
15-451/651: Design & Analysis of Algorithms March 19, 2020
Lecture #16: NP-Compeleteness last changed: March 22, 2020

In the past few lectures we have looked at increasingly more expressive problems solvable using
efficient algorithms. In this lecture we introduce a class of problems that are so expressive — they
are able to model any problem in an extremely large class called NP— that we believe them to
be intrinsically unsolvable by polynomial-time algorithms. These are the NP-complete problems.
What is particularly surprising about this class is that they include many problems that at first
glance appear to be quite benign.

Specific topics in this lecture include:

• Reductions and expressiveness
• Formal definitions: decision problems, P and NP.
• Circuit-Sat and 3-Sat
• Examples of showing NP-completeness.

1 Reductions and Expressiveness

In the last few lectures we have seen a series of increasingly more expressive problems: network
flow, min cost max flow, and finally linear programming. These problems have the property that
you can code up a lot of different problems in their “language”. So, by solving these well, we end
up with important tools we can use to solve other problems.

To talk about this a little more precisely, it is helpful to make the following definitions:

Definition 1 We say that an algorithm runs in Polynomial Time if, for some constant c, its
running time is O(nc), where n is the size of the input.

In the above definition, “size of input” means “number of bits it takes to write the input down”.
So, to be precise, when defining a problem and asking whether or not a certain algorithm runs in
polynomial time, it is important to say how the input is given.

Example 1: Think about why the basic Ford-Fulkerson algorithm is not a polynomial-time algorithm
for network flow when edge capacities are written in binary, but both of the Edmonds-Karp algorithms
are polynomial-time?

Definition 2 A problem A is poly-time reducible to problem B (written as A ≤p B) if we can
solve problem A in polynomial time given a polynomial time black-box algorithm for problem B.1

Problem A is poly-time equivalent to problem B (A =p B) if A ≤p B and B ≤p A.

For instance, we gave an efficient algorithm for Bipartite Matching by showing it was poly-time
reducible to Max Flow. Notice that it could be that A ≤p B and yet our fastest algorithm for
solving problem A might be slower than our fastest algorithm for solving problem B (because our
reduction might involve several calls to the algorithm for problem B, or might involve blowing up
the input size by a polynomial but still nontrivial amount).

1You can loosely think of A ≤p B as saying “A is no harder than B, up to polynomial factors.”

1

1.1 Decision Problems and Karp Reductions

We consider decision problems: problems whose answer is YES or NO. E.g., “Does the given
network have a flow of value at least k?” or “Does the given graph have a 3-coloring?” For such
problems, we split all instances into two categories: YES-instances (whose correct answer is YES)
and NO-instances (whose correct answer is NO). We put any ill-formed instances into the NO
category.

In this lecture, we seek reductions (called Karp reductions) that are of a special form:

Many-one reduction (a.k.a. Karp reduction) from problem A to problem B: To reduce
problem A to problem B we want a function f that maps arbitrary instances of A to instances
of B such that:

1. if x is a YES-instance of A then f(x) is a YES-instance of B.

2. if x is a NO-instance of A then f(x) is a NO-instance of B.

3. f can be computed in polynomial time.

So, if we had an algorithm for B, and a function f with the above properties, we could using it to
solve A on any instance x by running it on f(x). 2

2 Definitions: P, NP, and NP-Completeness

We can now define the complexity classes P and NP. These are both classes of decision problems.

Definition 3 P is the set of decision problems solvable in polynomial time.

E.g., the decision version of the network flow problem: “Given a network G and a flow value k,
does there exist a flow ≥ k?” belongs to P.

But there are other problems we don’t know how to efficiently solve. Some of these problems may
be really uncomputable (like the Halting Problem that you probably saw in 15-251). Others,
like the Traveling Salesman Problem, have algorithms that run in 2O(n) time. Yet others,
like Factoring, have algorithms that run in 2O(n1/3) time. How to refine the landscape of these
problems, to make sense of it all?

