
15-451/651: Algorithms November 14, 2019

Lecture Notes: Fast Fourier Transform

Lecturer: Gary Miller Scribe:

1

1 Introduction-Motivation

A polynomial of the variable x over an algebraic field F is defined as:

P (x) =
n−1∑
j=0

pjx
j . (1)

The values p0, p1, . . . , pn are called the coefficients of the polynomial. The polynomial A is
said to have degree k if its highest non-zero coefficient is ak. Any integer strictly greater than the
degree of A is a degree-bound of A. The degree of a polynomial of degree-bound n can be any
integer between 0 and n− 1, inclusive.

The most common operations including polynomials are addition and multiplication. Given
two polynomials of degree-bound n, A(x):

A(x) =

n−1∑
j=0

ajx
j , (2)

and B(x):

B(x) =
n−1∑
j=0

bjx
j , (3)

their polynomial addition is also a degree-bound n polynomial C(x), which is defined as
follows:

C(x) =
n−1∑
j=0

cjx
j , (4)

where
cj = aj + bj , j = 0, 1, . . . , n− 1. (5)

On the other hand, the polynomial multiplication of the degree-bound n polynomials A(x)
and B(x) is a degree-bound 2n− 1 polynomial D(x), which is defined as:

D(x) =
n−1∑
j=0

n−1∑
k=0

ajbkx
j+k =

2n−2∑
j=0

djx
j (6)

where

1Originally 15-750 notes by David Witmer and Dimitris Konomis

1

dj =

j∑
k=0

akbj−k, j = 0, 1, . . . , 2n− 2. (7)

2 Two Representations of Polynomials

Polynomials are usually represented in coefficient form or point-value form. We present the two
representations and prove that they are equivalent: every polynomial in coefficient form has a
unique counterpart in point-value form and vice-versa.

2.1 Coefficient Representation

The coefficient representation of the degree-bound n polynomial P , as defined by equation 1
is simply the vector of coefficients p0, p1, . . . , pn−1. Now consider the coefficient representation of
degree-bound n polynomials A and B, (equations 2 and 3), i.e. the vectors a = (a0, a1, . . . , an−1)
and b = (b0, b1, . . . , bn−1). Clearly, the coefficient representation of their addition, C (equation 4),
i.e. the vector c = (c0, c1, . . . , cn−1) can be computed in Θ(n) time, whereas the coefficient rep-
resentation of their multiplication, D (equation 6), i.e. the vector d = (d0, d1, . . . d2n−2) requires
Θ(n2) time, as every coefficient in vector a has to be multiplied by every coefficient in vector b.

Remark 2.1. For x, y ∈ Rn, the convolution, z of x, y, denoted by z = x ⊗ y is the vector
z ∈ R2n−1, whose j-th entry is defined as:

zj =

j∑
k=0

xkyj−k, j = 0, 1, . . . 2n− 2. (8)

2.2 Point-value Representation

The point-value represesentation of the degree-bound n polynomial P is a set of n point-value
pairs:

{(x0, P (x0)), (x1, P (x1)), . . . , , (xn−1, P (xn−1))}, (9)

where all xi are distinct.
It is clear that a degree-bound n polynomial has infinitely many different point-value represen-

tations, as any set of n distinct points can be chosen as a basis for the representation.

2.3 Converting between coefficient and point-value representations

2.3.1 Evaluation: coefficient to point-value

The process of computing the point-value representation of a degree-bound n polynomial P (x)
given its coefficient representation, p ∈ Rn, is known as evaluation. This problem is relatively
straightforward: we pick n distinct points, x0, x1, . . . , xn−1 and for each xi, i = 0, 1, . . . , n − 1, we
compute P (xi). Using Horner’s method, we can evaluate the value of an arbitrary degree-bound n
polynomial P at an arbitrary given point x in Θ(n), by making the following crucial observation:

P (x) = p0 + x(p1 + x(p2 + · · ·+ x(pn−2 + x(pn−1)) . . .)). (10)

The Horner’s algorithm is defined precisely as follows:

2

Algorithm 1 Horner’s algorithm

1: function P(p, x)
2: y = 0
3: for i = n− 1 downto 0 do
4: y = pi + xy
5: end for
6: return y
7: end function

Therefore, naively computing the point-value representation of a degree-bound n polynomial P
takes Θ(n2) time.

2.3.2 Interpolation: point-value to coefficient

The process of computing the coefficient representation of a degree-bound n polynomial P given
its point-value representation, {(x0, P (x0)), (x1, P (x1)), . . . , , (xn−1, P (xn−1))}, is known as inter-
polation.

