
1/11/2020

1

Topic 1: Introduction and
Median Finding

David Woodruff

Staff

Danny Sleator David Woodruff

Professors:

TAs

Clara
Sellke

Andrew
Yang

Ramgopal
Venkateswaran

Shaan
Dave

Rhea
Jain

Samantha
Runke

Manogna
Vemulapati

Rohit
Kopparthy

Namita
Dongre

Maoyuan
Song

Tian
Luo

Thomas
Jiang

Vaidehi
Srinivas

Nancy
Zhang

Grading and Course Policies

• All available here: https://www.cs.cmu.edu/~15451/policies.html

• 12 weekly online quizzes due Friday 11:59pm
• Solve written homeworks individually. Come to office hours or ask questions on

piazza! Latex solutions and submit on gradescope
• Oral homeworks can be solved in groups of 3
• Each quiz is worth 1 point, also up to 3 points for participation, bonus problems

4 Written Homeworks 20% (5% each)

3 Oral Homeworks 15% (5% each)

Online Quizzes+Class Participation+Bonus 12% (see below)

Midterm exams (in class) 30% (15% each)

Final exam 23%

Homework

• Each HW has 3-4 problems

• Typically, one problem is a programming problem – submit via Autolab (languages
accepted are Java, C, C++, Ocaml, SML)

• For oral HWs you can collaborate, but write the programming problem yourself.
Each team has 45 minutes to present the 3 problems. Feel free to bring in notes!

• Cite any reference material or webpage if you use it

• Randomized grading – we will choose 2 of the 3 problems to grade, while always
grading the programming problem

• Late homeworks and “grace/mercy” days – please see the website for details!

1/11/2020

2

Goals of the Course

• Design and analyze algorithms!

• Algorithms: dynamic programming, divide-and-conquer, hashing and data
structures, randomization, network flows, linear programming

• Analysis: recurrences, probabilistic analysis, amortized analysis, potential
functions

• Dual to Algorithms: complexity theory and lower bounds

• New Models: online algorithms, machine learning, data streams

Guarantees on Algorithms

• Want provable guarantees on the running time of algorithms

• Why?

• Composability: if we know an algorithm runs in time at most T on any
input, don’t have to worry what kinds of inputs we run it on

• Scaling: how does the time grow as the input size grows?

• Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

• In the median-finding problem, we have an array
a , a , … , a

and want the index i for which there are exactly ⌊n/2⌋ numbers larger than a

• How can we find the median?
• Check each item to see if it is the median: Θ n time

• Sort items with MergeSort (deterministic) or QuickSort (randomized): Θ(n log n) time

• Can we find it faster? What about finding the k-th smallest number?

QuickSelect Algorithm to Find the k-th Smallest Number

• Assume a , a , … , a are all distinct for simplicity

• Choose a random element a in the list – call this the “pivot”

• Compare each a to a
• Let LESS = {a such that a < a }
• Let GREATER = {a such that a > a }

• If k ≤ |LESS|, find the k-th smallest element in LESS
• If k = LESS + 1, output the pivot a
• Else find the (k-|LESS|-1)-th smallest item in GREATER

• Similar to Randomized QuickSort, but only recurse on one side!

1/11/2020

3

Bounding the Running Time

• Theorem: the expected number of comparisons for QuickSelect is at most 4n

• Let T n = max T n, k , where T(n,k) is the expected number of comparisons
to find the k-th smallest item in an array of length n, maximized over all arrays

• T(n) is a non-decreasing function of n

• Let’s show T(n) < 4n by induction

• Base case: T(1) = 0 < 4

• Inductive hypothesis: T(n-1) < 4(n-1)

Bounding the Running Time
• Suppose we have an array of length n

• Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

• |LESS| is uniform in the set {0, 1, 2, 3, …, n-1}

• Since T i is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

• T n ≤ n − 1 + ∑ T i
,…,

≤ n − 1 + ∑ 4i
,…,

by inductive hypothesis

 < n − 1 + 4 since the average ∑ i
,…,

 is at most 3n/4

< 4n completing the induction

What About Deterministic Algorithms?

• Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

• Idea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size ⌊ ⌋

• How to do that?

• Find the median and then partition around that
• Um... finding the median is the original problem we want to solve….

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition the
input into two pieces LESS and GREATER each of size at least 3n/10-1

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

1/11/2020

4

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
• Step 2 takes T(n/5) time
• Step 3 takes O(n) time

Claim: |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1

Running Time of DeterministicSelect
• Claim: |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1

• Example 1: If n = 15, we have three groups of 5:
{1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7,8,9,14,15}

medians: 3 6 9
median of medians p: 6

• There are g = n/5 groups, and at least ⌈ ⌉ of them have at least 3 elements at

most p. The number of elements less than or equal to p is at least

3
g

2
≥

3n

10
• Also at least 3n/10 elements greater than or equal to p

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Steps 1-3 take O(n) + T(n/5) time
• Since |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1, Step 4 takes at most T(7n/10) time

• So T n ≤ cn + T + T , for a constant c > 0

Running Time of DeterministicSelect

• T n ≤ cn + T + T

• Time is cn 1 + + + … ≤ 10cn

• Recurrence works because n/5 + 7n/10 < n

• For constants c and a , a , … a with a + a + ⋯ a < 1, the recurrence
T n ≤ T a n + T a n + … + T a n + cn solves to T n = O(n)

• If instead a + a + … + a = 1, the recurrence solves to T(n) = O(n log n)
• If we use median of 3 in DeterministicSelect instead of median of 5, what happens?

