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Game Theory and Lower Bounds 
for Randomized Algorithms

David Woodruff

Outline

• 2-player zero-sum games and minimax optimal strategies

• Connection to randomized algorithms

• General sum games, Nash equilibria

Game Theory

• How people make decisions in social and economic interactions

• Applications to computer science

• Users interacting with each other in large systems

• Routing in large networks

• Auctions on Ebay

Definitions

• A game has

• Participants, called players

• Each player has a set of choices, called actions

• Combined actions of players leads to payoffs for each player
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Shooter-Goalie Game
• 2 players: shooter and goalie

• Shooter has 2 actions: shoot to her left or shoot to her right

• Goalie has two actions: dive to shooter’s left or to shooter’s right
• left and right are defined with respect to shooter’s actions

• Set of actions for both Shooter and Goalie is {L, R}

• If shooter and goalie each choose L, or each choose R, then goalie makes a save

• If shooter and goalie choose different actions, then the shooter makes a goal

Payoff Matrix 

• If goalie makes a save, goalie has payoff +1, shooter has payoff -1
• If shooter makes a goal, goalie has payoff -1, shooter has payoff +1

• Payoff is (r,c), where r is payoff to row player, and c is payoff to the column player
• For each entry (r,c), r+c = 0. This is called a zero-sum game
• Zero-sum game does not imply “fairness”. If all entries are (1,-1) it is still zero-sum

An Aside

• Row-payoff matrix R consists of the payoffs to the row player
• C is the column-payoff matrix
• M , = (R , , C , ) for all i and j

Row

• R + C = 0 for zero-sum games

Pure and Mixed Strategies
• How should the players play?
• Pure strategy:

• Row player chooses a deterministic action I
• Column player chooses a deterministic action J
• Payoff is R , for row player, and C , for column player

• Pure strategies are deterministic, what about randomized strategies?
• Players have a distribution over their actions 
• Row player decides on a p ∈ [0,1] for each row, with ∑ p = 1 

 

• Column player decides on a q ∈ [0,1] for each column, with ∑ q = 1 
 

• Distributions p and q are mixed strategies
How to define payoff for mixed strategies?
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Expected Payoff
• Assume players have independent randomness

• V p, q = ∑ Pr row player plays i, column player plays j ⋅ R ,
 
, = ∑ p q R ,

 
,

• V p, q = ∑ Pr row player plays i, column player plays j ⋅ C ,
 
, = ∑ p q C ,

 
,

• What is V p, q + V p, q ?
• 0, since zero-sum game

If p = (.5, .5) and q = (.5, .5) what is V ?
V = .25 ⋅ −1 + .25 ⋅ 1 + .25 ⋅ 1 + .25 ⋅ (−1)

If p = (.75, .25) and q = (.6, .4) what is V ?
V = −0.1

Minimax Optimal Strategies

• Row player wants a distribution p∗ maximizing her expected payoff 
over all strategies q of her opponent

• p∗ achieves lower bound lb = max min V (p, q)

• The row player can guarantee this expected payoff no matter what the 
column player does. lb is a lower bound on the row-player’s payoff

Minimax Optimal Strategies
• Column player wants distribution q∗ maximizing his expected payoff over all 

strategies p of his opponent
• q∗ achieving max min V (p, q)

• Claim: max min V (p, q) = − min max V (p, q)

• Proof: max min V (p, q) = max min −V (p, q)

= max(− max V (p, q))

= − min  max V (p, q)

Payoff to row player if column player plays q∗ is ub = min  max V (p, q)

Column player can guarantee the row player does not achieve a larger expected 
payoff, so this is an upper bound ub on row player’s expected payoff

Lower and Upper Bounds

• Row player guarantees she has expected payoff at least 
lb = max min V (p, q)

• Column player guarantees row player has expected payoff at most
ub = min  max V (p, q)

lb ≤ ub, but how close is lb to ub?
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A Pure Strategy Observation

• Suppose we want to find row player’s optimal strategy p∗

• Claim: can assume column player plays a pure strategy. Why?
• For any strategy p of the row player, V (p, q) = ∑ p q R ,

 
, = ∑ q ⋅ (∑ p R , )  

• Column player can choose q to be the j for which ∑ p R ,
  is minimal

• lb = max min V (p, q) = max min ∑ p R ,
 

• ub = min  max V (p, q) = min  max ∑ q R ,
 

Shooter-Goalie Example

Claim: minimax-optimal strategy for both players is (.5, .5)

Proof: For the shooter (row-player), let 𝐩 = p , p be the minimax optimal strategy
p ≥ 0, p ≥ 0, and p + p = 1. Write p = (p, 1-p) with p in [0,1]

Suppose goalie (column-player) plays L
Shooter’s payoff is p ⋅ −1 + 1 − p ⋅ 1 = 1 − 2p

Suppose goalie plays R
Shooter’s payoff is p ⋅ 1 + 1 − p ⋅ −1 = 2p − 1

Choose p ∈ [0,1] to maximize lb = max min (1 − 2p, 2p − 1)

p = ½ realizes this, and lb = 0
Similarly show optimal strategy q= q , q of goalie is (1/2,1/2) and ub = 0

ub = lb = 0, which is the value of the game

p

(0,-1)