Theorem 2.2 (Uniqueness of an interpolating polynomial). For any set {(x0, y0), (x1, y1), . . . , , (xn−1, yn−1)}
of n point-value pairs such that all the xi values are distinct, there exists a unique polynomial P (x)
of degree-bound n such that yi = P (xi), for i = 0, 1, . . . , n− 1.

Proof. The n equations yi = P (xi), for i = 0, 1, . . . , n− 1 can be organized as the following linear
system Vn(x0, x1, . . . , xn−1)p = y:

1 x0 x20 · · · xn−2
0 xn−1

0

1 x1 x21 · · · xn−2
1 xn−1

1

1 x2 x22 · · · xn−2
2 xn−1

2
...

...
...

. . .
...

...

1 xn−1 x2n−1 · · · xn−2
n−1 xn−1

n−1




p0
p1
p2
...

pn−1

 =


y0
y1
y2
...

yn−1

 (11)

We know from Linear Algebra, that the above square system has a unique solution p ∈ Rn if and
only if the matrix Vn is invertible, which happens if and only if its determinant, |Vn| is non-zero. The
determinant of Vn is clearly a function of x0, x1, . . . , xn−1. Hence let |Vn| = |Vn(x0, x1, . . . , xn−1)|.
For i = n− 2, n− 1, . . . , 1 we multiply i-th column Ci by x0 and subtract it from i+ 1-th column
Ci+1:

|Vn(x0, x1, . . . , xn−1)| =

=

∣∣∣∣∣∣∣∣∣∣∣

1 x0 x20 · · · xn−2
0 xn−1

0

1 x1 x21 · · · xn−2
1 xn−1

1

1 x2 x22 · · · xn−2
2 xn−1

2
...

...
...

. . .
...

...

1 xn−1 x2n−1 · · · xn−2
n−1 xn−1

n−1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 x0 x20 · · · xn−2
0 0

1 x1 x21 · · · xn−2
1 (x1 − x0)xn−2

1

1 x2 x22 · · · xn−2
2 (x2 − x0)xn−2

2
...

...
...

. . .
...

...

1 xn−1 x2n−1 · · · xn−2
n−1 (xn−1 − x0)xn−2

n−1

∣∣∣∣∣∣∣∣∣∣∣
(Cn−1 = Cn−1 − x0Cn−2)

3

=

∣∣∣∣∣∣∣∣∣∣∣

1 x0 x20 · · · 0 0

1 x1 x21 · · · (x1 − x0)xn−3
1 (x1 − x0)xn−2

1

1 x2 x22 · · · (x2 − x0)xn−3
2 (x−2 x0)x

n−2
2

...
...

...
. . .

...
...

1 xn−1 x2n−1 · · · (xn−1 − x0)xn−3
n−1 xn−1

n−1 − x0xn−2
n−1

∣∣∣∣∣∣∣∣∣∣∣
(Cn−2 = Cn−2 − x0Cn−3)

=
... (Ci = Ci − x0Ci−1)

=

∣∣∣∣∣∣∣∣∣
1 x0 0 · · · 0 0

1 x1 (x1 − x0)x1 · · · (x1 − x0)xn−3
1 (x1 − x0)xn−2

1
...

...
...

. . .
...

...

1 xn−1 (xn−1 − x0)xn−1 · · · (xn−1 − x0)xn−3
n−1 (xn−1 − x0)xn−2

n−1

∣∣∣∣∣∣∣∣∣ (C2 = C2 − x0C2)

=

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0

1 (x1 − x0) (x1 − x0)x1 · · · (x1 − x0)xn−3
1 (x1 − x0)xn−2

1

1 (x2 − x0) (x1 − x0)x2 · · · (x2 − x0)xn−3
2 (x2 − x0)xn−2

2
...

...
...

. . .
...

...

1 (xn−1 − x0) (xn−1 − x0)xn−1 · · · (xn−1 − x0)xn−3
n−1 (xn−1 − x0)xn−2

n−1

∣∣∣∣∣∣∣∣∣∣∣
(C1 = C1 − x0C0)

=

∣∣∣∣∣∣∣∣∣
(x1 − x0) (x1 − x0)x1 · · · (x1 − x0)xn−3

1 (x1 − x0)xn−2
1

(x2 − x0) (x2 − x0)x1 · · · (x2 − x0)xn−3
2 (x2 − x0)xn−2

2
...

...
. . .

...
...

(xn−1 − x0) (xn−1 − x0)xn−1 · · · (xn−1 − x0)xn−3
n−1 (xn−1 − x0)xn−2

n−1

∣∣∣∣∣∣∣∣∣ (cofactors of first row)

=(x1 − x0)

∣∣∣∣∣∣∣∣∣
1 x1 · · · xn−3

1 xn−2
1

1 (x2 − x0)x2 · · · (x2 − x0)xn−3
2 (x2 − x0)xn−2

2

1
...

