agreement. 

Have 3300 hours of labor, 4000 units of material available.  Allowed 

to produce 12000 units of pollution.  Want to maximize number of cars 

produced.  How to model?   

 

First step: What are the variables? 

 x_1,x_2,x_3,x_4, where x_i = # cars at plant i. 

 

Second step: What is our objective? 

 maximize x_1+x_2+x_3+x_4 

 

Last step: what are the constraints? 

 x_i >= 0 for all i 

 x_3 >= 400 

 2x_1 + 3x_2 + 4x_3 + 5x_4 <= 3300 

 3x_1 + 4x_2 + 5x_3 + 6x_4 <= 4000 

 15x_1 + 10x_2 + 9x_3 + 7x_4 <= 12000 

 

 

MAX FLOW 

======== 

Can model this as LP too. 

 

Variables: set up one variable x_e per edge e.  Let's just represent 



 5 

  the positive flow. 

 

Objective: maximize        SUM       x_e 

                      edges e into T 

 

Constraints:  

 For all e, x_e <= c_e and x_e >= 0.  [c_e is capacity of edge e] 

 

 For each node v except S and T, 

 

            SUM       x_e  =        SUM        x_e' 

             edges e into v         edges e' leaving v 

 

   Also, delete edges exiting T, or else add the constraint that no 

   flow is allowed to be on them.  Otherwise, the solution can fool the 

   objective function by having flow looping through T.... 

 

Example: 

 S-->A, cap = 4.   A-->C, cap=3.  C-->T, cap = 2. 

 S-->B, cap = 2.   B-->D, cap=3.  D-->T, cap = 4. 

 C-->B, cap = 1.   B-->C, cap=2. 

 

LP is: maximize x_ct + x_dt subject to 

 

   0 <= x_sa <= 4, 0 <= x_ac <= 3, etc. 

   x_sa = x_ac, 

   x_sb + x_cb = x_bc + x_bd, 

   x_ac + x_bc = x_cb + x_ct, 

   x_bd = x_dt 

 

 

How about min cost max flow?  First solve for max flow f.  Then add a 

constraint that flow must equal f, and minimize linear cost function 

sum_e cost(e)*x_e.   Or, you can do both together by adding an 

edge of infinite capacity and very negative cost from t to s, and then 

just minimizing cost (which will automatically maximize flow). 

 

 

2-PLAYER ZERO-SUM GAMES: 

 

Remember back to hwk1, where we looked at 2-player zero-sum games. 

Had Alice hiding a nickel or quarter and Bob guessing, and then based 

on whether the guess was right or wrong, some money changed hands. 

This is called a "zero-sum game" because no money is entering or 

leaving the system (it's all going between Alice and Bob). 

 

A MINIMAX OPTIMAL strategy for a player is a (possibly randomized) 

strategy with the best guarantee on its expected gain --- i.e., one 

you would want to play if you imagine that your opponent knows you well.  

 

Another game: shooting a penalty kick against a goalie who is a bit 

weaker on one side.  Kicker can kick left or right.  Goalie can dive 

left or right.  Here is payoff matrix for kicker (chance of getting goal): 

 

                       goalie 

                     left  right 

              left     0     1 



 6 

      kicker 

             right     1     1/2 

 

minimax optimal strategy for kicker: 1/3 chance kick left, 2/3 chance 

kick right.  Expected gain = 2/3. 

 

How about solving an nxn game? 

 

  20 -10 5 

 

  5 10 -10 

 

  -5 0 10 

 

How can we compute minimax optimal strategy (say, for row)? 

 

Variables: the things we want to figure out are the probabilities we 

  should put on our different choices. Those are our variables: p_1,...,p_n 

 

Need to be legal prob dist: for all i, p_i >= 0.  p_1 + ... + p_n = 1. 

 

Want to maximize the worst case (minimum), over all columns opponent 

can play, of our expected gain.  This is a little confusing because we are 

miximizing a minimum.  So, add one new variable v (representing the 

minimum) and put in constraints that our expected gain has to be at 

least this, then maximize on v.  So this looks like: 

 

 

  maximize v such that: 

 

p_i are a prob dist: (see constraints above). 

for each column j, p_1*M[1][j] + p_2*M[2][j] + ... + p_n*M[n][j] >= v. 

 

E.g., in example above we want: 

 

get at least v if col1:   20*p_1 + 5*p_2 -5*p_3 >= v 

.............. if col2:  -10*p_1 + 10*p_2 >= v 

.............. if col3:    5*p_1 - 10p_2 + 10p_3 >= v 

 

 

HOW TO SOLVE 

============ 

 

How to solve linear programs?  History: the standard algorithm for 

solving LPs the Simplex Algorithm, developed in the 40s.  It's *not* 

guaranteed to run in polynomial time, and you can come up with bad 

examples for it, but in general it runs pretty fast. Only much later 

in 1980 was it shown that linear programming could be done in 

polynomial time by something called the Ellipsoid Algorithm (but it is 

pretty slow). Later on, a faster polynomial-time algorithm Karmarkar's 

Alg was developed, which is competitive with Simplex.  There are a lot 

of commercial LP packages, for instance LINDO, CPLEX, Solver (in Excel). 

 

Won't have time to describe any of these in detail.  Instead, give 

some intuition by viewing LP as a geometrical problem. 

 

Think of an n-dimensional space with one coordinate per variable.  A 



 7 

solution is a point in this space.  An inequality, like x_1 + x_2 <= 6 

is saying that we need solution to be on a specified side of a certain 

hyperplane.  Feasible region is the convex region in space defined by 

these constraints.  Then we want to find the feasible point that is 

farthest in the "objective" direction. 

 

 

Let's go to first example with S, P, E.  To make this easier to draw, 

can use our first constraint that S+P+E = 168 to replace S with 168-P-E.  

So, just draw in 2 dimensions: P and E. 

 

Constraints are: 

 E >= 56 

 P+E >= 70 

 P >= 0 

 S >= 60 which means 168-P-E >= 60 or P+E <= 108. 

 2S-3P+E >= 150  which means 2(168-P-E)-3P+E >= 150 or 5P+E <= 186 

 

For objective of max P, this happens at E=56, P = 26. 

For objective of max 2P+E, this happens at P=19.5, E=88.5 

 

Can use this view to motivate the algorithms.   

 

SIMPLEX ALG: Earliest and most common algorithm called Simplex method. 

Idea: start at some "corner" of the feasible region (to make this 

easier, we can add in "slack variables" that will drop out when we do 

our optimization).  Then we repeatedly do the following step: look at 

all neighboring corners and go to the best one if it is better.  Stop 

when we get to a corner where no neighbor is better than we are.  Neat 

fact is that since the objective is linear, the optimal solution will 

be at a corner (or maybe multiple corners).  Furthermore, there are no 

local maxima: if you're *not* optimal then some neighbor of you is 

better than you are.  That's because this is a convex region.  So, 

Simplex method is guaranteed to halt at the best solution.  The 

problem is that it is possible for there to be an exponential number 

of corners and it is possible for Simplex to take an exponential 

number of steps to converge.  But, in practice this usually works well. 

 

ELLIPSOID ALGORITHM:  Invented by Khachiyan in 1980 in Russia.   

 

Solve "feasibility problem" (Then can do binary search with our 

objective function).  Start with big ellipse (called an ellipsoid in 

higher dimensions) that we can be sure contains the feasible region. 

Then try the center of the ellipse -- see if it violates any 

constraints.  If not, you're done.  If so, look at the constraint 

violated.  So we know the solution (if any) is contained in the 

remaining at-most-half-ellipse. Now, find a new smaller ellipse that 

contains that portion of our initial ellipse.  Then repeat.  Can show 

that in each step, the new smaller ellipse has a volume that's 

significantly smaller -- each ellipse has volume at most (1 - 1/n) of 

the previous one.  If ever get to too small volume can prove there 

can't be a solution. 

 

One nice thing about ellipsoid algorithm is you just need to tell if 

the current solution violates any constraints or not, and if so, to 

produce one.  Don't need to explicitly write them all down.   

 



 8 

KARMARKAR'S ALGORITHM:  Sort of has aspects of both.  Works with 

feasible points but doesn't go from corner to corner.  Instead it 

moves inside the interior of the feasible region.  One of first of a 

whole class of so-called "interior-point methods".    

 

Development of better and better algorithms is a big ongoing area of 

research.  In particular, get a lot of mileage by using good data 

structures to speed up time in making each decision. 

    

 



 9 

15-451 Algorithms     3/29/07 

* NP-completeness and expressiveness 

* informal definitions 

* formal definitions 

* Circuit-SAT and 3-SAT 

============================================================================ 

In the last few classes, we've looked at increasingly more expressive 

problems:   network flow, min cost max flow, linear programming. 

 

These problems have the property that you can code up a lot of different 

problems in their "language".  So, by solving these well, we end up 

having some important hammers we can use to solve other problems. 

 

In fact, to talk about this a little more precisely, let's make the 

following definitions: 

 

* We'll say that an algorithm runs in Polynomial Time if for some 

  constant c, its running time is O(n^c), where n is the size of the input. 