(0,1) (1,1)

(1,-1)

Asymmetric Shooter-Goalie 

Goalie is now weaker on the left
Let p = (p , p ) be the minimax optimal shooter (row-player) strategy

Suppose goalie (column player) plays L
Shooter’s payoff is p ⋅ − + 1 − p ⋅ 1 = 1 − ( )p

Suppose goalie plays R
Shooter’s payoff is p ⋅ 1 + 1 − p ⋅ −1 = 2p − 1

Choose p ∈ [0,1] to maximize lb = max min (1 − p, 2p − 1)

Maximized when 1 − p = 2p − 1, so p = 4/7, and lb = 1/7
What is the column player’s minimax strategy?

Asymmetric Shooter-Goalie

Let q = (q, 1 − q) be the minimax optimal goalie (column-player) strategy
Suppose shooter (row player) plays L

Goalie’s payoff is q ⋅ + 1 − q ⋅ −1 = − 1

Suppose shooter plays R
Goalie’s payoff is q ⋅ −1 + 1 − q ⋅ 1 = 1 − 2q

Choose q ∈ [0,1] to realize max min ( − 1, 1 − 2q)

− 1 = 1 − 2q implies q = 4/7, and expected payoff at least -1/7
Remember: this means row player’s ub at most 1/7
Uhh… lb = ub again… Value of the game is 1/7
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Another Example

• Suppose in a zero-sum game, Row player’s payoffs are:
-1  -2
1   2

• What is row player’s minimax strategy? Why?
• Suppose her distribution is (p, 1-p)
• Expected payoff if column player plays first action is:

p ⋅ −1 + 1 − p ⋅ 1 = 1 − 2p

• Expected payoff if column player plays second action is:
p ⋅ −2 + 1 − p ⋅ 2 = 2 − 4p

• These lines both have a negative slope
• Should play p = 0
• Can show column player should always play first action and value of game is 1 

p
(1/2,0)

(0,1)

(0,2)

(1,-2)

(1,-1)

Von Neumann’s Minimax Theorem

• In each example, 
• row player has a strategy p∗ guaranteeing a payoff of lb for him
• column player has a strategy q∗ guaranteeing row player’s payoff is at most ub
• lb = ub! 

• Von Neumann: Given a finite 2-player zero-sum game, 
lb = max min V (p, q) = min  max V (p, q) = ub

Common value is the value of the game
• In a zero-sum game, the row and column players can tell their strategy to each 

other and it doesn’t affect their expected performance!
• Don’t tell each other your randomness

Lower Bounds for Randomized Algorithms
• A randomized algorithm is a zero-sum game

• Create a row-payoff matrix R:
• Rows are possible inputs (for sorting, n!)
• Columns are possible deterministic algorithms (e.g. every algorithm for sorting)
• R , is cost of algorithm j on input i (e.g. number of comparisons)

• A deterministic algorithm with good worst-case guarantee is a column 
with entries that are all small

• A randomized algorithm with good expected guarantee is a distribution 
q on columns so the expected cost in each row is small
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Lower Bounds for Randomized Algorithms

• Minimax-optimal strategy for column player is best randomized algorithm

• A lower bound for a randomized algorithm is a distribution 𝐩 on inputs so for every 
algorithm j, expected cost of running j on input distribution p is large

• max
 

 

min
 

 

V (p, j) = min
 

 

 max
 

V (i, q)

• show lb = max
 

 

min
 

 

V (p, j) is large  

• give strategy for the row player (distribution on inputs) such that every column 
(deterministic algorithm) has high cost

Lower Bounds for Randomized Sorting

• Theorem: Let A be a randomized comparison-based sorting algorithm. There’s 
an input on which A makes an expected Ω(lg n!) comparisons

• Proof: consider uniform distribution on n! permutations of n distinct numbers
• n! leaves
• No two inputs go to same leaf
• How many leaves at depth lg(n!) -10?

• ≤ 1+2+4+… + 2( !) ≤
!

• 511/512 > .99 fraction of inputs are at
depth > lg(n!)-10

• Expected depth > .99(lg n! − 10) = Ω(lg n!)

General-Sum Two-Player Games

• Many games are not zero-sum, have “win-win” or “lose-lose” payoffs
• Game of “chicken”
• Suppose two drivers facing each other each drive on their left (L) or right (R)

• What is a good notion of optimality to look at? 

Nash Equilibria

• (𝐩, 𝐪) is stable if no player has incentive to individually switch strategy
• For any other strategy 𝐩 of row player, 

row player’s new payoff = ∑ p q R , ≤ ∑ p q R ,
 
,

 
, = row player’s old payoff

• For any other strategy 𝐪 of column player, 
column player’s new payoff = ∑ p q ′C , ≤ ∑ p q C ,

 
,

 
, = column player’s old payoff

• For chicken, ((1,0),(1,0)) and ((0,1),(0,1)) and ((1/2,1/2),(1/2,1/2)) are Nash Equilibria

• Theorem (Nash): Every finite player game (with a finite number of strategies) has a Nash 
equilibrium