...
. . .

...

1 (xn−1 − x0)xn−1 · · · (xn−1 − x0)xn−3
n−1 (xn−1 − x0)xn−3

n−1

∣∣∣∣∣∣∣∣∣ (factor out(x1 − x0))

=(x1 − x0)(x2 − x0)

∣∣∣∣∣∣∣∣∣
1 x1 · · · xn−3

1 xn−2
1

1 x2 · · · xn−3
2 xn−2

2

1
...

...
. . .

...

1 (xn−1 − x0)xn−1 · · · (xn−1 − x0)xn−3
n−1 (xn−1 − x0)xn−3

n−1

∣∣∣∣∣∣∣∣∣ (factor out(x2 − x0))

...

=(x1 − x0)(x2 − x0) · · · (xn−1 − x0)

∣∣∣∣∣∣∣∣∣
1 x1 · · · xn−3

1 xn−2
1

1 x2 · · · xn−3
2 xn−2

2

1
...

...
. . .

...

1 xn−1 · · · xn−3
n−1 xn−3

n−1

∣∣∣∣∣∣∣∣∣ (factor out(xn−1 − x0))

=(x1 − x0)(x2 − x0) · · · (xn−1 − x0)|Vn−1(x1, x2, . . . , xn−1)|

We have just shown that |Vn(x0, x1, . . . , xn−1)| = (x1−x0)(x2−x0) · · · (xn−1−x0)|Vn−1(x1, x2, . . . , xn−1)|.
A simple induction argument yields that

|Vn(x0, x1, . . . , xn−1)| =
∏

0≤j<k≤n−1

(xk − xj) (12)

which is non-zero, since the xi, i = 0, 1, . . . , n− 1 are distinct.

4

Therefore, p = Vn(x0, x1, . . . , xn−1)
−1y is the unique coefficient representation of the degree-

bound n polynomial P (x) that satisfies yi = P (xi), for i = 0, 1, . . . , n− 1.

Now consider the point-value representations of degree-bound n polynomials A and B, (equa-
tions 2 and 3), i.e. the sets

{(x0, A(x0)), (x1, A(x1)), . . . , (xn−1, A(xn−1))} (13)

and

{(x0, B(x0)), (x1, B(x1)), . . . , (xn−1, B(xn−1))}. (14)

Clearly, the point-value representation of their addition, the degree-bound n polynomial C
(equation 4), i.e. the set

{(x0, C(x0) = A(x0)+B(x0)), (x1, C(x1) = A(x1)+B(x1)), . . . , (xn−1, C(xn−1) = A(xn−1)+B(xn−1))},
(15)

can be computed in Θ(n) time.
The point-value representation of their multiplication, D (equation 6), is a little bit trickier.

This happens because degree(D) = degree(A) + degree(B) and therefore given that A and B are
degree-bound n, it follows that D is of degree-bound 2n. However, we need 2n distinct points
to interpolate a polynomial of degree-bound 2n. We have to therefore extend the point-value
representations of A and B so that they consist of 2n points. Let us then consider the extended
point-value representations of degree-bound n polynomials A and B i.e. the sets

{(x0, A(x0)), (x1, A(x1)), . . . , (x2n−1, A(x2n−1))} (16)

and

{(x0, B(x0)), (x1, B(x1)), . . . , (x2n−1, B(x2n−1))}. (17)

Clearly, the point-value representation of their multiplication, the degree-bound 2n polynomial
D (equation 6), i.e. the set

{(x0, D(x0) = A(x0)B(x0)), (x1, D(x1) = A(x1)B(x1)), . . . , (x2n−1, D(x2n−1)A(x2n−1)B(x2n−1))}
(18)

can be computed in Θ(n) time.
We can see that given a fast technique to obtain the point-value representation of a degree-

bound n polynomial P from its coefficient representation and vice versa, we can use it to multiply
two degree-bound n polynomials, A and B in time faster than Θ(n2). We can achieve this by
first evaluating the polynomials at a set of 2n distinct points, multiplying them in Θ(n) and then
interpolating the resulting polynomial D to obtain its coefficient representation. As we will see
shortly, it is the particular choice of the points at which the polynomials are going to be evaluated
that allows the FFT algorithm to perform both evaluation and interpolation in Θ(n log(n)) time.
The overall procedure then will clearly have time complexity Θ(n log(n)) + Θ(n) + Θ(n log(n)) =
Θ(n log(n)). These points are the 2n-th roots of unity, and are discussed next.