  "Size of input" means "number of bits it takes to write the input down"  

 

* Problem A is poly-time REDUCIBLE to problem B (A <=_p B) if given a 

  poly-time alg for B, we can use it to produce a poly-time alg for A. 

  Problem A is poly-time EQUIVALENT to problem B (A =_p B) if  

  A <=_p B and B <=_p A. 

 

For instance, we showed BIPARTITE MATCHING <=_p MAX FLOW 

                         MIN-COST MAX-FLOW <=_p LINEAR PROGRAMMING 

and more. 

=============================================================== 

 

Let's start today by thinking about what would be a *really* 

expressive problem, such that if we could solve it we could do all 

sorts of things.  Here is a natural candidate: 

 

The SHORT SOLUTION EXISTENCE PROBLEM: Given an algorithm V(I,X) 

[written in some standard programming language, and think of it as 

outputting either YES or NO], and given I and a bound B written in 

unary (B bits).  Question: does there exist an input X such that 

V(I,X) halts in at most B steps and outputs YES? 

 

Why am I calling this the "short solution existence problem"? 

Consider some problem we might want to solve like the 

TRAVELING-SALESMAN-PROBLEM: given a graph G and an integer k, is there 

a tour that visits all the nodes of G and has total length <= k?  We 

don't know any fast ways of solving that problem, but we can easily 

write a program V that given I = (G,k) and given a proposed solution X 

verifies whether X indeed visits all the nodes of G and has total 

length <= k.  Furthermore, this solution-verifier is linear time.  So, 

if we could solve the "short solution existence problem", we could 

tell if there is a X that makes V output YES and thereby solve the TSP. 

 

What if we actually wanted to find the tour?  One way we could solve 

that would be to start deleting edges from G and then re-running the 

above procedure.  If the answer is "NO" then we put the edge back in. 

If we do this for all edges, what's left in G will be just the tour 

itself. 

 



 10 

Let's try another problem.  Say we wanted to factor a big integer N. 

We don't know any polynomial-time algorithms for solving that 

problem.  But, we can easily write a verifier that given N and a 

proposed factor X, tells us if X is a solution to the problem. 

 

In fact, let's modify this slightly (you'll see why in a second) so 

the verifier takes in an additional integer k (so I = (N,k)) and 

outputs YES if X divides N *and* 1 < X < k. 

 

So, if we can solve the short-solution-existence-problem, we can tell 

if N has a factor between 2 and k-1 by feeding V and I=(N,k) into our 

solver.   Then if we want to actually *find* a factor, we can do 

binary search on k.  (That's why we needed the k). 

 

In fact, we could use an algorithm for the "short solution existence 

problem" to solve *any* problem for which we have a polynomial-time 

algorithm for simply *checking* if a proposed solution is correct: we 

just write down V and then make the length bound B big enough to 

handle the running time of V. 

 

Interestingly, the short-solution-existence-problem also belongs to 

this same category.  Namely if someone hands us a proposed solution X, 

we can check it by just running V. 

 

WHAT WE NOW HAVE 

================ 

 

This class of problems - problems for which we can efficiently verify 

a proposed solution - is called NP.  A problem Q is said to be 

NP-complete if (a) Q is in NP and (2) you could use a polynomial-time 

algorithm for Q to solve *any* problem in NP in polynomial time.  That 

is, for any Q' in NP, Q' <=_p Q. 

 

And we have just proven our first NP-complete problem, namely the SSEP. 

 

Now this problem seems pretty stylized.  But we can now show that 

other simpler-looking problems have the property that if you could 

solve them in polynomial-time, then you could solve this problem in 

polynomial time, so they too are NP-complete. 

 

So, the way to think of it is an NP-complete problem is 

super-expressive.  It is so expressive, we believe there are no 

polynomial-time algorithms for solving them.  In particular, if we 

*could* solve an NP-complete problem in polynomial-time, then it would 

mean that for any problem where we could *check* a proposed solution 

efficiently, we could also *find* such a solution efficiently. 

 

========================================================== 

Now, onto formal definitions. 

 

We will formally be considering decision problems: problems whose 

answer is YES or NO. 

 

COMPLEXITY CLASSES: P and NP. 

 

P: problems solvable in polynomial time.  E.g., Given a network G and 

a flow value f, does there exist a flow >= f? 



 11 

 

NP: problems that have polynomial-time verifiers.  Specificially, 

problem Q is in NP if there is a polynomial-time algorithm V(I,X) such that: 

 

  If "I" is a YES-instance, then there exists X such that V(I,X) = 1. 

  If "I" is a NO-instance, then for all X, V(I,X) = 0. 

 

Furthermore, X should have length polynomial in size of I (since we 

are really only giving V time polynomial in the size of the instance). 

 

"X" is often called a "witness".  E.g., consider 3-coloring.  The 

witness that an answer is YES is the coloring.  The verifier just 

checks that all edges are correct and that at most 3 colors are used. 

So, 3-coloring is in NP. 

 

NP is like: "I might not know how to find it, but I'll know it when I see it" 

(BTW, Co-NP is the class of problems that work the other way around). 

 

It's pretty clear that P is contained in NP.  Huge open question in 

complexity theory is P=NP?  It would be really weird if they are equal 

so most people believe P != NP.  But, it's very hard to prove that a 

fast algorithm for something does NOT exist.  So, it's still an open 

problem. 

 

NP-Completeness 

=============== 

Problem Q is NP-complete if:  

 (1) Q is in NP, and  

 (2) Any other problem Q' in NP is polynomial-time reducible to Q.   

 

So if you could solve Q in polynomial time, you could solve *any* 

problem in NP in polynomial time.  If Q just satisfies (2) then 

it's called NP-hard. 

 

Here's another NP-complete problem: 

 

  CIRCUIT-SAT: Given a circuit of NAND gates with a single output and no 

  loops (some of the inputs may be hardwired).  Question: is there a 

  setting of the inputs that causes the circuit to output 1? 

 

Proof Sketch: 

 

First of all, it is clearly in NP, since you can just guess the input 

and try it.  To show it is NP-complete, we just need to show that if 

we could solve this, then we could solve the 

short-solution-existence-problem.  Here's how.  Say we are given V, I, 

B, and want to tell if there exists X such that V(I,X) outputs YES in 

at most than B steps.  What we can do (and this part is a little 

handwavy but in principle you did this in 251 when you built a 

computer out of NAND gates) is we can effectively compile V into a 

circuit of depth polynomial in B and the number of bits in I that 

mimics what V does in it first B time steps.  We then hardwire the 

inputs corresponding to I and feed this into our circuit-SAT solver. 

 

OK, fine so we now have one more NP-complete problem.  But CIRCUIT-SAT 

looks really complicated.  We weren't expecting to be able to solve 

it.  But *now* we can show that a much simpler looking problem has the 



 12 

property that if you could solve it efficiently, then you could solve 

CIRCUIT-SAT efficiently.  ("efficiently" = "polynomial time"). 

 

This problem is 3-SAT. 

 

3-SAT: 

  Given: a CNF formula (AND of ORs) over n variables x1,...,xn, where 

  each clause has at most 3 variables in it. 

     (x1 OR x2 OR not(x3)) AND (not(x2) OR x3) AND (x1 OR x3) AND ...   

 

  Goal: find an assignment to the variables that satisfies the formula 

  if one exists.  

 

Claim: we can reduce solving CIRCUIT-SAT to solving 3-SAT.  I.e., if 

we can solve 3-SAT then we can solve CIRCUIT-SAT and so we can solve 

all of NP.  

 

We'll do the reduction next time, but before we end, here is formally 

how we are going to do reductions: 

 

Say we have some problem A that we know is NP-complete.  We want to 

show problem B is NP-complete too.  Well, first we show B is actually 

in NP but that is usually the easy part.  The main thing we need to do 

is show that any polynomial-time algorithm for B would give a 

polynomial-time algorithm for A.  We do this by "reducing A to B", and 

in particular what we want is this: 

 

Reducing problem A to problem B 

=============================== 

To reduce problem A to problem B we want a function f that takes 

instances of A to instances of B such that: 

(1) if x is a yes-instance of A then f(x) is a yes-instance of B 

(2) if x is a no-instance of A then f(x) is a no-instance of B 

(3) f can be computed in polynomial time. 

 

So, if we had an algorithm for B, we could using it to solve A by 

running it on f(x). 

 

                        



 13 

15-451 Algorithms               4/3/07 

NP-completeness cont 

* Recap, Formal definitions. 

* reducing CIRCUIT-SAT to 3-SAT [proving 3-SAT is NP-complete] 

* reducing 3-SAT to CLIQUE [proving CLIQUE is NP-complete] 

* Independent Set, Vertex Cover 

======================================================================= 

In the discussion below, a "problem" means something like 3-coloring 

or network flow, and an "instance" means a specific instance of that 

problem --- the graph to color or the network to find a flow on. 

 

A DECISION PROBLEM is just a problem where each instance is either a 

YES-instance or a NO-instance and the goal is to decide which type 

your instance is.  (e.g., for 3-coloring, G is a YES-instance if it has a 

3-coloring and NO if not.  For the perfect-matching problem, G is a 

YES-instance if it has one and a NO-instance if it does not.) 

 

P: class of decision problems Q that have polynomial-time algorithms: 

A(I)=YES iff I is a YES-instance of Q. 