Here’s one way. Many of the problems we would like to solve have the property that if someone
handed us a solution, we could at least check if the solution was correct. For instance the Travel-
ing Salesman Problem asks: “Given a weighted graph G and an integer k, does G have a tour
that visits all the vertices and has total length at most k?” We may not know how to find such a
tour quickly, but if someone gave such a tour to us, we could easily check if it satisfied the desired
conditions (visited all the vertices and had total length at most k). Similarly, for the 3-Coloring
problem: “Given a graph G, can vertices be assigned colors red, blue, and green so that no two
neighbors have the same color?” we don’t know of any polynomial-time algorithms for solving the
problem but we could easily check a proposed solution if someone gave one to us. The class of
problems of this type — namely, if the answer is YES, then there exists a polynomial-length proof
that can be checked in polynomial time — is called NP.

2Why Karp reductions? Why not reductions that, e.g., map YES-instances of A to NO-instances of B? Or solve
two instances of B and use that answer to solve an instance of A? Two reasons. Firstly, Karp reductions give a
stronger result. Secondly, using general reductions (called Turing reductions) no longer allows us to differentiate
between NP and co-NP, say; see Section 8 for a discussion.

2

Definition 4 NP is the set of decision problems that have polynomial-time verifiers. Specifically,
problem Q is in NP if there is a polynomial-time algorithm V (I,X) such that:

• If I is a YES-instance, then there exists X such that V (I,X) = YES.

• If I is a NO-instance, then for all X, V (I,X) = NO.

Furthermore, X should have length polynomial in size of I (since we are really only giving V time
polynomial in the size of the instance, not the combined size of the instance and solution).

The second input X to the verifier V is often called a witness. E.g., for 3-coloring, the witness that
an answer is YES is the coloring. For factoring, the witness that N has a factor between 2 and k
is a factor. For the Traveling Salesman Problem: “Given a weighted graph G and an integer
k, does G have a tour that visits all the vertices and has total length at most k?” the witness is
the tour. All these problems belong to NP. Of course, any problem in P is also in NP, since V
could just ignore X and directly solve I. So, P ⊆ NP.

A huge open question in complexity theory is whether P = NP. It would be quite strange if they
were equal since that would mean that any problem for which a solution can be easily verified also
has the property that a solution can be easily found. So most people believe P 6= NP. But, it’s
very hard to prove that a fast algorithm for something does not exist. So, it’s still an open problem.

Loosely speaking, NP-complete problems are the “hardest” problems in NP, if you can solve them
in polynomial time then you can solve any other problem in NP in polynomial time. Formally,

Definition 5 (NP-complete) Problem Q is NP-complete if:

1. Q is in NP, and

2. For any other problem Q′ in NP, Q′ ≤p Q.

So if Q is NP-complete and you could solve Q in polynomial time, you could solve any problem in
NP in polynomial time. If Q just satisfies part (2) of Definition 5, then it’s called NP-hard.

3 Circuit-SAT and 3-SAT (Read on your own)

The definition of NP-completeness would be useless if there were no NP-complete problems.
Thankfully that is not the case. Let’s consider now what would be a problem so expressive that if
we could solve it, we could solve any problem in NP. Moreover, we must define the problem so
that it is in NP itself. Here is a natural candidate: CIRCUIT-SAT.

Definition 6 Circuit-SAT: Given a circuit of NAND gates with a single output and no loops
(some of the inputs may be hardwired). Question: is there a setting of the inputs that causes the
circuit to output 1?

Theorem 7 CIRCUIT-SAT is NP-complete.

Proof Sketch: First of all, CIRCUIT-SAT is clearly in NP, since you can just guess the input
and try it. To show it is NP-complete, we need to reduce any problem in NP to CIRCUIT-SAT.
By definition, this problem has a verifier program V that given an instance I and a witness W
correctly outputs YES/NO in b := p(|I|) time for a fixed polynomial p(). We can assume it only

3

uses b bits of memory too. We now use the fact that one can construct a RAM with b bits of
memory (including its stored program) and a standard instruction set using only O(b log b) NAND
gates and a clock. By unrolling this design for b levels, we can remove loops and create a circuit
that simulates what V computes within b time steps. We then hardwire the inputs corresponding
to I and feed this into our CIRCUIT-SAT solver.