5

3 Complex Roots of Unity

A complex root of unity is a complex number ω such that:

ωn = 1. (19)

There are exactly n complex n-th roots of unity: e
i2kπ
n , k = 0, 1, . . . , n − 1. This formula is

easily interpreted by using the definition of the exponential of a complex number:

eix = cos(x) + i sin(x) (20)

where i2 = −1.
The following figure illustrates that the n complex n-th roots of unity are equally spaced around

the circle of unit radius at the origin of the complex plane. The quantity ωn = e
i2π
n is the principal

n-th root of unity and all the complex n-th roots of unity are powers of ωn.

ω1
8ω3

8

ω5
8 ω7

8

1

ω0
8 ≡ ω8

8

−1

ω4
8

i
ω3
8

−i
ω6
8

Figure 1: The 8 8-th roots of unity on the complex plane.

Lemma 3.1 (Cancellation Lemma). For any integers n ≥ 0, k ≥ 0, and d ≥ 0, ωdkdn = ωkn.

Proof. The lemma follows immediately from the definition of the n-th complex roots of unity:

ωdkdn = (e
i2π
dn)dk

= (e
i2π
n)k

= ωkn

Corollary 3.2. For any even integer n ≥ 0, ω
n
2
n = ω2 = −1.

Proof.

ω
n
2
n = ω

1n
2

2n
2

= ω1
2 (Lemma 3.1)

= e
i2π
2

= eiπ

6

= cos(π) + isin(π)

= −1 + i0 = −1

Lemma 3.3 (Halving Lemma). If n ≥ 0 is even, the squares of the n complex n-th roots of unity
are the n/2 complex n/2-th roots of unity.

Proof. It suffices to show that if we square all of the complex n-th roots of unity, we will get each

n/2-th root of unity exactly twice. In particular, we prove that the roots ωkn and ω
k+n

2
n have the

same square. Indeed,

(ωkn)2 = ω2k
n

= ω2k
n ω

n
n (ωnn = 1)

= ω2k+n
n

= (ω
k+n

2
n)2

We will soon see that the halving lemma is crucial to the divide-and-conquer technique for
converting between coefficient and and point-value representations of polynomials, since it ensures
that the recursive subproblems are half as large as the original problem.

Lemma 3.4 (Summation Lemma). For any integer n ≥ 1 and nonzero integer k not divisible by
n:

n−1∑
j=0

(ωkn)j = 0.

Proof. The given sum is just a geometric series with a common ratio r = ωkn. Therefore, it can be
computed precisely as follows:

n−1∑
j=0

(ωkn)j =
(ωkn)n − 1

ωkn − 1

=
(ωnn)k − 1

ωkn − 1

=
(1)k − 1

ωkn − 1

= 0.

Note that because k mod n 6= 0, ωkn 6= 1 and the division by ωkn − 1 is allowed.

7

4 The Fast Fourier Transform

4.1 Evaluation: y = DFT (p)

Assume we are given a degree-bound n polynomial P in coefficient form, i.e the vector p ∈ Cn:

p =


p0
p1
...

pn−1

 , (21)

and we want to obtain its point-value representation by evaluating it at the n distinct n-th
complex roots of unity ω0

n, ω
1
n, . . . , ω

n−1
n .

The vector y ∈ Cn, defined as:

y =


y0
y1
...

yn−1

 =


P (ω0

n)
P (ω1

n)
...

P (ωn−1
n)

 =



n−1∑
j=0

pj(ω
0
n)j

n−1∑
j=0

pj(ω
1
n)j

...
n−1∑
j=0

pj(ω
n−1
n)j


, (22)

is called the Discrete Fourier Transform of p. The above relationship between y and p is
usually abbreviated as y = DFTn(p).

Expanding equation 22, we get y = Fnp, where Fn is defined as:

Fn =



(ω0
n)0 (ω0

n)1 (ω0
n)2 · · · (ω0

n)n−2 (ω0
n)n−1

(ω1
n)0 (ω1

n)1 (ω1
n)2 · · · (ω1

n)n−2 (ω1
n)n−1

...
...

...
...

...
...

(ω
n/2−1
n)0 (ω

n/2−1
n)1 (ω

n/2−1
n)2 · · · (ω

n/2−1
n)n−2 (ω

n/2−1
n)n−1

(ω
n/2
n)0 (ω

n/2
n)1 (ω

n/2
n)2 · · · (ω

n/2
n)n−2 (ω

n/2
n)n−1

(ω
n/2+1
n)0 (ω

n/2+1
n)1 (ω

n/2+1
n)2 · · · (ω

n/2+1
n)n−2 (ω

n/2+1
n)n−1

...
...

...
...

. . .
...