 

NP: decision problems where at least the YES-instances have short proofs 

(that can be checked in polynomial-time) that the answer is YES.  Q is 

in NP if there is a verifier V(I,X) such that: 

 

  If "I" is a YES-instance, then there exists X such that V(I,X) = YES. 

  If "I" is a NO-instance, then for all X, V(I,X) = NO. 

and furthermore the length of X and the running time of V are poly in |I|. 

 

co-NP: vice-versa: there are short proofs for NO-instances.  (E.g., 

given two circuits, C_1, C_2, do they compute the same function?). 

 

Problem Q is NP-complete if:  

 (1) Q is in NP, and  

 (2) Any other Q' in NP is "polynomial-time reducible" to Q.  In 

     particular, for any Q' in NP, there is some function f from instances 

     of Q' to instances of Q, that maps YES-instances of Q' to YES-instances 

     of Q, and maps NO-instances of Q' to NO-instances of Q. 

 

If Q just satisfies (2) then it's called NP-hard. 

 

Last time we showed that the following problem is NP-complete: 

 

  CIRCUIT-SAT: Given a circuit of NAND gates with a single output and no 

  loops (some of the inputs may be hardwired).  Question: is there a 

  setting of the inputs that causes the circuit to output 1? 

 

Proof sketch: It's clearly in NP, since V(I,X) just runs circuit I on 

proposed solution X and checks that the circuit outputs 1.  Now, say 

Q' is some other problem in NP.  Q' must have some polynomial-time 

verifier V'.  Now, given some instance I of Q', what function f does 

is construct a circuit C_I such that C_I(X) = V'(I,X).  So, f is like 

a compiler that compiles V' into a circuit of NAND gates.  Claim is 

that we can do this by unrolling a polynomial number of loops of the 

kind of NAND-gate computer you built in 15-251.  Finally, by design, 

C_I is a YES-instance of CIRCUIT-SAT iff I was a YES-instance of Q'. 

So, if we can solve CIRCUIT-SAT then we can solve Q'. 

 



 14 

Aside: we could define the SEARCH-version of a problem in NP as: 

"..and furthermore, if I is a YES-instance, then *produce* X such that 

V(I,X)=YES".  If we can solve any NP-complete decision problem in 

polynomial time then we can actually solve search-version of any 

problem in NP in polynomial-time too.  Will talk about in recitation. 

 

Now CIRCUIT-SAT is a little unweildy.  What's REALLY INTERESTING about 

NP-completeness is not just that such problems exist, but that a lot 

of very innocuous-looking problems are NP-complete.  To show results 

like that, we will first reduce CIRCUIT-SAT to a much simpler-looking 

problem called 3-SAT. 

 

3-SAT: 

  Given: a CNF formula (AND of ORs) over n variables x1,...,xn, where 

  each clause has at most 3 variables in it. 

     (x1 OR x2 OR not(x3)) AND (not(x2) OR x3) AND (x1 OR x3) AND ...   

 

  Goal: find an assignment to the variables that satisfies the formula 

  if one exists.  

 

THEOREM: 3-SAT is NP-Complete 

 

Proof: We need to define a function f that converts instances C of 

CIRCUIT-SAT to instances of 3-SAT such that the formula produced is 

satisfiable iff the circuit C had an input x such that C(x)=1. 

 

First of all, let's assume our input is given as a list of gates, 

where for each gate we are told what its inputs are connected to.   

E.g., g1 = x1 NAND x3; g2 = g1 NAND x4; g3 = x1 NAND 1; g4 = g1 NAND g2; ... 

plus we are told which gate gm is the output of the circuit. 

 

We will now compile this into an instance of 3-SAT as follows.  We'll 

make one variable for each input xi of the circuit, and one for every 

gate gi.   We now write each NAND as a conjunction of 4 clauses.  In 

particular, we just replace the statement "y3 = y1 NAND y2" with: 

 

     (y1 OR y2 OR y3)      // if y1=0 and y2=0 then we must have y3=1 

 AND (y1 OR not(y2) OR y3) // if y1=0 and y2=1 then we must have y3=1 

 AND (not(y1) OR y2 OR y3) // if y1=1 and y2=0 then we must have y3=1 

 AND (not(y1) OR not(y2) OR not(y3)) //if y1=1,y2=1 we must have y3=0 

 

Finally, we add the clause (gm).  This forces the circuit to output 

1.  In other words, we are asking: is there an input and a setting of 

all the gates such that the output of the circuit is equal to 1, and 

each gate is doing what it's supposed to?  So, the 3-CNF formula 

produced is satisfiable if and only if the circuit has a setting of 

inputs that causes it to output 1. The size of the formula is linear 

in the size of the circuit.  The construction can be done in 

polynomial (actually, linear) time.  So, if we had a polynomial-time 

algorithm to solve 3-SAT, then we could solve circuit-SAT in poly time 

too. 

 

==================================================================== 

IMPORTANT FACT: now that we have 3-SAT, in order to prove some other 

NP problem Q is NP-complete, we just need to show 3-SAT <= Q: if we 

could solve Q then we could solve 3-SAT.  MAKE SURE YOU UNDERSTAND 

THIS - A LOT OF PEOPLE MAKE THE MISTAKE OF DOING IT THE OTHER WAY 



 15 

AROUND. 

 

MAX-CLIQUE: given a graph G, find the largest clique (set of nodes 

s.t. all pairs in the set are neighbors).  Decision problem: "Given G 

and integer k, is there a clique of size >= k?". 

(MAX-CLIQUE is clearly in NP.) 

 

Theorem: Max-Clique is NP-Complete. 

 

Proof: reduce 3-SAT to MAX-CLIQUE. 

Given a 3-CNF formula F of m clauses over n variables, we construct a 

graph as follows.  For each clause c of F we create one node for every 

assignment to variables in c that satisfies c.  E.g., say  

 

 F = (x1 OR x2 OR not(x4)) AND (not(x3) OR x4) AND (not(x2) OR not(x3)) AND ... 

 

Then in this case we would create nodes like this: 

 

 (x1=0,x2=0,x4=0) (x3=0,x4=0)  (x2=0,x3=0) ... 

 (x1=0,x2=1,x4=0) (x3=0,x4=1)  (x2=0,x3=1) 

 (x1=0,x2=1,x4=1) (x3=1,x4=1)  (x2=1,x3=0) 

 ... 

 

Then we put an edge between two nodes if the partial assignments are 

consistent.   Note: max possible clique size is m.  And, if the 3-SAT 

problem does have a satisfying assignment, then in fact there IS an 

m-clique.  Claim is this is true in the other direction too.  If the 

graph has an m-clique, then there is a satisfying assignment: namely, 

just read off the assignment given in the nodes of the clique.  So, 

this graph has a clique of size m iff F was satisfiable.  Also, our 

reduction is poly time since the total size of graph is  

at most quadratic in size of formula (O(m) nodes, O(m^2) edges). 

Therefore Max-Clique is NP-complete. 

 

Independent Set 

=============== 

An independent set in a graph is a set of nodes no two of which have 

an edge.  E.g., in a 7-cycle, the largest independent set has size 3. 

(E.g, in the graph coloring problem, the set of nodes colored red is 

an independent set). 

 

Theorem: Independent set (is there an Indep Set in G of size > k?) is 

NP-complete.  

 

Proof: Reduce from clique.  Given graph G for clique problem, just 

take complement of the graph .  Ie. create graph H such that H has 

edge (u,v) iff G does NOT have edge (u,v).  Then H has an indep set of 

size k iff G has a k-clique. 

 

 

Vertex-Cover 

============ 

A vertex cover in a graph is a set of nodes such that every edge is 

incident to at least one.  (e.g., look at cut-diamond graph). For 

instance, can think of as what rooms to put security guards in a 

museum.  What we want is the smallest vertex cover. 

 



 16 

Decision problem: does there exist a vertex cover of size < k? 

 

Claim: if C is a vertex cover in a graph, then V-C is an independent 

set.  Also if S is an independent set, then V-S is a vertex cover. 

So, to solve "is there an independent set of size > k?" just solve "is 

there a vertex cover of size < n-k?".  So, Vertex cover is NP-Complete 

too. 

        



 17 

15-451 Algorithms       4/5/07 

* NP-completeness summary                        

* Approximation Algorithms                       

 

====================================================================== 

NP-completeness summary: 

======================= 

 - picture of P, NP, co-NP, PSPACE, turing-computable functions 

   (PSPACE = problems solvable with polynomial amount of memory usage.  

    Anything in NP is also in PSPACE since with polynomial space you 

    can just have a counter that tries all possible proof strings, running 

    each one into the verifier to see if any of them work.) 

 

 - NP-complete problems: in NP *and* capture essence of entire class 

   in that a polynomial-time algorithm to solve one of them would let you 

   solve anything in NP. 

 

 - Can talk about complete problems for other classes too like PSPACE. 

 

 - Prove 3-SAT NP-complete by reduction from Circuit-SAT.  Show how to 

   convert gate-by-gate.  E.g., x3 = NAND(x1,x2).  Write down truth-table. 

