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Shall we play a game?Shall we play a game?

Game Theory and Computer Game Theory and Computer 
ScienceScience

Game Theory               15-451                   12/05/06
- Zero-sum games
- General-sum games

Plan for TodayPlan for Today
• 2-Player Zero-Sum Games (matrix games)

– Minimax optimal strategies

– Minimax theorem                                                 
and proof

• General-Sum Games (bimatrix games)
– notion of Nash Equilibrium

• Proof of existence of Nash Equilibria
– using Brouwer’s fixed-point theorem

test material
not test material

Consider the following scenarioConsider the following scenario……

• Shooter has a penalty shot.  Can choose to 
shoot left or shoot right.

• Goalie can choose to dive left or dive right.

• If goalie guesses correctly, (s)he saves the 
day.  If not, it’s a goooooaaaaall!

• Vice-versa for shooter.

22--Player ZeroPlayer Zero--Sum gamesSum games
• Two players R and C.  Zero-sum means that what’s 

good for one is bad for the other.

• Game defined by matrix with a row for each of R’s 
options and a column for each of C’s options.  
Matrix tells who wins how much.

• an entry (x,y) means: x = payoff to row player, y = payoff to 
column player.  “Zero sum” means that y = -x.

• E.g., penalty shot:

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!GOAALLL!!!

MinimaxMinimax--optimal strategiesoptimal strategies
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected gain, over choices of the opponent. 
[maximizes the minimum]

• I.e., the thing to play if your opponent knows 
you well.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!GOAALLL!!!

MinimaxMinimax--optimal strategiesoptimal strategies
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected gain, over choices of the opponent. 
[maximizes the minimum]

• I.e., the thing to play if your opponent knows 
you well.

• In class on Linear Programming, we saw how 
to solve for this using LP.
– polynomial time in size of matrix if use poly-time 

LP alg.
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MinimaxMinimax--optimal strategiesoptimal strategies

• E.g., penalty shot:

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Minimax optimal strategy for both players is 
50/50.  Gives expected gain of � for shooter 
(-� for goalie).  Any other is worse.

MinimaxMinimax--optimal strategiesoptimal strategies

• E.g., penalty shot with goalie who’s weaker 
on the left.

(�,-�) (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Minimax optimal for shooter is (2/3,1/3).
Guarantees expected gain at least 2/3. 
Minimax optimal for goalie is also (2/3,1/3).
Guarantees expected loss at most 2/3.

Minimax Theorem (von Neumann 1928)Minimax Theorem (von Neumann 1928)
• Every 2-player zero-sum game has a unique 

value V.

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V.

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V.

Counterintuitive: Means it doesn’t hurt to 
publish your strategy if both players are 
optimal.  (Borel had proved for symmetric 5x5 
but thought was false for larger games)

Matrix games and AlgorithmsMatrix games and Algorithms
• Gives a useful way of thinking about guarantees 
on algorithms for a given problem.

• Think of rows as different algorithms,  columns 
as different possible inputs.

• M(i,j) = cost of algorithm i on input j.

• Algorithm design goal: good strategy for row 
player.  Lower bound: good strategy for adversary.

One way to think of upper-bounds/lower-bounds: on 
value of this game

E.g., sorting

Matrix games and AlgorithmsMatrix games and Algorithms
• Gives a useful way of thinking about guarantees 
on algorithms for a given problem.

• Think of rows as different algorithms,  columns 
as different possible inputs.

• M(i,j) = cost of algorithm i on input j.

• Algorithm design goal: good strategy for row 
player.  Lower bound: good strategy for adversary.

Of course matrix may be HUGE. But helpful 
conceptually.

E.g., sorting

Matrix games and AlgsMatrix games and Algs

•What is a deterministic alg with a                     
good worst-case guarantee?

• A row that does well against all columns.

•What is a lower bound for deterministic 
algorithms?

• Showing that for each row i there exists a column j 
such that M(i,j) is bad.

•How to give lower bound for randomized 
algs?

• Give randomized strategy for adversary that is bad 
for all i. Must also be bad for all distributions over i.

Alg player

Adversary
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E.g., hashingE.g., hashing

•Rows are different hash functions.
•Cols are different sets of n items to hash.
•M(i,j) = #collisions incurred by alg i on set j.  

We saw:
•For any row, can reverse-engineer a bad column.