(ωn−1
n)0 (ωn−1

n)1 (ωn−1
n)2 · · · (ωn−1

n)n−2 (ωn−1
n)n−1


(23)

The Fast Fourier Transform (FFT) is an algorithm that takes advantage of the properties of
the complex roots of unity and allows computing y = DFTn(p) in Θ(n log(n)) time, as opposed to
the standard Θ(n2) time algorithm. For the rest of this analysis, we assume that n = 2k for some
k > 0.

The FFT is a divide-and-conquer algorithm, which uses the even-indexed and odd-indexed
coefficients of P separately to define the 2 new polynomials of degree n/2:

Peven(x) = p0 + p2x+ p4x
2 + · · ·+ pn−2x

n
2
−1 (24)

Podd(x) = p1 + p3x+ p5x
2 + · · ·+ pn−1x

n
2
−1 (25)

It is very easy to see that ∀x ∈ C, one can compute P (x) combining the values Peven(x) and
Podd(x):

8

P (x) = Peven(x2) + xPodd(x
2) (26)

The problem of evaluating the n-degree P at ω0
n, ω

1
n, . . . , ω

k
n is decomposed to

1. evaluating the n/2-degree Peven(x) and Podd(x) at (ω0
n)2, (ω1

n)2, . . . , (ωn−1
n)2,

2. combining the results using equation 26

From the Halving Lemma, we know that the list of the squares of the n-th complex roots of
unity (ω0

n)2, (ω1
n)2, . . . , (ωn−1

n)2 consists exactly of the list of the n/2-th complex roots of unity
ω0
n
2
, ω1

n
2
, . . . , ωn−1

n
2

, but with each value appearing exactly twice.

The FFT algorithm is precisely described by the following pseudocode:

Algorithm 2 FFT algorithm

1: function FFT(p)
2: n = p.length
3: if n == 1 then
4: return p
5: end if
6: ωn = e

i2π
n

7: ω = 1
8: peven = (p0, p2, . . . , pn−2)
9: podd = (p1, p3, . . . , pn−1)

10: yeven = FFT(peven)
11: yodd = FFT(podd)
12: for k = 0 to n/2− 1 do
13: y[k] = yeven[k] + ωyodd[k]
14: y[k + n/2] = yeven[k]− ωyodd[k]
15: ω = ωωn
16: end for
17: return y
18: end function

It is clear from the analysis above that the run-time complexity of the FFT algorithm is described
by the recurrence

T (n) = 2T (n/2) + Θ(n) (27a)

T (1) = 1 (27b)

The solution to this very well-known recurrence is T (n) = Θ(n log(n)).
Another beautiful way to reason about the runtime complexity of the FFT algorithm is the

following. Recall that y = Fnp:

9



y0
y1
...

yn/2−1

yn/2
yn/2+1

...
yn−1


=



(ω0
n)0 (ω0

n)1 (ω0
n)2 · · · (ω0

n)n−2 (ω0
n)n−1

(ω1
n)0 (ω1

n)1 (ω1
n)2 · · · (ω1

n)n−2 (ω1
n)n−1

...
...

...
...

...
...

(ω
n/2−1
n)0 (ω

n/2−1
n)1 (ω

n/2−1
n)2 · · · (ω

n/2−1
n)n−2 (ω

n/2−1
n)n−1

(ω
n/2
n)0 (ω

n/2
n)1 (ω

n/2
n)2 · · · (ω

n/2
n)n−2 (ω

n/2
n)n−1

(ω
n/2+1
n)0 (ω

n/2+1
n)1 (ω

n/2+1
n)2 · · · (ω

n/2+1
n)n−2 (ω

n/2+1
n)n−1

...
...

...
...

. . .
...

(ωn−1
n)0 (ωn−1

n)1 (ωn−1
n)2 · · · (ωn−1

n)n−2 (ωn−1
n)n−1





p0
p1
...

pn/2−1

pn/2
pn/2+1

...
pn−1


(28)

At this point we make the following crucial observation: the matrix Fn can be re-arranged so
that the columns that correspond to even powers of the roots of unity come before the columns
that correspond to odd powers of the roots of unity. We also re-arrange the vector p so that the
coefficients that correspond to even powers of the polynomial come before the coefficients that
correspond to odd powers of the polynomial. This recursive procedure can be described by a
permutation πn : [n− 1]→ [n− 1], which we have to determine.



y0
y1
...

yn/2−1

yn/2
yn/2+1

...
yn−1


=



(ω0
n)πn(0) · · · (ω0

n)πn(n/2−1) (ω0
n)πn(n/2) · · · (ω0

n)πn(n−1)

(ω1
n)πn(0) · · · (ω1

n)πn(n/2−1) (ω1
n)πn(n/2) · · · (ω1

n)πn(n−1)

...
. . .