 

 - Show chain of reductions from factoring to 3-SAT.  If you had a 

   magic algorithm for 3-SAT, how could you use that to factor? 

 

APPROXIMATION ALGORITHMS 

======================== 

General Question: Maybe we can't hope for a fast algorithm that always 

gets the best solution, but can we at least guarantee to get a "pretty 

good" solution?  E.g., can we guarantee to find a solution that's 

within 10% of optimal?  Or how about within a factor of 2 of optimal? 

Or, anything non-trivial? 

 

Interesting thing: even though all NP-complete problems are equivalent 

in terms of difficulty of finding optimal solution, the difficulty of 

getting a good approximation varies all over the map. 

 

VERTEX COVER 

============ 

   - GIVEN: a graph G.  GOAL: find the smallest set of vertices such that 

 every edge is incident to (touches) at least one vertex in the set.  

 

   - Example:                            +----+----+ 

                                         |    |    | 

                                         +----+----+ 

 

   - Can think of as: what is the fewest # of guards we need to place 

 in museum to cover all the corridors. 

 

   - This problem is NP-hard.  But it turns out that for any graph G 

     we can get within a factor of 2.  

 

Let's start with some strategies that *don't* work. 

 

  Strawman #1: Pick arbitrary vertex with at least one uncovered edge 

 incident, put into cover, and repeat.  What would be a bad example? 

 [A: how about a star graph] 



 18 

 

  Strawman #2: how about picking the vertex that covers the *most* 

 uncovered edges.  Turns out this doesn't work either. [make bipartite 

 graph where opt is size t, but this alg finds one of size t + 

 floor(t/2) + floor(t/3) + floor(t/4) + ... + 1.  This is Theta(t log 

 t).  Best examples are with t=6 or t=12.] 

 

How to get factor of 2.  Two algorithms: 

 

 Alg1:  Pick arbitrary edge.  We know any VC must have at least 1 

        endpt, so lets take both.  Then throw out all edges covered 

        and repeat.   Keep going until no uncovered edges left.  What 

 we've found in the end is a matching (a set of edges no two of 

 which share an endpoint) that's "maximal" (meaning that you can't add 

 any more edges to it and keep it a matching).  This means if 

 we take all endpoints, we have a VC.  So, if we picked k 

 edges, our VC has size 2k. But, any VC must have size at least k since 

 you need to have at least one endpoint of each edge (and, 

 these edges don't touch, so these are k *different* vertices). 

 

Here's another 2-approximation algorithm for Vertex Cover: 

 

 Alg2:  Step1: Solve a *fractional* version of the problem.  Have a 

        variable x_i for each vertex.  Constraint 0<= x_i <= 1.  Think 

        of x_i = 1 as picking the vertex, x_i = 0 as not picking it, 

        and in-between as "partially picking it".  Each edge should be 

        covered in that for each edge (i,j) we want x_i+x_j >= 1. 

        Then our goal is to minimize sum_i x_i.  We can solve this 

        using linear programming.  This is called an "LP relaxation" 

        because any true vertex cover is a feasible solution, but 

        we've made the problem easier by allowing fractional solutions 

        too.  So, the value of the optimal solution now will be at 

        least as good as the smallest vertex cover, maybe even better, 

        but it just might not be legal any more. 

 

        E.g., triangle-graph.   E.g., star-graph. 

 

        Step2: now pick each vertex i such that x_i >= 1/2. 

 

   Claim 1: this is a VC.  Why?  [get at least 1 endpt of each edge] 

 

   Claim 2: The size of this VC is at most twice the size of the 

   optimal VC.  Why?  Let OPT_frac be the value of the optimal 

   fractional solution, and OPT_VC be the size of the smallest vertex 

   cover.  First, as we noted above, OPT_frac <= OPT_VC.  Second, our 

   solution is at most 2*OPT_frac since it's no worse than doubling 

   and rounding down.  So, put together, our solution <= 2*OPT_VC. 

 

   Interesting fact: nobody knows any algorithm with approximation 

   ratio 1.9.  Best known is 2 - O(1/sqrt(log n)), which is 2 - o(1). 

 

   Current best hardness result: Hastad shows 7/6 is NP-hard. 

   Improved to 1.361 by Dinur and Safra.  Beating 2-epsilon has been 

   related to some other open problems, but not known to be NP-hard. 

 

 

 



 19 

SET-COVER 

--------- 

Set-cover: 

 Given a domain X of n points, and m subsets S_1, S_2, ..., S_m of 

 these points.  Goal: find the fewest number of these subsets needed to 

 cover all the points. 

 

Set-cover is NP-hard.  However, there's a simple algorithm that gets a 

ratio of ln(n):  

 

 Greedy Algorithm: Pick the set that covers the most points.  Throw out 

 all the points covered.  Repeat. 

  

 What's an example where this *doesn't* find the best solution? 

  

 Theorem: If the optimal solution uses k sets, the greedy algorithm 

 finds a solution with at most k*ln(n) sets. 

  

 Proof: Since the optimal solution uses k sets, there must some 

 set that covers at least a 1/k fraction of the 

 points.  Therefore, after the first iteration of the algorithm, 

 there are at most n(1 - 1/k) points left.  After the second, 

 there are at most n(1 - 1/k)^2 points left, etc.  After k 

 rounds, there are at most n(1 - 1/k)^k < n*(1/e) points left. 

 After k*ln(n) rounds, there are < n*(1/e)^{ln n} = 1 points 

 left, which means we must be done. 

  

In fact, it's been proven that unless everything in NP can be solved in time 

n^{O(loglog n)}, then you can't get better than (1-epsilon)*ln(n) [Feige]. 

 

MAX-SAT:  Given a CNF formula (like in SAT), try to maximize the 

number of clauses satisfied. 

 

  To make things cleaner, let's assume we have reduced each clause [so, 

  (x or x or y) would become just (x or y), and (x or not(x)) would be 

  removed]  

 

Claim: if every clause has size exactly 3 (this is sometimes called 

  the MAX-exactly-3-SAT problem), then there is a simple randomized 

  algorithm can satisfy at least a 7/8 fraction of clauses.  So, 

  this is for sure at least a 7/8-approximation. 

 

Proof: Just try a random assignment to the variables.  Each clause has 

  a 7/8 chance of being satisfied.  So if there are m clauses total, the 

  expected number satisfied is (7/8)m.  If the assignment satisfies 

  less, just repeat.  Since the number of clauses satisfied is bounded 

  (it's an integer between 0 and m), with high probability it won't take 

  too many tries before you do at least as well as the expectation. 

 

How about a deterministic algorithm?  Here's a nice way we can do that. 

  First, let's generalize the above statement to talk about general CNF 

  formulas.   

 

Claim: Suppose we have a CNF formula of m clauses, with m_1 clauses of 

  size 1, m_2 of size 2, etc.  (m = m_1 + m_2 + ...).  Then a random 

  assignment satisfies sum_k m_k(1 - 1/2^k) clauses. 

 



 20 

Proof: linearity of expectation. 

 

Now, here is a deterministic algorithm : Look at x_1: for each of the 

  two possible settings (0 or 1) we can calculate the expected number of 

  clauses satisfied if we were to go with that setting, and then set the 

  rest of the variables randomly.  (It is just the number of clauses 

  already satisfied plus sum_k m_k(1-1/2^k), where m_k is the number of 

  clauses of size k in the ``formula to go''.)  Fix x_1 to the setting 

  that gives us a larger expectation.  Now go on to x_2 and do the same 

  thing, setting it to the value with the highest expectation-to-go, and 

  then x_3 and so on.  The point is that since we always pick the 

  setting whose expectation-to-go is larger, this expectation-to-go 

  never decreases (since our current expectation is the average of the 

  ones we get by setting the next variable to 0 or 1). 

 

This is called the ``conditional expectation'' method.  The algorithm 

  itself is completely deterministic --- in fact we could rewrite 

  it to get rid of any hint of randomization by just viewing sum_k 

  m_k(1-1/2^k) as a way of weighting the clauses to favor the small 

  ones, but our motivation was based on the randomized method. 

 

Interesting fact: getting a 7/8 + epsilon approximation for any 

  constant epsilon (like .001) for MAX-exactly-3-SAT is NP-hard.  

 

In general, the area of approximation algorithms and approximation 

hardness is a major area of algorithms research.  Occupies a good 

fraction of major algorithms conferences. 

                        



 21 

15-451  Algorithms              4/10/07 

* Online algorithms 

  - rent-or-buy? 

  - elevator problem    

  - repeated play of matrix games   Quiz Tues (up through last class) 

========================================================================== 

Today's topic: Online Algorithms 

 

Last time: looked at algorithms for finding approximately-optimal 

solutions for NP-hard problems.  Today: finding approximately-optimal 

solutions for problems where difficulty is that the algorithm doesn't 

have all the information up front. 

 

Online algorithms: Algorithms for settings where inputs/data arriving 

over time.  Need to make decisions on the fly, without knowing what 

will happen in the future.  (As opposed to standard problems like 

sorting where you have all inputs at the start.)  Data structures are 

one example of this.  We'll talk about a few other examples today. 

 

Rent-or-buy? 

============ 

Simple online problem that captures a common issue in online 

decision-making, called the rent-or-buy problem.  Say you are just 

starting to go skiing.  Can either rent skis for $50 or buy for $500. 