•Universal hashing is a randomized strategy for 
row player that has good behavior for every 
column.
– For any set of inputs, if you randomly construct hash 

function in this way, you won’t get many collisions in 
expectation.

Alg player

Adversary Nice proof of minimax Nice proof of minimax thmthm (sketch)(sketch)

• Suppose for contradiction it was false.

• This means some game G has VC
> VR:

– If Column player commits first, there exists 
a row that gets at least VC.

– But if Row player has to commit first, the 
Column player can make him get only VR.

• Scale matrix so payoffs to row are         
in [0,1].  Say VR = VC - δ.

VC

VR

Proof sketch, Proof sketch, contdcontd
• Consider exponential weighting alg from 

Nov16 lecture as Row, against opponent who 
always plays best response to Row’s distrib.

• In T steps,
– Alg gets ≥ (1−ε/2)OPT – log(n)/ε [use ε=δ] 

– OPT ≥ T⋅VC [Best against opponent’s empirical 
distribution]

– Alg � T⋅VR [Each time, opponent knows your 
randomized strategy]

– Gap is δT. Contradicts assumption once δT > 
(ε/2)OPT + log(n)/ε.

GeneralGeneral--Sum GamesSum Games

• Zero-sum games are good formalism for 
design/analysis of algorithms.

• General-sum games are good models for 
systems with many participants whose 
behavior affects each other’s interests
– E.g., routing on the internet

– E.g., online auctions

GeneralGeneral--sum gamessum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “what side of road to drive on?”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right person 
driving 

towards you

you

GeneralGeneral--sum gamessum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “which movie should we go to?”:

(8,2)  (0,0)

(0,0)  (2,8)

Borat

Happy-feet

Borat Happy-feet

No longer a unique “value” to the game.
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Nash EquilibriumNash Equilibrium
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized).
• Stable means that neither player has 

incentive to deviate on their own.
• E.g., “what side of road to drive on”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right

NE are: both left, both right, or both 50/50.

Nash EquilibriumNash Equilibrium
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized).
• Stable means that neither player has 

incentive to deviate.
• E.g., “which movie to go to”:

NE are: both B, both HF, or (80/20,20/80)

(8,2)  (0,0)

(0,0)  (2,8)

Borat

Happy-feet

Borat Happy-feet

UsesUses
• Economists use games and equilibria as 

models of interaction.
• E.g., pollution / prisoner’s dilemma:

– (imagine pollution controls cost $4 but improve 
everyone’s environment by $3)

(2,2)  (-1,3)

(3,-1)  (0,0)

don’t pollute

pollute

don’t pollute   pollute

Need to add extra incentives to get good overall behavior.

NE can do strange thingsNE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Fine.  NE is 50/50.  Travel time = 1.5

s
x

1

1

tx
travel time = 1, 
indep of traffic

travel time t ( x ) = x
. 

NE can do strange thingsNE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Add new superhighway.  NE: everyone 
uses zig-zag path.  Travel time = 2.

s
x

1

1

tx
travel time = 1, 
indep of traffic

travel time t ( x ) = x
. 

0

Existence of NEExistence of NE
• Nash (1950) proved: any general-sum game 

must have at least one such equilibrium.
– Might require randomized strategies (called 

“mixed strategies”)

• This also yields minimax thm as a corollary.
– Pick some NE and let V = value to row player in 

that equilibrium. 
– Since it’s a NE, neither player can do better 

even knowing the (randomized)  strategy their 
opponent is playing.

– So, they’re each playing minimax optimal.
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Existence of NEExistence of NE
• Proof will be non-constructive.
• Unlike case of zero-sum games, we do not 
know any polynomial-time algorithm for 
finding Nash Equilibria in n · n general-sum 
games. [known to be “PPAD-hard”]

• Notation:
– Assume an nxn matrix.
– Use (p1,...,pn) to denote mixed strategy for row 

player, and (q1,...,qn) to denote mixed strategy 
for column player.

ProofProof

• We’ll start with Brouwer’s fixed point 
theorem.
– Let S be a compact convex region in Rn and let 

f:S ջ S be a continuous function.

– Then there must exist x ∈ S such that f(x)=x.

– x is called a “fixed point” of f.

• Simple case: S is the interval [0,1].