...
...

. . .
...

(ω
n/2−1
n)πn(0) · · · (ω

n/2−1
n)πn(n/2−1) (ω

n/2−1
n)πn(n/2) · · · (ω

n/2−1
n)πn(n−1)

(ω
n/2
n)πn(0) · · · (ω

n/2
n)πn(n/2−1) (ω

n/2
n)πn(n/2) · · · (ω

n/2
n)πn(n−1)

(ω
n/2+1
n)πn(0) · · · (ω

n/2+1
n)πn(n/2−1) (ω

n/2+1
n)πn(n/2) · · · (ω

n/2+1
n)πn(n−1)

...
. . .

...
...

. . .
...

(ωn−1
n)πn(0) · · · (ωn−1

n)πn(n/2−1) (ωn−1
n)πn(n/2) · · · (ωn−1

n)πn(n−1)





pπn(0)
pπn(1)

...
pπn(n/2−1)

pπn(n/2)
pπn(n/2+1)

...
pπn(n−1)


(29)

Equivalently, we have: [
yn,0
yn,1

] [
Fn,00 Fn,01
Fn,10 Fn,11

] [
pn,0
pn,1

]
(30)

where:

yn,0 =


y0
y1
...

yn/2−1

 (31a)

yn,1 =


yn/2
yn/2+1

...
yn/2+n/2−1

 , (31b)

10

Fn,00 =


(ω0
n)πn(0) (ω0

n)πn(1) (ω0
n)πn(2) · · · (ω0

n)πn(n/2−1)

(ω1
n)πn(0) (ω1

n)πn(1) (ω1
n)πn(2) · · · (ω1

n)πn(n/2−1)

(ω2
n)πn(0) (ω2

n)πn(1) (ω2
n)πn(2) · · · (ω2

n)πn(n/2−1)

...
...

...
. . .

...

(ω
n/2−1
n)πn(0) (ω

n/2−1
n)πn(1) (ω

n/2−1
n)πn(2) · · · (ω

n/2−1
n)πn(n/2−1)

 (32a)

Fn,01 =


(ω0
n)πn(n/2) (ω0

n)πn(n/2+1) (ω0
n)πn(n/2+2) · · · (ω0

n)πn(n−1)

(ω1
n)πn(n/2) (ω1

n)πn(n/2+1) (ω0
n)πn(n/2+2) · · · (ω1

n)πn(n−1)

(ω2
n)πn(n/2) (ω2

n)πn(n/2+1) (ω0
n)πn(n/2+2) · · · (ω2

n)πn(n−1)

...
...

...
. . .

...

(ω
n/2−1
n)πn(n/2) (ω

n/2−1
n)πn(n/2+1) (ω

n/2−1
n)πn(n/2+1) · · · (ω

n/2−1
n)πn(n−1)

 (32b)

Fn,10 =


(ω

n/2
n)πn(0) (ω

n/2
n)πn(1) (ω

n/2
n)πn(2) · · · (ω

n/2
n)πn(n/2−1)

(ω
n/2+1
n)πn(0) (ω

n/2+1
n)πn(1) (ω

n/2+1
n)πn(2) · · · (ω

n/2+1
n)πn(n/2−1)

(ω
n/2+2
n)πn(0) (ω

n/2+2
n)πn(1) (ω

n/2+2
n)πn(2) · · · (ω

n/2+2
n)πn(n/2−1)

...
...

...
. . .

...

(ωn−1
n)πn(0) (ωn−1

n)πn(1) (ωn−1
n)πn(2) · · · (ωn−1

n)πn(n/2−1)

 (32c)

Fn,11 =


(ω

n/2
n)πn(n/2) (ω

n/2
n)πn(n/2+1) (ω

n/2
n)πn(n/2+2) · · · (ω

n/2
n)πn(n−1)

(ω
n/2+1
n)πn(n/2) (ω

n/2+1
n)πn(n/2+1) (ω

n/2+1
n)πn(n/2+2) · · · (ω

n/2+1
n)πn(n−1)

(ω
n/2+2
n)πn(n/2) (ω

n/2+2
n)πn(n/2+1) (ω

n/2+2
n)πn(n/2+2) · · · (ω

n/2+2
n)πn(n−1)

...
...

...
. . .

...

(ωn−1
n)πn(n/2) (ωn−1

n)πn(n/2+1) (ωn−1
n)πn(n/2+2) · · · (ω

n/2−1
n)πn(n−1)

 , (32d)

and

pn,0 =


pπn(0)
pπn(1)

...
pπn(n/2−1)

 (33a)

pn,1 =


pπn(n/2)
pπn(n/2+1)

...
pπn(n/2+n/2−1)

 . (33b)

Careful thought shows that the right permutation πn : [n− 1]→ [n− 1] is:

πn(i) = Dec(Rev(Bin(i))), (34)

where Bin(k) returns the binary representation of k, Dec(k) returns the decimal representation
of k and Rev(k) reverses the bits of (binary) k. This permutation is also know as the bit-reverse
permutation.