You don't know if you'll like it, so you decide to rent.  Then you 

decide to go again, and again, and after a while you realize you have 

shelled out a lot of money renting and you wish you had bought right at the 

start.  Optimal strategy is: if you know you're going to end up skiing more 

than 10 times, you should buy right at the beginning.  If you know 

you're going to go < 10 times, you should just rent.  But, what if you 

don't know?  

 

To talk about quality of an online algorithm, we can look at what's 

called the "competitive ratio": 

 

        Competitive ratio is worst case (maximum) over possible events of 

        the ratio: (alg cost)/OPT, where OPT = optimal cost in hindsight. 

 

        "cost" means total cost over all time. 

 

E.g., what is CR of algorithm that says "buy right away"? 

        Worst case is: only go once.  Ratio is 500/50 = 10. 

 

What about algorithm that says "Rent forever"? 

        Worst case is: keep going skiing. Ratio is infinite. 

 

Here's a nice strategy: rent until you realize you should have bought, 

then buy.  (In our case: rent 9 times, then buy). 

 

 Case 1: If you went skiing 9 or less times, you're optimal. 

 Case 2: If you went 10+ times, you paid $450 + $500.  Opt paid $500. 

  Ratio = 2 - 1/10.  In general, if purchase cost p is a multiple 

  of rental cost r, the ratio is ((p-r)+p)/p = 2 - r/p. 

 

 Worst of these is case 2, so competitive ratio is 2- r/p. 

 

Claim: above strategy has the best possible competitive ratio for 



 22 

deterministic algorithms.  

 

Proof: Consider the event that the day you purchase is the last day 

you go skiing.  If you rent longer than the above strategy, then the 

numerator goes up but the denominator stays the same, so your ratio is 

worse.  If you rent fewer times, then the numerator goes down by r but 

so does the denominator, so again the ratio is worse. 

 

 

The elevator problem 

==================== 

You go up to the elevator and press the button.  But who knows how 

long it's going to take to come, if ever?  How long should you wait 

until you give up and take the stairs? 

 

Say it takes time E to get to your floor by elevator (once it comes) 

and it takes time S by stairs.  E.g, maybe E = 15 sec, S = 45 sec. 

 

What strategy has the best competitive ratio? 

 

     - wait 30 sec, then take stairs.  (in general, wait for S-E time) 

       (I.e., take the stairs once you realize you should have taken 

       them at the start) 

     - if elevator comes in < 30 sec, we're optimal. 

     - otherwise, OPT = 45. We took 30+45 sec, so ratio = (30+45)/45 = 5/3 

     - Or, in general, ratio = (S-E+S)/S = 2 - E/S. 

 

This is really the same as rent-or-buy where stairs=buy, waiting for E 

time steps is like renting, and the elevator arriving is like the last 

time you ever ski. 

 

Other problems like this: whether it's worth optimizing code, when 

your laptop should stop spinning the disk between accesses, and many others.  

 

 

REPEATED PLAY OF MATRIX GAMES 

============================= 

We talked earlier in class about matrix games, and the notion of 

minimax optimal strategies, and how linear programming can be used to 

solve for them.  But what if we are playing against an opponent who 

is not optimal?  Can we find a way to take advantage?  What we're 

going to look at now is an adaptive algorithm for repeatedly playing 

some matix game against an opponent, that is guaranteed to approach (or 

exceed) the performance of the best fixed strategy in hindsight given 

the series of plays of the opponent.   

 

Given a series of rounds of us (row player) playing against some 

opponent (column player), define OPT to be performance of best fixed 

row in hindsight, given how the opponent played.  Claim is we can get 

an algorithm whose performance will approach OPT.  In game-theory 

terminology, we are doing nearly as well as the "best response to the 

opponent's empirical distribution". 

 

What's pretty impressive about this is: suppose we didn't know the 

minimax theorem was true.  So, we imagine there might be some game 

where if the opponent had to pick his randomized strategy first and 

tell us what it was, we could guarantee getting v, but if we had to 



 23 

pick our randomized strategy first and tell him then we could only get 

some w = v - delta.   Now, we run this adaptive algorithm in 

repeatedly playing against some opponent.  OPT makes at least v per 

round on average, so we are approaching v.  But, I've committed to my 

algorithm, so the opponent should be able to make sure I make at most 

w on average per round.  This is a contradiction.  So, the theorem we 

get actually gives a *proof* of the minimax theorem as a corollary. 

 

A couple applications: say each week you go food shopping and at the 

end you have to pick a line to stand in at the checkout counter, and 

maybe you have n strategies for picking which line will go fastest (or 

each week you bet on a football game and have n strategies for picking 

the winner).  Each week you pick one of the strategies, and then you 

find out how you did and compare it to how well you would have done 

with each of the other strategies that day.  Want to do nearly as well 

as best of those strategies in hindsight. 

 

 

To simplify the presentation, let's assume all entries in the matrix 

are 1 or 0 (win or lose).  You can generalize but then the 

calculations get messier so let's not.  We will think of our algorithm 

as the row-player.  When the opponent plays some column, then we'll 

call rows with a 1 entry the "winning rows" and the others the "losing 

rows".  E.g., some games to consider: 

 

          1 0 

          0 1 

 

 - or the n-by-n version (all zeros except for 1s on the diagonal). 

 

To get a feel for this, let's consider some strategies that don't work 

very well. 

 

Strategy 1: play 50/50.  This is minimax optimal.  But if the opponent 

always plays column 1, then when you look back in hindsight you see 

that row 1 would have won every time whereas you only won half the 

time.  So, not horrible but you're off by a factor of 2.  In the 

n-by-n version, the gap is worse (factor of n). 

 

Strategy 2: always choose the row that's done best in the past (break 

ties by picking the lowest index).  Q: That does well against the 

previous opponent, but how could you as the column player totally 

defeat this strategy? A: alternate columns and make it lose every 

time.  So, in T rounds, best row won T/2 times, but this algorithm won 

zero times.  So that's even worse! 

 

Strategy 3: same as (2) but break ties at random.  This does better in 

the bad example for strategy 2, but still not great.  Every odd round 

it has a 1/2 chance of winning, and every even round it has a 0 chance 

of winning, so it's off by a factor of 2 (factor of n in n-by-n version). 

 

We will give an algorithm that does much better: for any n-by-n game, 

given a value epsilon ("learning rate"), it will get in expectation at 

least:  

       OPT(1 - epsilon/2) - ln(n)/epsilon. 

 

E.g., n=100 rows, epsilon = 0.1.  When OPT=1000, you get at least 904. 



 24 

 

Algorithm idea: just randomizing over the rows that did best in 

hindsight like #3 above is not enough randomness.  Instead, want 

probability of choosing some row to degrade gracefully with distance 

from optimum. 

 

 

EXPONENTIAL-WEIGHTS ALGORITHM 

============================= 

Give each row a "weight" w_i starting at 1.  Let W = w_1 + ... + w_n. 

 

  - Choose row with probability proportional to weight (i.e., w_i/W). 

  - After the opponent chooses his column, take all the winning rows and 

    multiply their weight by 1 + epsilon to determine the probability 

    distribution for the next round. 

 

Analysis 

======== 

Here's how the analysis is going to go.  The total weights initially 

sum to n.  At the end of the game, they sum to at *least* (1+epsilon)^OPT, 

where OPT is total score of the best row in hindsight, since that's 

the value of just the largest weight.  What we'll show is that 

increase in the weights is tied to the probability we have of winning. 

 

- Let W_t be total weight at time t.  w_{i,t} = weight of row i at time t. 

- Let p_t be our probability mass on the winning rows at time t. 

 

All winning rows i had weights multiplied by 1+epsilon.  So, the total 

weight went up by p_t*W_t*epsilon. 

 

So, W_{t+1} = W_t + epsilon * p_t * W_t = W_t(1 + epsilon * p_t). 

 

Notice: we've related the increase in weights to our probability of 

winning.  The only way the total weight can go up by a large 

percentage is if this probability is large.  

 

    W_final = n*(1 + epsilon * p_1)(1 + epsilon * p_2)(1 + epsilon *p_3)... 

     >= (1+epsilon)^OPT. 

 

Let's take ln (natural log) of both sides and do a little magic: 

 

      ln(n) + sum_t[ ln(1 + epsilon*p_t)] >= OPT*ln(1+epsilon). 

 

Now, use the fact that ln(1+x) <= x  [draw curve or remember Taylor] 

 

      ln(n) + sum_t[epsilon*p_t] >= OPT*ln(1+epsilon) 

 

And using the fact that our expected gain = sum_t p_t, we have: 

 

      Our expected gain >= [OPT * ln(1+epsilon) - ln(n)]/epsilon. 

 

 

Using the fact that ln(1+epsilon) >= epsilon - epsilon^2/2.  (from 

Taylor expansion), we can simplify this to: 

 

      Our expected gain >= [OPT(epsilon - epsilon^2/2) - ln(n)]/epsilon 

                        == OPT(1 - epsilon/2) - ln(n)/epsilon.  QED  (ta-da) 



 25 

                            15-451 Algorithms       4/12/07 

* Number-theoretic algorithms 

  - fast modular exponentiation 

  - GCD 

  - a^{-1} mod N 

============================================================================== 

In the next few classes we are going to talk about algorithms for 

number problems.  Assume inputs given in binary, so if our input is 

some number N, then its "size" n is log(N). 