We now have one NP-complete problem. And it looks complicated. However, now we will show
that a much simpler-looking problem, 3-SAT has the property that CIRCUIT-SAT ≤p 3-SAT.

Definition 8 3-SAT: Given: a CNF formula (AND of ORs) over n variables x1, . . . , xn, where
each clause has at most 3 variables in it. E.g., (x1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3) ∧ (x1 ∨ x3) ∧ Goal:
find an assignment to the variables that satisfies the formula if one exists.

Theorem 9 CIRCUIT-SAT ≤p 3-SAT. Hence 3-SAT is NP-complete.

Proof: First of all, 3-SAT is clearly in NP, again you can guess the input and try it. Now, we give
a Karp reduction from Circuit-SAT to it: i.e., a function f from instances C of CIRCUIT-SAT to
instances of 3-SAT such that the formula f(C) produced is satisfiable iff the circuit C had an input
x such that C(x) = 1. Moreover, f(C) should be computable in polynomial time, which among
other things means we cannot blow up the size of C by more than a polynomial factor.

First of all, let’s assume our input is given as a list of gates, where for each gate gi we are told
what its inputs are connected to. For example, such a list might look like: g1 = NAND(x1, x3);
g2 = NAND(g1, x4); g3 = NAND(x1, 1); g4 = NAND(g1, g2); In addition we are told which gate
gm is the output of the circuit.

We will now compile this into an instance of 3-SAT as follows. We will make one variable for each
input xi of the circuit, and one for every gate gi. We now write each NAND as a conjunction of 4
clauses. In particular, we just replace each statement of the form “y3 = NAND(y1, y2)” with:

(y1 OR y2 OR y3) ← if y1 = 0 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 0 and y2 = 1 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 1 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3). ← if y1 = 1 and y2 = 1 we must have y3 = 0

Finally, we add the clause (gm), requiring the circuit to output 1. In other words, we are asking:
is there an input to the circuit and a setting of all the gates such that the output of the circuit
is equal to 1, and each gate is doing what it’s supposed to? So, the 3-CNF formula produced is
satisfiable if and only if the circuit has a setting of inputs that causes it to output 1. The size of the
formula is linear in the size of the circuit. Moreover, the construction can be done in polynomial
(actually, linear) time. So, if we had a polynomial-time algorithm to solve 3-SAT, then we could
solve circuit-SAT in polynomial time too.

4 Search versus Decision

Technically, a polynomial-time algorithm for Circuit-Sat or 3-SAT just tells us if a solution
exists, but doesn’t actually produce it. How could we use an algorithm that just answers the
YES/NO question of Circuit-Sat to actually find a satisfying assignment? If we can do this, then
we can use it to actually find the coloring or find the tour, not just smugly tell us that there is
one. The problem of actually finding a solution is often called the search version of the problem, as

4

opposed to the decision version that just asks whether or not the solution exists. That is, we are
asking: can we reduce the search version of the Circuit-Sat to the decision version?

It turns out that in fact we can, by essentially performing binary search. In particular, once we
know that a solution x exists, we want to ask: “how about a solution whose first bit is 0?” If, say,
the answer to that is YES, then we will ask: “how about a solution whose first two bits are 00?”
If, say, the answer to that is NO (so there must exist a solution whose first two bits are 01) we will
then ask: “how about a solution whose first three bits are 010?” And so on. The key point is that
we can do this using a black-box algorithm for the decision version of Circuit-Sat as follows: we
can just set the first few inputs of the circuit to whatever we want, and feed the resulting circuit to
the algorithm. This way, using at most n calls to the decision algorithm, we can solve the search
problem too.