Lemma 4.1 (Bit-Reversal Permutation). The bit-reverse permutation, as defined by equation 34,
satisfies the following properties:

11

1. πn(j) mod 2 = 0, j = 0, 1, . . . , n/2− 1.

2. πn(j) mod 2 = 1, j = n/2, n/2 + 1, . . . , n− 1.

3. πn(n/2 + j) = πn(j) + 1, j = 0, 1, . . . , n/2− 1.

4. πn/2(j) = πn(j)/2.

Proof. Homework. (Hint: use binary representation and complex roots of unity’s properties).

Let us also define the following two matrices:

Dn/2 =


ω0
n 0 · · · 0

0 ω1
n · · · 0

0 0 · · · 0
...

...
. . . 0

0 0 · · · ω
n/2−1
n

 (35a)

En/2 =


ω
n/2
n 0 · · · 0

0 ω
n/2+1
n · · · 0

0 0 · · · 0
...

...
. . . 0

0 0 · · · ωn−1
n

 (35b)

Lemma 4.2 (FFT matrix). Let Fn denote the n × n FFT matrix and Fn,00, Fn,01, Fn,10, Fn,11 its
n/2 × n/2 submatrices, as given by equations 32. Also, let Dn/2, En/2 be the n/2 × n/2 diagonal
matrices defined just above. Then, the following are true:

1. En/2 = −Dn/2.

2. Fn,01 = Dn/2Fn,00 and similarly Fn,11 = En/2Fn,10 = −Dn/2Fn,10.

3. Fn,10 = Fn,00.

4. Fn,00 = Fn/2.

5.

Fn =

[
Fn/2 Dn/2Fn/2
Fn/2 −Dn/2Fn/2

]
Proof. 1. This follows directly from Corollary 3.2. Specifically,

En/2[i, i] = ωn/2+in

= ωn/2n ωin

= −ωin
= −Dn/2[i, i].

12

2. From Lemma 4.1 we know that πn/2+i = πi + 1, i = 0, 1, . . . , n/2 − 1. We substitute this in
the definition of Fn,01 and obtain:

Fn,01 =


(ω0
n)πn(n/2) (ω0

n)πn(n/2+1) · · · (ω0
n)πn(n−1)

(ω1
n)πn(n/2) (ω1

n)πn(n/2+1) · · · (ω1
n)πn(n−1)

(ω2
n)πn(n/2) (ω2

n)πn(n/2+1) · · · (ω2
n)πn(n−1)

...
...

. . .
...

(ω
n/2−1
n)πn(n/2) (ω

n/2−1
n)πn(n/2+1) · · · (ω

n/2−1
n)πn(n−1)



=


(ω0
n)πn(0)+1 (ω0

n)πn(1)+1 · · · (ω0
n)πn(n/2−1)+1

(ω1
n)πn(0)+1 (ω1

n)πn(1)+1 · · · (ω1
n)πn(n/2−1)+1

(ω2
n)πn(0)+1 (ω2

n)πn(1)+1 · · · (ω2
n)πn(n/2−1)+1

...
...

. . .
...

(ω
n/2−1
n)πn(0)+1 (ω

n/2−1
n)πn(1)+1 · · · (ω

n/2−1
n)πn(n/2−1)+1



=


ω0
n 0 · · · 0

0 ω1
n · · · 0

0 0 · · · 0
...

...
. . . 0

0 0 · · · ω
n/2−1
n




(ω0
n)πn(0) (ω0

n)πn(1) · · · (ω0
n)πn(n/2−1)

(ω1
n)πn(0) (ω1

n)πn(1) · · · (ω1
n)πn(n/2−1)

(ω2
n)πn(0) (ω2

n)πn(1) · · · (ω2
n)πn(n/2−1)

...
...

. . .
...

(ω
n/2−1
n)πn(0) (ω

n/2−1
n)πn(1) · · · (ω

n/2−1
n)πn(n/2−1)


= Dn/2Fn,00

In the exact same fashion we obtain Fn/2,11 = En/2Fn,01 = −Dn/2Fn,01.

3. For k = 0, 1, . . . , n/2− 1 and l = 0, 1, . . . , n/2− 1 we have:

Fn,10[k, l] = (ωn/2+kn)πn(l)

= (ωn/2n)πn(l)(ωkn)πn(l)

= (−1)πn(l)(ωkn)πn(l) (Corollary 3.2)

= (ωkn)πn(l) (Lemma 4.1)

= Fn,00[k, l].