 

Some basic things we can do in polynomial time: add two numbers, 

multiply two numbers, take A mod N (by this I mean the remainder when 

A is divided by N: the smallest non-negative integer of the form A - kN). 

 

Some basic facts: if we want to compute, say, X*Y*Z mod N, we can mod 

out by N as we go, since (X*Y - kN)*Z = X*Y*Z - k'N for some k'. 

So, can keep the numbers at size O(n) = O(log N). 

 

Let's look at our first nontrivial problem: modular exponentiation. 

 

MODULAR EXPONENTIATION 

====================== 

Given A,B,N, all n-bit numbers.  Goal: compute A^B mod N.   

 

If B was small, like 3, we could do this easily by just multiplying A 

by itself B times.  But what if B is a large n-bit number?  E.g., you 

need to do this when decrypting under RSA.  Note: our goal is at least 

plausible since the output is at most n bits long (if you didn't have 

the "mod N" then we couldn't even write down the output in polynomial 

time...).  So, what's a faster way than multiplying A by itself B times? 

 

Ans: Can use repeated squaring.  Let X=1.  Walk left-to-right down the 

bits of B.  Each time we see a 1, do X = (X^2)*A mod N.  Each time you 

see a 0, just do X = X^2 mod N.  Notice that at each step we have A^B' 

mod N where B' is number corresponding to the part of B we've read so far. 

 

GREATEST-COMMON-DIVISOR 

======================= 

GCD(A,B):  GCD(A,B) is the largest integer d such that A and B are both 

multiples of d.  gcd(A,0)=A.     

 

Can we compute GCD(A,B) quickly?  Notice that the number of bits in 

the input is log(A)+log(B) so we want to have a good dependence on 

that.  Classic algorithm over 2000 years old called Euclid's alg. 

Based on observation that GCD(A,B) = GCD(B, A mod B).  [Proof: if A 

and B are multiples of d, so A = A'*d and B = B'*d, then A-kB = A'd - 

kB'd is a multiple of d too.  Similarly, if B is a multiple of d and 

"A mod B" is a multiple of d then A has to be a multiple of d.] 

 

So, this is the algorithm: 

      GCD(A,B)  // assume A >= B (will be true after 1st iteration anyway) 

 if (B==0) return A 

 else return GCD (B, A mod B) 

 

  E.g., GCD(51, 9) = GCD(9,6) = GCD(6,3) = GCD(3,0) = 3. 

 

Can anyone see quick argument that the number of iterations is linear 



 26 

in the number of bits in the input?  One way to see this is that "A 

mod B" is guaranteed to have at least one fewer bit than A.  In 

particular, if B has fewer bits than A then this is easy, and if A and 

B have the same number of bits, then doing A-B gets rid of the leading 

1, so again it is true.  So, each iteration reduces the total number 

of bits in the inputs by at least 1. 

 

- EXTENDED GCD: also compute integers x and y such that d = Ax + By. 

         For example, A=7, B=9.  d=1.  1=4*7-3*9, so x=4, y=-3. 

 

How to do it: can compute with same algorithm.  Recursively, running 

on B and A-kB, we compute x', y',d such that d = Bx' + (A-kB)y'.  This 

means that d = Ay' + B(x'-ky').  This seems like a curiosity but it 

turns out to be really useful. 

 

More on Modular Arithmetic 

========================== 

Z_N = {0,1,2,...,N-1} 

Z_N^* = {A in Z_N : gcd(A,N) = 1}.  If N is prime, then Z_N^* = {1,2,...,N-1} 

 

Z_N^* is a group under multiplication mod N: if you multiply two numbers 

relatively prime to N, you get another number relatively prime to N. 

(If N doesn't share any factors with either one, then it doesn't share 

any factors with their product).  Z_N is a group under addition mod N. 

 

[At this point we will use "(mod N)" to mean we are doing everything modulo N]. 

 

A^{-1} (mod N): the inverse of A modulo N is defined to be an integer B 

in Z_N^* such that AB = 1 (mod N).  Each A in Z_N^* has an inverse modulo N. 

 

Question: why do inverses exist, and how can we compute them quickly? 

E.g., what is 5^{-1} mod 17? 

 

Here's how: compute extended GCD of N and A.  Get x,y such that Nx+Ay=1. 

So, Ay = 1 mod N: y is the inverse of A. 

 

E.g., EGCD(17,5) calls EGCD(5,2) where 2 = 17-3*5.  This returns x'= 1, y' 

= -2. So, our answer is x = -2, y = 1 - 3*(-2) = 7.  So, 5^{-1} = 7 mod 17.  

 

Euler's Theorem, Fermat's little theorem 

======================================== 

Fermat's little theorem: if N is prime and A is in Z_N^*, then 

A^{N-1} = 1 mod N. 

 

So, if we pick some A (like A=2) and compute A^{N-1} mod N (which we 

now know how to do efficiently), and find the result is not equal to 

1, this is a PROOF that N is not prime, even though it gives us no 

information about how to factor N.  

 

Of course it could be that composites also have the same property, but 

it turns out that composites actually come in two types.  A rare type, called 

Carmichael numbers have the same property as above, but they turn out 

to be easy to factor and in any case they are very sparse.  The rest 

of the composites N have the property that at least half of the A in 

Z_N^* satisfy A^{N-1} != 1 mod N.  So if your number is not 

Carmichael, and you pick 100 random A's and 

they all give you 1, you can be pretty confident that the number is 



 27 

prime.   This gives a a fast randomized primality test.  Recently, a 

deterministic no-error polynomial-time primality test was devloped too 

(but it is slower).   

 

In the next class we will look at all this in more detail. 

                            



 28 

15-451 Algorithms       4/17/07 

* Number-theoretic algorithms II 

  - an important property of groups 

  - Fermat's little thm, Euler's thm 

  - primality testing 

  - complexity classes RP, co-RP, BPP 

============================================================================== 

We ended class last time with Fermat's little theorem: if N is prime 

and A is between 1 and N-1, then A^{N-1} = 1 mod N. 

 

So, if we pick some A (like A=2) and compute A^{N-1} mod N (which we 

now know how to do efficiently), and find the result is not equal to 

1, this is a PROOF that N is not prime, even though it gives us no 

information about how to factor N.  Today we'll see a proof of FlT, 

and a generalization called Euler's theorem, and then we'll extend 

this further to get a randomized polynomial-time algorithm for testing 

if a number is prime or composite. 

 

DEFN: Z_N^* = {A in 1..N such that GCD(A,N)=1} 

 

E.g., Z_15^* = {1,2,4,7,8,11,13,14} 

Recall, Z_N^* is a group under multiplication mod N.  That means it's 

closed under the group operation (e.g., 7*8=11 mod 15), and also every 

A in Z_N^* has an inverse B in Z_N^* (AB=1 mod N).  E.g., 2^{-1} = 8 

mod 15. 

 

Here is a REALLY IMPORTANT PROPERTY of groups: say G is a group and H 

is a subgroup of G (if A,B are in H then A*B is in H; if A is in H 

then A^{-1} is in H).  Then THE SIZE OF H DIVIDES THE SIZE OF G. 

 

        Proof: Say H is a subgroup of G and y is not in H. Then the coset 

        yH = {yh : h in H} is a set of size |H| (if y*h1 = y*h2 then 

        h1 = h2) and is disjoint from H (if y*h1 = h2 then y = 

        h2*h1^{-1}, which is in H by H's group closure properties). 

        Furthermore, all cosets are disjoint (if z*h1 = y*h2 then z = 

        y*h3 for some h3 in H). 

 

 

        E.g., G = Z_15^*, H = {1,2,4,8}. 

 

DEFN: N is a Carmichael number if N is composite but A^{N-1}=1 for all 

A in Z_N^*. 

 

THEOREM: if N is composite but not a Carmichael number, then A^{N-1}!=1  

for *at least half* of the A in Z_N^*. 

 

Proof: Let H = {A in Z_N^* : A^{N-1} = 1 mod N}.  Then H is a subgroup 

of Z_N^* because it's closed under multiplication (if A^{N-1} = 1 and 

B^{N-1} = 1 then (AB)^{N-1}=1) and inverses (if AB = 1 then 

(AB)^{N-1} = 1, so if A^{N-1} = 1 then B^{N-1}=1).  This means that if 

there is even a single element of G that is not in H (namely if N is 

not Carmichael) then |H| is at most |G|/2.   So, right away we get 

that if there is even a single witness to N being composite, there 

must be a *lot* of witnesses.  So, if you pick 100 random A's and you 

always get 1 you can be pretty confident that A is either prime or a 

Carmichael number. 

 



 29 

 

OK, now let's go ahead and prove Fermat's little theorem. 

 

DEFN: Euler phi function:  phi(N) = |Z_N^*|. 

      E.g., if N is prime, then phi(N) = N-1. 

 

DEFN: for A in Z_N^*, order(A) = smallest t such that A^t = 1 (mod N).  