• We will care about:
– S = {(p,q): p,q are legal probability distributions 

on 1,...,n}.   I.e.,  S =  simplexn · simplexn

Proof (cont)Proof (cont)

• S = {(p,q): p,q are mixed strategies}.

• Want to define f(p,q) = (p’,q’) such that:
– f is continuous.  This means that changing p 

or q a little bit shouldn’t cause p’ or q’ to 
change a lot.

– Any fixed point of f is a Nash Equilibrium.

• Then Brouwer will imply existence of NE.

Try #1Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: not necessarily well-defined:
– E.g., penalty shot: if p = (0.5,0.5) then q’ could 

be anything.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Try #1Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: also not continuous:
– E.g., if p = (0.51, 0.49) then q’ = (1,0).  If p = 

(0.49,0.51) then q’ = (0,1).

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Instead we will use...Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p  p’

Note: quadratic + linear = quadratic.
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Instead we will use...Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p

Note: quadratic + linear = quadratic.

p’

Instead we will use...Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

• f is well-defined and continuous since 
quadratic has unique maximum and small 
change to p,q only moves this a little.

• Also fixed point = NE.  (even if tiny 
incentive to move, will move little bit).

• So, that’s it!
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Machine Learning: Learning Machine Learning: Learning 
finite state environmentsfinite state environments

Avrim Blum

15-451 lecture 12/07/06

Machine LearningMachine Learning

A big topic in Computer Science.  We’d like 
programs that learn with experience.
– Because it’s hard to program up complicated 

things by hand. 

– Want software that personalizes itself to 
users needs.

– Because it’s a necessary part of anything 
that is going to be really intelligent.

What ML can doWhat ML can do

• Learn to steer a car.

• Learn to read handwriting, recognize 
speech, detect faces.

• Learn to play backgammon (best in world).
• Identify patterns in databases.
Generally, program structure developed by hand.  Learning 
used to set (lots of) parameters.  ML as programmer’s 
assistant.

Schneiderman
Kanade

Pomerleau
NHAA

More conceptually...More conceptually...

• Can we use CS perspective to help us 
understand what learning is?  
– Think about learning as a computational task 

just like multiplying?

– How does a baby learn to figure out its 
environment?  To figure out the effect of its 
actions?

• Lots of parts to all this.  Today: one 
problem that captures some small piece 
of it.

Imagine...Imagine...

• Say we are a baby trying to figure out 
the effects our actions have on our 
environment...

• Sometimes actions have effects we can 
notice right away, sometimes effects are 
more long-term.

A model: learning a finite A model: learning a finite 
state environmentstate environment

• Let’s model the world as a DFA.  We 
perform actions, we get observations.

• Our actions can also change the state 
of the world.  # states is finite.A c t i o n s 0 a n d 1 .O b s e r v a t i o n s w h i t e o r p u r p l e .0 , 1 1 010 s t a r t
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Learning a DFALearning a DFA

• We have a box with buttons and lights.

Another way to put it:

• Can press the buttons, observe the lights.
– lights = f(current state)
– next state = g(button, prev state)

• Goal: learn predictive model of device.

This seems really hard.  Can’t 
tell for sure when world state 

has changed.ample space S.

Learning Learning DFAsDFAs

Let’s look at an easier problem 
first: state = observation.

space S.

An example w/o hidden stateAn example w/o hidden state
2 actions: a, b.

Generic algorithm for lights=state:
•Build a model.
•While not done, find an unexplored 
edge and take it.

Now, let’s try the harder problem!

Some examplesSome examples

Example #1 (3 states)

Example #2 (3 states)

Can we design a procedure to Can we design a procedure to 
do this in general?do this in general?

One problem: what if we always see the 
same thing?  How do we know there 
isn’t something else out there?

Our model:
a,b

Real world:

a a

a

b b ab

a a b bb

Called “combination-lock automaton”

Can we design a procedure to Can we design a procedure to 
do this in general?do this in general?

Real world:

a a

a

b b ab

a a b bb

Called “combination-lock automaton”

This is a serious problem.  It means we 
can’t hope to efficiently come up with 
an exact model of the world from just 
our own experimentation.
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How to get around this?How to get around this?

• Assume we can propose model and get 
counterexample. 

• Alternatively, goal is to be predictive.  Any 
time we make a mistake, we think and 
perform experiments.  