4. For k = 0, 1, . . . , n/2− 1 and l = 0, 1, . . . , n/2− 1 we have:

Fn,00[k, l] = (ωkn)πn(l)

= (ωπn(l)n)k

= (ω
πn(l)/2
n/2)k (Lemma 3.1)

= (ω
πn/2(l)

n/2)k (Lemma 4.1)

= (ωkn/2)
πn/2(l)

= Fn/2[k, l].

5. Follows immediately from (1), (2), (3) and (4).

13

4.2 Interpolation: p = DFT−1(y)

We showed that the evaluation at the n n-th roots of unity of a degree-bound n polynomial P from
its coefficient representation, i.e the vector p ∈ Cn is equivalent to computing the DFT of the p
vector: y = DFT (p), with Θ(n log(n)) time complexity. Now we prove that the interpolation of a
degree-bound n polynomial P from its point-value representation at the n n-th roots of unity, which
is equivalent to computing DFT−1 of the y ∈ Cn vector: p = DFT−1(y) can also be achieved with
Θ(n log(n)) time complexity.

Recall that y = Fnp (equation 22) and hence p = F−1
n y. Expanding the last equation yields:



p0
p1
...

pn/2−1

pn/2
pn/2+1

...
pn−1


=



(ω0
n)0 (ω0

n)1 (ω0
n)2 · · · (ω0

n)n−2 (ω0
n)n−1

(ω1
n)0 (ω1

n)1 (ω1
n)2 · · · (ω1

n)n−2 (ω1
n)n−1

...
...

...
...

...
...

(ω
n/2−1
n)0 (ω

n/2−1
n)1 (ω

n/2−1
n)2 · · · (ω

n/2−1
n)n−2 (ω

n/2−1
n)n−1

(ω
n/2
n)0 (ω

n/2
n)1 (ω

n/2
n)2 · · · (ω

n/2
n)n−2 (ω

n/2
n)n−1

(ω
n/2+1
n)0 (ω

n/2+1
n)1 (ω

n/2+1
n)2 · · · (ω

n/2+1
n)n−2 (ω

n/2+1
n)n−1

...
...

...
...

. . .
...

(ωn−1
n)0 (ωn−1

n)1 (ωn−1
n)2 · · · (ωn−1

n)n−2 (ωn−1
n)n−1



−1 

y0
y1
...

yn/2−1

yn/2
yn/2+1

...
yn−1


(36)

Theorem 4.3 (FFT Inverse Matrix). F−1
n [k, l] = ω−lk

n
n , for k = 0, 1, . . . , n−1 and l = 0, 1, . . . , n−1.

Proof. We prove that F−1
n Fn = In, where In denotes the n × n identity matrix. Let us consider

the (k, l)-th entry of the product F−1
n Fn:

F−1
n Fn[k, l] =

n−1∑
t=0

(
ω−tk
n

n
)ωtln

=
1

n

n−1∑
t=0

ωt(l−k)n

=

{
1, l = k

0, l 6= k
(Lemma 3.4)

We have therefore proved that:

p =


p0
p1
...

pn−1

 =



n−1∑
j=0

1
nyj(ω

−0
n)j

n−1∑
j=0

1
nyj(ω

−1
n)j

...
n−1∑
j=0

1
nyj(ω

−(n−1)
n)j


, (37)

14

Comparing equations 22 and 37, we notice that by modifying the FFT algorithm to switch the
roles of p and y, replacing ωn by ω−1

n and dividing each element of the result by n, we are able to
compute the inverse of DFT in time Θ(n log(n)) as well.

5 A fast algorithm for multiplication of polynomials in coefficient
form

Given the FFT algorithm, the following algorithm multiplies two degree-bound n polynomials A
and B, in the coefficient representation form, in time Θ(n log(n)) :

1. Double degree-bound: create coefficient representations of A and B as degree-bound 2n
polynomials by adding n high-order zero coefficients to each.

2. Evaluate: compute point-value representations of A and B of length 2n by applying the
FFT algorithm of order 2n on each polynomial. These representations contain the values of
the two polynomials at the 2n-th roots of unity.

3. Point-wise multiply: compute a point-value representation for the polynomial D = A ∗B
by multiplying the above values pointwise. This representation contains the value of D at
each 2n-th root of unity.

4. Interpolate: create the coefficient representation of the polynomial C by applying the FFT
algorithm on 2n point-value pairs to compute the inverse DFT.

Steps (1) and (3) take Θ(n) time, whereas steps (2) and (4) take Θ(n log(n)) time.

15

