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Game Theory and Lower Bounds
for Randomized Algorithms

David Woodruff

Outline

* 2-player zero-sum games and minimax optimal strategies
* Connection to randomized algorithms

* General sum games, Nash equilibria

Game Theory

* How people make decisions in social and economic interactions
* Applications to computer science
* Users interacting with each other in large systems

* Routingin large networks

* Auctions on Ebay

Definitions
* A game has

* Participants, called players
* Each player has a set of choices, called actions

* Combined actions of players leads to payoffs for each player
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Shooter-Goalie Game
* 2 players: shooter and goalie
* Shooter has 2 actions: shoot to her left or shoot to her right

* Goalie has two actions: dive to shooter’s left or to shooter’s right
* left and right are defined with respect to shooter’s actions

 Set of actions for both Shooter and Goalie is {L, R}
« If shooter and goalie each choose L, or each choose R, then goalie makes a save

« If shooter and goalie choose different actions, then the shooter makes a goal

Payoff Matrix

* If goalie makes a save, goalie has payoff +1, shooter has payoff -1
« If shooter makes a goal, goalie has payoff -1, shooter has payoff +1

payoff goalie
matrix M L
shooter L || (—1,1) | (1,-1)
R (1,-1) | (-1,1)

* Payoffis (r,c), where r is payoff to row player, and c is payoff to the column player
* For each entry (r,c), r+c = 0. This is called a zero-sum game
* Zero-sum game does not imply “fairness”. If all entries are (1,-1) it is still zero-sum

An Aside

* Row-payoff matrix R consists of the payoffs to the row player
* Cis the column-payoff matrix
. Mi,j = (Ri’j,ci_]’) fOf alli andj

payoff goalie Row payoff goalie
matrix M I I R matrix " | L R
shooter L [ (=1,1) [ (1,-1) shooter L || —1 | 1
R (1,-1) | (-1,1) R 1 ]-1

* R+ C =0 for zero-sum games

Pure and Mixed Strategies

* How should the players play?

* Pure strategy:
* Row player chooses a deterministic action |
* Column player chooses a deterministic action J
* Payoffis Ry for row player, and Cyj for column player

* Pure strategies are deterministic, what about randomized strategies?
* Players have a distribution over their actions
* Row player decides on a p; € [0,1] for each row, with ¥}, tionsiPi = 1
* Column player decides on a gj € [0,1] for each column, with X, tionsj 9 = 1
* Distributions p and g are mixed strategies

How to define payoff for mixed strategies?
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Expected Payoff

* Assume players have independent randomness
* Vr(p,q@) = X;; Pr[row player plays i, column player plays j] - Ri; = ¥;; piqjRy;
* Vc(p,q) = i Prlrow player plays i, column player plays j] - Ci; = ¥;; piq;Ci;
* Whatis Vg(p, @) + Vc(p, )?

* 0, since zero-sum game

If p=(.5,.5)and q = (.5, .5) what is Vg?
Vg=25-(—-1)+.25-1+ 25-1+ .25-(-1)

payoff | goalie
matrix M | L R

shooter L1 (=1 1)1 (1.=1) " 4¢ o - (75, 25) and q = (.6, .4) whatis Vg?
R (1,-1) | (-1,1) Ve = —01

Minimax Optimal Strategies

* Row player wants a distribution p* maximizing her expected payoff
over all strategies q of her opponent

* p* achieves lower bound Ib = max min Vi (p, q)
P q

mixed strategy that maximizes the minimum expected payoff
A

Ib := max min Vg(p,q)
P q

payofl when opponent plays optimal strategy against our choice p

* The row player can guarantee this expected payoff no matter what the
column player does. Ib is a lower bound on the row-player’s payoff

Minimax Optimal Strategies

* Column player wants distribution q* maximizing his expected payoff over all
strategies p of his opponent
* " achieving max min V¢ (p, q)
qa p

e Claim: max min V¢ (p, q) = — min max Vi (p, q)
qa p a p
* Proof: max min V¢ (p, q) = max min —Vr(p, q)
qa p a p
=max(— max Vg(p, q))
q p
= —min max Vg(p,q)
a p
Payoff to row player if column player plays q* is ub = min max Vx(p, q)
a p