5 Warm up: Independent Set, Vertex Cover, and Set Cover

An Independent Set in a graph is a set of nodes no two of which have an edge. E.g., in a 7-cycle,
the largest independent set has size 3, and in the graph coloring problem, the set of nodes colored
red is an independent set. The Independent Set problem is: given a graph G and an integer k,
does G have an independent set of size ≥ k?

Theorem 10 Independent Set is NP-complete.

Proof: We reduce from 3-SAT. Let φ be an arbitrary 3-Sat instance with clauses c1, . . . , ck and
variables x1, . . . , xn. We construct a graph Gφ that has a triangle Ti for each clause ci, where the
nodes of triangle Ti are labeled with the terms of ci (a term is a variable or its negation). Between
triangles, we connect up terms that are the negations of each other. For example:

x1

x3x2

x2

x4x3

x1

x4x2

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)

If φ is satisfiable, there is a true term in each triangle, and these true terms are all consistent with
one another (none is the negation of another). So to construct an independent set of size k we pick
exactly one node from each triangle that was true in the satisfying assignment. If there is more
than one true term, we just pick one. This is guaranteed to be an independent set of size k.

Conversly, suppose there is an independent set of size k. We begin by assigning True to all the
terms that are in the independent set. Note that This process will never be contradictory, that is,
it will never assign xi to be True, while also assigning xi to be True. (These nodes are connected
by an edge in the graph.) Now, this process might not assign a truth value to all the variables. To
handle this just assign all the remaining unassigned variables to have the value True. This cannot
contradict any of the previously assigned variables, and the final assignment results in the CNF
formula being True (because each clause has at least one True term in it.)

5

A vertex cover in a graph is a set of nodes such that every edge is incident to at least one of them.
For instance, if the graph represents rooms and corridors in a museum, then a vertex cover is a set
of rooms we can put security guards in such that every corridor is observed by at least one guard.
In this case we want the smallest cover possible. The Vertex Cover problem is: given a graph
G and an integer k, does G have a vertex cover of size ≤ k?

Theorem 11 Vertex Cover is NP-complete.

Proof: If C is a vertex cover in a graph G with vertex set V , then V − C is an independent set.
Also if S is an independent set, then V −S is a vertex cover. So, the reduction from Independent
Set to Vertex Cover is very simple: given an instance (G, k) for Independent Set, produce
the instance (G,n− k) for Vertex Cover, where n = |V |. In other words, to solve the question
“is there an independent set of size at least k” just solve the question “is there a vertex cover of
size ≤ n− k?” So, Vertex Cover is NP-Complete too.

Set cover is a generalization of vertex cover that comes up all the time. Let U be a set of items
and S = {S1, . . . , Sm} be a collection of subsets of U . The Set Cover problem asks whether we can
choose a subset of ≤ k sets such that every u ∈ U is in at least one of the chosen sets.

Theorem 12 Set cover is NP-complete.

Proof: Set Cover is in NP since we can check whether a given choice of sets covers all the elements
of V in polynomial time. We reduce from Vertex Cover. Let G = (V,E), k be an arbitrary instance
of VC. Construct a Set Cover instance where the U = E and we have a set Sv for every v ∈ V
where Sv contains the edges that are incident to v. The idea is that picking Sv covers the incident
edges, and this corresponds to picking v and covering the incident edges.

If there is a vertex cover of size ≤ k, then every item in U is covered by choosing the sets corre-
sponding to the vertices chosen in the vertex cover.If there is a set cover of size ≤ k, then choosing
the corresponding vertices in G gives a vertex cover of the same size.

6 Summary: Proving NP-completeness in 2 Easy Steps

If you want to prove that problem Q is NP-complete, you need to do two things:

1. Show that Q is in NP.

2. Choose some NP-hard problem P to reduce from. This problem could be 3-SAT or Clique
or Independent Set or Vertex Cover or any of the zillions of NP-hard problems known.

Now you want to reduce from P to Q. In other words, given any instance I of P , show how
to transform it into an instance f(I) of Q, such that

I is a YES-instance of P ⇐⇒ f(I) is a YES-instance of Q.