• Goal is not to have to do this too many 
times.  For our algorithm, total # mistakes 
will be at most # states.

Today: a really cool Today: a really cool 
algorithm by Dana algorithm by Dana AngluinAngluin

(with extensions by R.Rivest & R.Schapire)

• To simplify things, let’s assume we have a 
RESET button.  

• If time, we’ll see how to get rid of that.

The problem (recap)The problem (recap)

– observation = f(current state)
– next state = g(button, prev state)

• Can feed in sequence of actions, get 
observations.  Then resets to start.

• Can also propose/field-test model. Get 
counterexample.

• We have a DFA:

a

>

a

a

b
b

b

Key IdeaKey Idea
Key idea is to represent the DFA using 

a state/experiment table.

a

>

a

a

b
b

b

states

experiments

λ    a

λ
a
b

aa
ab
ba
bb

trans-

itions
Either aa=b or else aa is a totally new state 
and we need another expt to distinguish.

Key IdeaKey Idea
Key idea is to represent the DFA using 

a state/experiment table.

states

experiments

λ    a

λ
a
b

aa
ab
ba
bb

trans-

itions

Guarantee will be: 

either model is correct, 
or else the world has >
n states.  In that case, 

need way of using 

counterexs to add new 

state to model.

The algorithmThe algorithm
We’ll do it by example...

b

>

a

a

b

a

a
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Algorithm (formally)Algorithm (formally)

go to 1.

Summary / Related problemsSummary / Related problems
• All states looks distinct:  easy.

• Not all look distinct: 
– can do with counterex.

• All distinct but probabilistic transitions?
– Markov Decision Process(MDP) / Reinforcement 

Learning.

– Usual goal: maximize discounted reward (like 
probabilistic shortest path).  DP-based algs.

• Not all distinct & probabilistic transitions?
– POMDP.  hard.



     CS 15-451      Analysis of Algorithms     05/03/07
                                              Manuel & Avrim Blum

Today: Fair Cake Cutting
        Envy-Free Cake Cutting.

DEFINITION: A PROTOCOL is a set of instructions for n participants.
A protocol is like an algorithm EXCEPT that the participants may choose
to not follow the protocol.
Certain guarantees are made to those who follow the protocol.
No guarantees are made to those who don't.

DEFINITION: A CAKE CUTTING PROTOCOL is a protocol for n
participants to divide a cake among themselves.

ASSUMPTIONS:
   * each person has a personal value system for assigning
a real positive value to each piece of cake.
   * each person's value system gives value 1 to the entire cake.
   * value is a measure: fix a person; if a cake is divided into
a finite number of pieces, then for that person, each piece
has positive value, and the sum of the values of all the
pieces of cake equals 1.
   * for any real number x, 0 < x < 1, a person can divide
any piece of cake having value v, say, into 2 pieces having
values xv and (1-x)v respectively.
Each person has a steady hand and can cut a cake exactly
as he chooses to cut it.
   * cake is not necessarily uniform: it may have chocolate,
vanilla, frosting, and fruit.  Some parts of the cake
(eg chocolate) may be more valuable to one person than another.
   * each person follows protocol except possibly
in the matter of declaring honestly the size or value
they assign each piece.  For example, if the protocol
calls for Alice to cut the cake into 3 equal pieces,
she will indeed divide it into 3 pieces, not 2 or 4.
However, the pieces may not have equal value to her
(in which case she is not following protocol).

DEFINITION: A cake cutting protocol is FAIR if each
participant who follows protocol is guaranteed
to receive at least 1/n of the cake according to his
own personal value system.

DEFINITION: A cake cutting protocol is ENVY-FREE
if each participant who follows protocol is guaranteed
to receive at least as much cake by his measure
as any other participant.

For example, the standard 2-persone protocol is envy-free:
Alice: cut cake into two equal pieces
Bob: choose the piece of greater value

If Alice follows protocol, she will divide the cake into
two pieces of equal value to her.  Suppose it turns out
that the two pieces are worth 1/3 and 2/3 to Bob.
If Bob follows protocol, he will get the piece worth
2/3 by his measure.  If he does not follow protocol,
he may or may not get the bigger piece (by his measure).

Notice that ENVY-FREE => FAIR  (why?)  but not
the other way around  (why not?) .