Column player can guarantee the row player does not achieve a larger expected
payoff, so this is an upper bound ub on row player’s expected payoff

Lower and Upper Bounds

* Row player guarantees she has expected payoff at least
Ib = maxmin Vg (p, q)
P dq

* Column player guarantees row player has expected payoff at most
ub = min max Vi(p, q)
a p

Ib < ub, but how close is Ib to ub?




A Pure Strategy Observation
* Suppose we want to find row player’s optimal strategy p*

* Claim: can assume column player plays a pure strategy. Why?
* For any strategy p of the row player, Vg (p, q) = Zi‘j piqjR;; = Zj qj - ipiRiy)
* Column player can choose q to be the j for which };; p;R;j is minimal

* Ib = maxmin Vg (p, q) = maxmin };; p;R;;
P q P

* ub = min maxVgr(p,q) = min max; q;R;;
a P q 1 T
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payoff goalie
H matrix M I R
Shooter-Goalie Example e UL T

R ,-1) | (-1,1)

Claim: minimax-optimal strategy for both playersiis (.5, .5)

Proof: For the shooter (row-player), let p = (p;, p2) be the minimax optimal strategy
p1 = 0,p; = 0,and p; + p, = 1. Write p = (p, 1-p) with p in [0,1]
Suppose goalie (column-player) plays L

Shooter’s payoffisp- (—1) + (1 —p)- (1) =1—2p (0,1) (1,1)
Suppose goalie plays R

Shooter’s payoffisp- (1)+ (1 —p)- (-1)=2p—-1 P
Choose p € [0,1] to maximize |b = m}f\x min(1 - 2p,2p—1) (0,-1) (1,-1)

p =% realizes this,and Ib =0

Similarly show optimal strategy q= (q4, q;) of goalieis (1/2,1/2) and ub =0
ub =1b =0, which is the value of the game

Asymmetric Shooter-Goalie | L | R

shooter L (—%,%) (1,-1)
R (1,-1) | (-1,1)

Goalie is now weaker on the left
Let p = (p1, p2) be the minimax optimal shooter (row-player) strategy
Suppose goalie (column player) plays L
Shooter’s payoff is p - (— %) +(1-p-1)=1- (g)p
Suppose goalie plays R
Shooter’s payoffisp- (1) + (1 —p) - (1) =2p—1

Choose p € [0,1] to maximize Ib = max min(1 — G) p, 2p—1)
p

Maximized when 1 — (g) p=2p—1,sop=4/7,andIb=1/7
What is the column player’s minimax strategy?

Asymmetric Shooter-Goalie shooter L (—L,1) | (1, 1)
R (1,-1) | (-1,1)

Let 9 = (g, 1 — q) be the minimax optimal goalie (column-player) strategy
Suppose shooter (row player) plays L

Goalie’s payoffis q - G) +(1-q- (-1 = 32—q —
Suppose shooter plays R
Goalie’s payoffisq- (1) + (1 —q)- (1) =1-2q

Choose q € [0,1] to realize max min(?’?q -1, 1-2q)
q
37q —1 =1 - 2qimplies q = 4/7, and expected payoff at least -1/7

Remember: this means row player’s ub at most 1/7
Uhh... Ib = ub again... Value of the game is 1/7




Another Example

* Suppose in a zero-sum game, Row player’s payoffs are: (0,2)
-1-2
12 (0,1)

* What is row player’s minimax strategy? Why?