 

(e.g., in Z_15^*, order(2)=4, order(14)=2) 

 

THEOREM: for all A in Z_N^*, order(A) divides phi(N). 

 

PROOF: {1, A, A^2, ..., A^{t-1}} is a subgroup of Z_N^*: 

  it's closed under multiplication mod N and taking inverses.  So we 

  just use our Really Important Property. 

 

COROLLARY 1: Euler's Theorem: for any A in Z_N^*, A^{phi(N)} = 1 (mod N). 

  Proof: if t is the order of A, then phi(N) = B*t for some B by our 

  theorem, and A^{phi(N)} = (A^t)^B = 1 (mod N).  

 

COROLLARY 2: Fermat's little theorem: If N is prime, then for any A in 

Z_N^*, A^{N-1} = 1 mod N. 

 

 

PRIMALITY TESTING 

================= 

We're now going to give a fast randomized algorithm for testing if a 

number is prime, with the following properties: 

 

      if N is prime, then it outputs YES 

      if N is composite, then it outputs NO with probability at least 

             1 - 1/2^100. 

 

So, if it says YES, you don't have a 100% proof that the number is 

prime, but you can be pretty confident.  [Note, it was only very 

recently that a *deterministic* poly-time algorithm for this problem 

was developed]  

 

We actually already almost have the algorithm.  If we ignore the 

Carmichael numbers, then the algorithm is just this: 

  - pick 100 random values A between 1 and N. 

  - If all have A^{N-1} = 1 mod N then output YES (Probably Prime) 

  - Else output NO (Definitely Composite) 

 

[don't even need to test GCD since if GCD is not 1 then for sure 

A^{N-1} != 1 mod N] 

 

 

The trick for Carmichael numbers is it turns out they are easy to 

factor.  (They are also very rare.  Smallest is 561.) 

Combining these two gives us the Miller-Rabin primality test. 

 

More on Carmichael numbers: We're going to be able to factor 

Carmichael numbers using the following idea.  Suppose we have some 

number x that's not 1 or -1 mod N, such that x^2 = 1 mod N.  E.g., 

11^2 = 1 mod 15.  This means that (x-1)*(x+1) is a multiple of N, even 

though neither x-1 nor x+1 is.  So, GCD(x-1,N) gives us a factor of N 



 30 

(as does GCD(x+1,N)), and GCD is something WE CAN COMPUTE EFFICIENTLY! 

 

The way we will find such an x is via the following key lemma: 

 

KEY LEMMA: Suppose N is odd, not a prime power or perfect square, and 

composite.  Let t < N.  If there exists x in Z_N^* such that x^t != 1 

(mod N), then at least half of x in Z_N^* have x^t != {-1,+1} mod N. 

Furthermore, if t is ODD, then such an x exists. 

 

Proof of KEY LEMMA: Don't have time to go through details but one step 

is you show the set of x such that x^t *is* in {-1,1} is a subgroup, 

and then you also use something called the Chinese Remainder Theorem. 

 

Proof of factoring Carmichael given our key lemma: First, we can 

trivially handle Ns that are even, prime-powers, or perfect squares, 

so we can assume the lemma above holds.  Now, take N-1 and pull out 

all powers of 2, so that we have N-1 = B * 2^k, where B is an odd number. 

Now, consider exponents t = B, 2B, 4B, 8B, ..., N-1.  The lemma says 

that we can put them into two categories: 

        (1) all A in Z_N^* have A^t = 1 mod N 

        (2) at least half of A have A^t != 1 or -1 (mod N) 

The lemma tells us that t=B is in category (2), and the fact that N is 

Carmichael tells us that N-1 is in category 1.  So the world 

looks something like this:  

 

        t =     B       2B      4B      8B      ...     N-1 

        --------------------------------------------------- 

   category:    2       2       1       1       ...     1 

                        ^ 

                        call this point t_critical 

 

Now, pick random A and compute A^B, A^{2B},..., A^{N-1}.  Define 

t_critical as largest exponent in category (2).  By definition,  

there is at least 1/2 chance that A^{t_critical} != {1,-1}.  Call this 

x.  So, x is not 1 or -1, but x^2 = 1 mod N.  So, we use this to factor! 

 

A little more complexity theory 

=============================== 

Turns out there are a number of interesting complexity classes that 

you can define in terms of a polynomial-time algorithm V that takes in 

two inputs: an instance I, and an auxiliary string w, where we assume 

that the length of w is polynomial in the size of the instance. 

 

NP: A is in NP if there is a polynomial-time algorithm V(I,w) such that: 

  If "I" is in YES_A, then there exists w such that V(I,w) = YES. 

  If "I" is in NO_A, then for all w, V(I,w) = NO. 

 

Co-NP: other way around from NP: swap YES and NO. 

 

RP (randomized polynomial time): A is in RP if exists poly-time V s.t.: 

  If "I" is in YES_A, then for at least half of w, V(I,w) = YES. 

  If "I" is in NO_A, then for all w, V(I,w) = NO. 

 

Co-RP: the other way around. 

 

BPP: two-sided error  

  If "I" is in YES_A, then for at least 2/3 of w, V(I,w) = YES. 



 31 

  If "I" is in NO_A, then for at least 2/3 of w, V(I,w) = NO. 

 

Can boost up the 1/2, 2/3 by repetition.  We showed primality in Co-RP. 

 

RSA PUBLIC-KEY CRYPTOGRAPHY 

=========================== 

RSA is an answer to the question of "how can two people communicate 

securely if they have never met to exchange secret keys before?". 

Answer is to somehow separate encryption and decryption.  Each person 

has a public encryption key that's published in the phone book, and 

then their own private decryption key that's kept secret.  To send a 

msg to A, you look them up in the phone book and use their public key. 

The point about public-key crypto is that just because you can encrypt 

a message to A doesn't mean you can decrypt anyone else's msgs sent to A.  

 

RSA: Person A (Alice) subscribes by 

(1) picking two large primes p and q (say 100 decimal digits long) and 

        computing N = p*q.   

(2) Picking a small odd number e relatively prime to (p-1)*(q-1). E.g., e=3.  

(3) Computing d = e^{-1} mod phi(N), where phi(N) = (p-1)*(q-1). 

(4) Publishing the pair (e,N) as her PUBLIC KEY in a global phone 

        book, and keeping the pair (d,N) secret as her SECRET KEY.   

        The primes p and q can now be thrown away. 

 

Person B(Bob) sends msg M to Alice by computing x = M^e mod N, and sending x. 

 

(5) To decrypt, Alice computes x^d mod N, which is M. 

 

[Ignoring various issues like: might want to prepend garbage onto M so 

that evesdropper can't guess-and-check]  

 

Let's now look at details of how/why all this works: 

 STEP 1: a reasonable proportion of random numbers are prime.  So can 

   just pick random numbers and test, until we get two primes. 

 

 STEP 3:  just requires computing inverse which we know how to do. 

 

 STEP (5): Why do we get back M? 

   Answer is that this comes from Euler's theorem.   

   x^d = M^{de} mod N.  By definition, de = 1 + k*phi(N).  So, 

   M^{1 + k*phi(N)} = M*M^{phi(N)^k} = M*1^k = M (mod N). 

   Also: use fast exponentiation here since d might be a large number. 

====================================================================== 

Why might we expect RSA to be secure?  Here is one fact: given N and 

e, finding the decryption key d is as hard as factoring.  (Though this 

doesn't say there might not be some other way of decrypting a message 

that people haven't thought of). 

    



 32 

15-451 Algorithms   4/24/07 

* Multiplying polynomials 

* Fast Fourier Transform (FFT)     

=========================================================================== 

Today we are going to talk about the Fast Fourier Transform, a widely 

used algorithm in areas like signal processing, speech understanding, 

digital audio, radar.  

 

We'll develop it in trying to solve the problem of "how to multiply 

quickly" we talked about on the first day of class.  This is not how 

it was invented historically (and it obscures the connection to the 

usual kind of Fourier Transform), but I think it's most natural from the 

perspective of Algorithms.  You don't need to know what a FT is for 

this lecture. 

 

Warning: even though the algorithm in the end won't be that complicated,  

this will be one of the most difficult lectures of the class! 

=================================================================== 

 

At the start of class we talked about the problem of multiplying big 

integers.  Let's look at a simpler version of the problem,  

which is the problem of multiplying polynomials.  It sounds more 

complicated, but really it's just the problem of multiplying integers 

without the carries.  

 

MULTIPLYING POLYNOMIALS 

======================= 

E.g., multiply (x^2 + 2x + 3)(2x^2 + 5) =  

 

   2x^2 + 0x + 5 

   1x^2 + 2x + 3 

                        ------------- 

                        6      0   15 

                 4      0      10 

          2      0      5 

         ---------------------------- 

          2x^4 + 4x^3 + 11x^2 +10x+15 

 

MODEL: view each individual small multiplication as a unit cost operation. 

 

More generally, given A(x) = a_0 + a_1 x + ... + a_{n-1}x^{n-1}, 

        B(x) = b_0 + b_1 x + ... + b_{n-1}x^{n-1} 

 

 

Our goal is to compute the polynomial C(x) = A(x)*B(x).   

    c_i = a_0*b_i + a_1*b_{i-1} + ... + a_i*b_0. 