    An Envy-free Cake Cutting protocol for n=3
           by Selfridge and Conway

STAGE 0.
0.1. Alice is to cut the cake into three equal pieces [by her measure].
0.2. Bob is to trim the largest piece to create a 2-way tie for largest
[by his measure],  and set the trimmings aside.

Note that no one has yet gotten a piece of cake.
THIS ENDS STAGE 0.

STAGE 1.
Trimmings aside, there are now 3 "pieces," which together
we call cake1, and the "trimmings," which we call cake2.

Cake1 is distributed in reverse order (Charlie, Bob, Alice) as follows:

1.1 Charlie picks [what he considers to be] the largest piece.

1.2. Bob takes the trimmed piece if Charlie has not taken it;
otherwise Bob takes [what he considers to be] the largest
of the two pieces.

1.3. Alice takes the last remaining (untrimmed!) piece of cake1.
THIS ENDS STAGE 1.

As you may have noticed, this protocol has one gal, Alice,
and two guys, Bob and Charlie.
This helps to clarify the next and final stage 2:
Call the guy who took the trimmed piece T,
and the other guy NT.

STAGE 2.
Cake2 (the trimmings) is distributed as follows:
2.1. NT divides cake2 into [what he thinks are] thirds.
2.2. T picks first, Alice picks second, NT gets the last of it.
THIS ENDS STAGE 2.
THIS ENDS THE PROTOCOL.

THEOREM: The above protocol is envy-free.

PROOF: By the end of stage 0, the protocol has generated 2 cakes:
cake1 (in 3 pieces) and cake2 (trimmings).  By the end of stage 1,
as we shall see, cake1 has been distributed among the participants
in an envy-free fashion. By the end of stage 2, as we shall see,
cake2 has been divided into 3 pieces and distributed also in
envy-free fashion. Thus the entire cake is distributed among
the 3 participants in envy-free fashion*.
----------
* Here we use the fact that if participant Pi values his piece of cake1
at least as much as he values any other person's piece of cake1,
and if he values his piece of cake2 at least as much as he values
any other person's piece of cake2, then Pi values his final 2 pieces
of cake at least as much as he values any other participant's
two pieces of cake.
----------



It remains to prove that the protocol is envy-free to each of the
participants, Alice, Bob, and Charlie.  Proofs for the latter 2 are 
divided
into 2 cases, depending on whether Bob or Charlie is T.   In each case,
we show that the protocol is envy-free immediately after stage 1,
then extend this to show that it is envy-free at the end of stage 2.

ENVY_FREE to ALICE: Alice divides the cake into 3 equal pieces.
By the end of stage 1, she gets one of the untrimmed pieces.
So at that point she will not envy either of the 2 guys,
one of which got a trimmed piece, the other an untrimmed piece.
In fact, A will not envy T, the guy who got the trimmed piece,
even if that guy gets ALL the trimmings. Thus it is okay that
T gets first pick at a so-called "third" of the trimmings.
So Alice will not envy T.  After that, she will get at least as much
of the remaining trimming as NT. Thus Alice will not envy NT.

ENVY-FREE to BOB: At the end of stage 1, Bob has one of the two largest
pieces, so at that point he envies neither Alice nor Charlie.
We now consider 2 cases:

CASE BOB = T: At the end of stage 1, Bob has the trimmed piece,
which by his measure is at least as large as each of the other two
pieces of cake1. In stage 2, he is given first pick at one of three
pieces of trimming, so he will not envy whoever gets second
or third choice.

CASE BOB = NT: At the end of stage 1, Bob does not envy
Alice or Charlie. At the start of stage 2, Bob divides the trimmings
into 3 equal parts, so he will not envy either of the other two
even though he gets last pick on the trimmings.

ENVY-FREE to CHARLIE: In stage 1, Charlie gets first choice
of the 3 pieces. So at the end of stage 1, he does not envy either
Alice or Bob. We now consider 2 cases:

CASE CHARLIE = T: Charlie gets first choice on the 3 pieces
of trimming, so he will not envy the other 2 after they get
their (smaller) pieces of trimming.

CASE CHARLIE = NT: Charlie decided that the untrimmed piece
is the largest of the 3 pieces, and took that piece, so he does not
envy the other two at the end of stage 1. As NT, he divides
the trimmings into 3 equal pieces, so he will not envy
the other two even though he gets last pick at the trimmings.

THIS ENDS THE PROOF.