* Suppose her distribution is (p, 1-p)

* Expected payoff if column player plays first action is: (1,-1)
p--D+1-p)-1=1-2p

* Expected payoff if column player plays second action is: (1,-2)
p-(-2)+(1-p)-2=2-4p

* These lines both have a negative slope

e Shouldplayp=0

* Can show column player should always play first action and value of game is 1
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(1/2,0)
p

Exercise 1: What if both players have somewhat different weaknesses? What if the payolls are:

(-1/2, 1/2) (3/4, -3/4)

1, -1) (-3/2, 3/2)
Show that minimax-optimal strategics are p = (2/3,1/3),q = (3/5,2/5) and value of game is 0.
Exercise 2: For the game with payoffs:

(-1/2, 1/2) (3/4, -3/4)
a, -1) (-2/3, 2/3)

Show that minimax-optimal strategies are p = (3, 3),q = ('TZ;, %) and value of game is %

Exercise 3: For the game with payofls:

(-1/2, 1/2) -1, 1)
1, -1) (2/3, -2/3)

Show that minimax-optimal strategies are p = (0,1),q = (0, 1) and value of game is é

Von Neumann’s Minimax Theorem

* In each example,
* row player has a strategy p* guaranteeing a payoff of Ib for him

* column player has a strategy q* guaranteeing row player’s payoff is at most ub
* lb =ub!

* Von Neumann: Given a finite 2-player zero-sum game,
Ib = max min Vg (p, q) = min max Viy(p, q) = ub
P aq q P

Common value is the value of the game

* In a zero-sum game, the row and column players can tell their strategy to each
other and it doesn’t affect their expected performance!

* Don’t tell each other your randomness

Lower Bounds for Randomized Algorithms

* A randomized algorithm is a zero-sum game

* Create a row-payoff matrix R:
* Rows are possible inputs (for sorting, n!)
* Columns are possible deterministic algorithms (e.g. every algorithm for sorting)
* Ry is cost of algorithm j on input i (e.g. number of comparisons)

* A deterministic algorithm with good worst-case guarantee is a column
with entries that are all small

* A randomized algorithm with good expected guarantee is a distribution
g on columns so the expected cost in each row is small
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Lower Bounds for Randomized Algorithms

* Minimax-optimal strategy for column player is best randomized algorithm

* Alower bound for a randomized algorithm is a distribution p on inputs so for every
algorithm j, expected cost of running j on input distribution p is large

. max min = min max Viy(i
input deterministic R(p ]) randomized inputsi R( q)

distributions p algorithmsj algorithms q

* showlb = max min_
input deterministic

distributions p algorithmsj

Vr(p,j) is large

ive strategy for the row player (distribution on inputs) such that every column
% deterministic algorithm) has high cost

Lower Bounds for Randomized Sorting

* Theorem: Let A be a randomized comparison-based sorting algorithm. There’s
an input on which A makes an expected Q(lgn!) comparisons

* Proof: consider uniform distribution on n! permutations of n distinct numbers

* n!l leaves

* No two inputs go to same leaf

* How many leaves at depth Ig(n!) -10? % i

o < 1+2+4+.. + 2080010 < 2 ’(% 8
512 €123)

* 511/512 > .99 fraction of inputs are at

depth > Ig(n!)-10
* Expected depth > .99(1g(n!) — 10) = Q(lgn!)

(1.32) (3 12))

General-Sum Two-Player Games

* Many games are not zero-sum, have “win-win” or “lose-lose” payoffs
* Game of “chicken”
* Suppose two drivers facing each other each drive on their left (L) or right (R)

payoff Bob
matrix M L R
T AlieeL [ (L,1) [(-L,-1)
RICL-D] @1

* What is a good notion of optimality to look at?

Nash Equilibria

* (p,q) is stable if no player has incentive to individually switch strategy
* For any other strategy p' of row player,
row player’s new payoff = Zl] plq]R” < Zl] piq;jR;; = row player’s old payoff
* For any other strategy q' of column player,
column player’s new payoff = le pi gj Cl] < Zl] piq;jCi; = column player’s old payoff

* For chicken, ((1,0),(1,0)) and ((0,1),(0,1)) and ((1/2,1/2),(1/2,1/2)) are Nash Equilibria

* Theorem (Nash): Every finite player game (with a finite number of strategies) has a Nash
equilibrium