Note the “⇐⇒ ” in the middle—you need to show both directions.

You also need to show that the mapping f(·) can be done in polynomial time (and hence f(I)
has size polynomial in the size of the original instance I).

A common mistake is reducing from the problem Q to the hard problem P . Think about what this
means. It means you can model your problem Q as a hard problem, and hence use an algorithm for

6

a hard problem to solve your problem Q. However, that does not imply Q is hard. For example,
you can model the problem of adding two numbers as a linear program or as 3-SAT, but that does
not make addition complicated. You want to reduce from the hard problem P to your problem Q,
this shows Q is “at least as hard” as P .

7 More Examples (Please Read on your Own)

7.1 Hamiltonian Cycle

A Hamiltonian cycle is a cycle in a graph that visits every vertex exactly once. The Dir-Ham-
Cycle problem asks, given a directed graph G, is there a Hamiltonian cycle.

Theorem 13 Dir-Ham-Cycle is NP-complete

Proof: Dir-Ham-Cycle is in NP, since a certificate is just the cycle. We reduce from 3-Sat. Let
φ be an arbitrary 3-Sat instance with clauses c1, . . . , cm and variables x1, . . . , xn. Construct the
following gadget that represents all possible truth assignments:

...x1 Ck

...

...

...

x2

x3

xn

...

C1

s

t

C2

This includes a node (squares) for each clause. We connect the clauses up to the paths in an
orientation that depends on whether the variable needs to be true or false to satisfy the clauses:

7

...

true

false

Direction we travel along this
chain represents whether to set
the variable to true or false.

xi

Ck Cj

Add a new node for each clause:

Connect it this
way if xi in Ck

Connect it this
way if xi in Ck

Each path through the rows represents a truth assignment, and we can take the detours to visit
each clause node only iff we set the variables in such a way to satisfy them.

Although we don’t prove it here, the problem of determining if there’s a Hamiltonian cycle in an
undirected graph is also NP-complete.

7.2 Subset Sum

The subset sum problem is this: Given integers w1, . . . , wn and T , does there exist a subset of the
wi integers that sums exactly to T? We saw a DP algorithm for this that ran in O(nT) time.

Theorem 14 Subset Sum is NP-complete.

Proof: A certificate is simply the subset of the integers that sums to T . This has size strictly
less than the input. We reduce from 3-Sat. Let φ be an arbitrary 3-Sat instance with clauses
c1, . . . , cm and variables x1, . . . , xn. We construct integers yi and zi for each variable xi and gj , hj
for each clause cj . The idea will be that choosing yi will mean that variable xi should be true and
choosing zi will mean that it should be false. We construct these integers as follows (where each
row below gives the digits of one of the integers):

y1
z1
y2
z2
y3
z3
…

g1
h1
g2
h2
g3
h3
…

x1	x2	x3	x4	x5	…

1
1

1
1

1
1

1
1

1

c1	c2	c3	c4	c5	c6	…

1
We	put	a	1	in	cell	
(yi,	cj)	if	se>ng	xi	to	
true	would	saCsfy	cj.
We	put	a	1	in	cell	
(zi,	cj)	if	se>ng	xi	to	
false	would	saCsfy	cj

0

0

1
1

1
1

1
1

1	1	1	1	1	1	1	1	1	…	 3	3	3	3	3	3	3	3	3	…	T	=	

Each	clause	gets	a	gj	
and	hj	with	a	single	1	
to	allow	its	column	
to	sum	to	3.

Since we are operating base-10, there is no carry. The only way we can sum to T is if we have
chosen exactly 1 of yi or zi for each variable xi. The only way we can sum to 3 in a column in the

8

2nd part of the matrix is if we’ve chosen at least one 1 in the upper right quadrant (since we can
grab at most 2 from the g and h numbers).

7.3 CLIQUE

We now use the NP-completeness of 3-SAT to show that another problem, a natural graph problem
called Clique is NP-complete.