 

If we think of A and B as vectors, then the C-vector is called the 

"convolution" of A and B. 

 

- Straightforward computation is O(n^2) time.  Karatuba is n^{1.58..} 

 

- we'll use FFTs to do in O(n log n) time.  This is then used in 

Schonhage-Strassen integer multiplication algorithm that multiplies 

two n-bit integers in O(n log n loglog n) time. We're only going to do 

polynomial multiplication. 

 



 33 

High Level Idea of Algorithm 

============================ 

Let m = 2n-1. [so degree of C is less than m] 

1. Pick m points x_0, x_1, ..., x_{m-1} according to a secret formula. 

2. Evaluate A at each of the points: A(x_0),..., A(x_{m-1}). 

3. Same for B. 

4. Now compute C(x_0),..., C(x_{m-1}), where C is A(x)*B(x) 

5. Interpolate to get the coefficients of C. 

 

This approach is based on the fact that a polynomial of degree < m is 

uniquely specified by its value on m points.  It seems patently crazy 

since it looks like steps 2 and 3 should take O(n^2) time just in 

themselves.  However, the FFT will allow us to quickly move from 

"coefficient representation" of polynomial to the "value on m points" 

representation, and back, for our special set of m points.  (Doesn't 

work for *arbitrary* m points.  The special points will turn out to be 

roots of unity). 

 

The reason we like this is that multiplying is easy in the "value on m 

points" representation.  We just do: C(x_i) = A(x_i)*B(x_i).  So, only 

O(m) time for step 4. 

 

Let's focus on forward direction first.  In that case, we've reduced 

our problem to the following: 

 

GOAL: Given a polynomial A of degree < m, evaluate A at m points of our 

      choosing in total time O(m log m).  Assume m is a power of 2. 

 

The FFT: 

======= 

 

Let's first develop it through an example.  Say m=8 so we have a polynomial  

 

 A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6x^6 + a_7x^7. 

 (as a vector, A = [a_0, a_1, ..., a_7]) 

 

And we want to evaluate at eight points of our choosing.  Here is an 

idea.  Split A into two pieces, but instead of left and right, have 

them be even and odd.  So, as vectors,  

  A_even = [a_0, a_2, a_4, a_6] 

  A_odd = [a_1, a_3, a_5, a_7] 

   

or, as polynomials: 

 

  A_even(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3 

  A_odd(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3. 

 

Each has degree < m/2.  How can we write A(x) in terms of A_even and A_odd? 

 

          A(x) = A_even(x^2) + x A_odd(x^2). 

 

What's nice is that the effort spent computing A(x) will give us A(-x) 

almost for free.   So, let's say our special set of m points will have 

the property: 

 

 The 2nd half of points are the negative of the 1st half   (*) 

 



 34 

E.g., {1,2,3,4,-1,-2,-3,-4}.  

 

Now, things look good: Let T(m) = time to evaluate a degree-m 

polynomial at our special set of m points.  We're doing this by 

evaluating two degree-m/2 polynomials at m/2 points each (the 

squares), and then doing O(m) work to combine the results. This is 

great because the recurrence T(m) = 2T(m/2) + O(m) solves to O(m log m). 

 

But, we're deluding ourselves by saying "just do it recursively". 

Why is that?  The problem is that recursively, our special points (now 

{1, 4, 9, 16}) have to satisfy property (*).  E.g., they should really 

look like {1, 4, -1, -4}.  BUT THESE ARE SQUARES!! How to fix?  Just 

use complex numbers!  E.g., if these are the squares, what do the 

original points look like?  

 

 {1, 2, i, 2i, -1, -2, -i, -2i} 

 

so then their squares are: 1, 4, -1, -4 

and their squares are: 1, 16 

 

But, at the next level we again need property (*).  So, we want to 

have {1, -1} there.  This means we want the level before that to be 

{1, i, -1, -i}, which is the same as {1, i, i^2, i^3}.  So, for the 

original level, let w = sqrt(i) = 0.707 + 0.707i, and then  

our original set of points will be: 

 

 1, w, w^2, w^3, w^4 (= -1), w^5 (= -w), w^6 (= -w^2), w^7 (= -w^3) 

 

so that the squares are: 1, i, i^2 (= -1), i^3 (= -i) 

and *their* squares are: 1, -1 

and *their* squares are: 1 

 

The "w" we are using is called the "primitive eighth root of unity" 

(since w^8 = 1 and w^k != 1 for 0 < k < 8).  

 

In general, the mth primitive root of unity is the vector 

w = cos(2*pi/m) + i*sin(2*pi/m) 

 

Alternatively, we can use MODULAR ARITHMETIC! 

============================================ 

 

E.g., 2 is a primitive 8th root of unity mod 17. 

{2^0,2^1,2^2,...,2^7} = {1,2,4,8 16,15,13, 9} 

                      = {1,2,4,8,-1,-2,-4,-8}.  

 

Then when you square them, you get {1,4,-1,-4}, etc. 

This is nice because we don't need to deal with messy floating-points. 

 

THE FFT ALGORITHM 

================= 

Here is the general algorithm in pseudo-C: 

 

Let A be array of length m, w be primitive mth root of unity. 

Goal: produce DFT F(A): evaluation of A at 1, w, w^2,...,w^{m-1}. 

FFT(A, m, w) 

{ 

  if (m==1) return vector (a_0) 



 35 

  else { 

    A_even = (a_0, a_2, ..., a_{m-2}) 

    A_odd  = (a_1, a_3, ..., a_{m-1}) 

    F_even = FFT(A_even, m/2, w^2)    //w^2 is a primitive m/2-th root of unity 

    F_odd = FFT(A_odd, m/2, w^2) 

    F = new vector of length m 

    x = 1 

    for (j=0; j < m/2; ++j) { 

      F[j] = F_even[j] + x*F_odd[j] 

      F[j+m/2] = F_even[j] - x*F_odd[j] 

      x = x * w 

  } 

  return F 

} 

 

THE INVERSE OF THE FFT 

====================== 

Remember, we started all this by saying that we were going to multiply 

two polynomials A and B by evaluating each at a special set of m 

points (which we can now do in time O(m log m)), then multiply the 

values point-wise to get C evalauated at all these points (in O(m) 

time) but then we need to interpolate back to get the coefficients. 

In other words, we're doing F^{-1}(F(A) \cdot F(B)). 

 

So, we need to compute F^{-1}.  Here's how. 

 

First, we can look at the forward computation (computing A(x) at 1, w, 

w^2, ..., w^{m-1}) as an implicit matrix-vector product: 

 

       +---------------------------------------+  +-----+    +-------+ 

       |  1   1    1     1   ...    1        |  | a_0 |    | A(1)  | 

       |  1   w    w^2   w^3 ... w^{m-1}       |  | a_1 |    | A(w)  | 

       |  1   w^2  w^4   w^6 ... w^{2(m-1)}    |  | a_2 | == | A(w^2)| 

       |  1   w^3  w^6   w^9 ... w^{3(m-1)}    |  | a_3 |    | A(w^3)| 

       |          .....        .....           |  | ... |    | ...   | 

       |  1 w^{-1} w^{-2} w^{-3} ... w         |  |a_m-1|    | ...   | 

       +---------------------------------------+  +-----+    +-------+ 

 

(Note w^{m-1} = w^{-1} since w^m = 1) 

 

(We're doing this "implicitly" in the sense that we don't even have 

time to write down the matrix.) 

 

To do the inverse transform, what we want is to multiply by the 

inverse of the F matrix.  As it turns out, this inverse looks very 

much like F itself.  In particular, notice that w^{-1} is also a 

principal mth root of unity. Let's define \bar{F} to be the fourier 

transform matrix using w^{-1} instead of w.  Then, 

 

Claim:  F^{-1} = (1/m) * \bar{F}.  I.e., 1/m * \bar{F} * F = identity. 

 

Proof:  What is the i,j entry of \bar{F} * F?  It is: 

 

 1 + w^{j-i} + w^{2j-2i} + w^{3j-3i} + ... + w^{(m-1)j - (m-1)i} 

 

   If i=j, then these are all = 1, so the sum is m.  Then when we 

   divide by m we get 1. 



 36 

 

   If i!=j, then the claim is these all cancel out and we get zero. 

   Maybe easier to see if we let z = w^{j-i}, so then the sum is: 

 

 1 + z + z^2 + z^3 + z^4 + ... + z^{m-1}. 

 

   Then can see these cancel by picture.  For instance, try z = w, z = w^2. 

 

   Or can use the formula for summations: (1 - z^m)/(1-z) = 0/(1-z) = 0. 

 

 

So, the final algorithm is: 

 

    Let F_A = FFT(A, m, w)                        // time O(n log n) 

    Let F_B = FFT(B, m, w)                        // time O(n log n) 

    For i=1 to m, let F_C[i] = F_A[i]*F_B[i]      // time O(n) 

    Output C = 1/m * FFT(F_C, m, w^{-1}).         // time O(n log n) 

 

 

NOTE: If you're an EE or Physics person, what we're calling the "Fourier 

Transform" is what you would usually call the "inverse Fourier 

transform" and vice-versa. 

 