Definition 15 Clique: Given a graph G, find the largest clique (set of nodes such that all pairs
in the set are neighbors). Decision problem: “Given G and integer k, does G contain a clique of
size ≥ k?”

Theorem 16 Clique is NP-Complete.

Proof: Note that Clique is clearly in NP; the witness is the set of vertices that are all connected
to each other via edges. Next, we reduce 3-SAT to Clique. Specifically, given a 3-CNF formula
F of m clauses over n variables, we construct a graph as follows. First, for each clause c of F we
create one node for every assignment to variables in c that satisfies c. E.g., say we have:

F = (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3) ∧ . . .

Then in this case we would create nodes like this:

(x1 = 0, x2 = 0, x4 = 0) (x3 = 0, x4 = 0) (x2 = 0, x3 = 0) . . .
(x1 = 0, x2 = 1, x4 = 0) (x3 = 0, x4 = 1) (x2 = 0, x3 = 1)
(x1 = 0, x2 = 1, x4 = 1) (x3 = 1, x4 = 1) (x2 = 1, x3 = 0)
(x1 = 1, x2 = 0, x4 = 0)
(x1 = 1, x2 = 0, x4 = 1)
(x1 = 1, x2 = 1, x4 = 0)
(x1 = 1, x2 = 1, x4 = 1)

We then put an edge between two nodes if the partial assignments are consistent. Notice that
the maximum possible clique size is m because there are no edges between any two nodes that
correspond to the same clause c. We claim that the maximum size is m if and only if the original
formula has a satisfying assignment.

Suppose the 3-SAT problem does have a satisfying assignment, then in fact there is an m-clique
(just pick some satisfying assignment and take the m nodes consistent with that assignment).

For the other direction, we can either show that if there isn’t a satisfying assignment to F then the
maximum clique in the graph has size < m, or argue the contrapositive and show that if there is
a m-clique in the graph, then there is a satisfying assignment for the formula. Specifically, if the
graph has an m-clique, then this clique must contain one node per clause c. So, just read off the
assignment given in the nodes of the clique: this by construction will satisfy all the clauses. So, we
have shown this graph has a clique of size m iff F was satisfiable.

Finally, to complete the proof, we note that our reduction is polynomial time since the graph
produced has total size at most quadratic in the size of the formula F (O(m) nodes, O(m2) edges).
Therefore Clique is NP-complete.

9

8 Co-NP (optional)

Just like we defined NP as the class of problems for which there were short proofs for YES-instances,
we can define a class of problems for which there are short proofs/witnesses for NO-instances.
Specifically, Q ∈ co-NP if there exists a verifier V (I,X) such that:

• If I is a YES-instance, for all X, V (I,X) = YES,

• If I is a NO-instance, then there exists X such that V (I,X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.
For example, the problem Circuit-Equivalence: “Given two circuits C1, C2, do they compute
the same function?” is in co-NP, because if the answer is NO, then there is a short, easily verified
proof (an input x such that C1(x) 6= C2(x)). Or the problem co-Clique: “Given a graph G and
a number K, is every clique in the graph of size at least K?” If the answer is NO, there is a
short witness (a clique in G with fewer than K vertices). co-3-SAT: “Given a 3-CNF formula,
does it have no satisfying assignments?” If the answer is NO, there is a short witness (a satisfying
assignment).

It is commonly believed that NP does not equal co-NP. Note that if P = NP, then NP = co-NP,
but the other implication is not known to be true. Again, one can define co-NP-complete problems.
This is there using Karp reductions (as opposed to Turing reductions) becomes important.

10

	Reductions and Expressiveness
	Decision Problems and Karp Reductions

	Definitions: P, NP, and NP-Completeness
	Circuit-SAT and 3-SAT (Read on your own)
	Search versus Decision
	Warm up: Independent Set, Vertex Cover, and Set Cover
	Summary: Proving NP-completeness in 2 Easy Steps
	More Examples (Please Read on your Own)
	Hamiltonian Cycle
	Subset Sum
	CLIQUE

	Co-NP (optional)

