
cozmo_fsm manual

George Joseph Nov, 2017

1 Perched Camera SLAM

Perched cameras can now be used as landmarks for the particle filter. As long as the camera
can see the aruco marker on the robot, the landmarks are updated using an extended Kalman
filter.

To let the camera’s see the robots, each robot has to be fit with an aruco marker as shown
above. The axis of the marker should fit exactly with the axis of the robot. It was also be parallel
to the work plane. Deviations from this will cause errors to accumate over time and build a bad
sharedmap.

To start using perched cams, the camera numbers are required. In Linux, camera numbers are
allotted starting from 0 and increment with each new camera. Thus typically, the default webcam
has camera number 0. To verify the number use robot.world.perched.check_camera(camera)
command in simple_cli. This will briefly open a window showing the view of the camera. An
example is shown below.

C> robot.world.perched.check_camera(1)

If the camera does not exist, the following error message will be show, and the default camera
is used.

Page 1



C> robot.world.perched.check_camera(3)

VIDEOIO ERROR: V4L: index 3 is not correct!

After the correct cameras have verified, the perched_camera thread can be started by run-
ning robot.world.perched.start_perched_camera_thread(list_of_camera_numbers). This
will start the perched camera thread. If robot.aruco_id (id of the marker on the robot) has not
been set, a prompt will request it. After entering the value, the perched_camera thread will start.

C> robot.world.perched.start_perched_camera_thread([1,2])

Please enter the aruco id of the robot:90

Particle filter now using perched cameras

If the camera can see the given aruco_id, a camera landmark will be added. This can be viewed
in the particle_viewer (zoom out if not initially visible)

C> show particle_viewer

launching opengl event loop

request creation of 1

Type 'h' in the particle viewer window for help.

These landmarks are updated as the robot moves. The estimation of the camera position be-
comes more accurate as the robot moves around.

2 Shared Map

Landmarks and objects can now be shared between robots using the sharedmap system. This
requires one server (makes the sharedmap) and multiple clients. Firstly, the server_thread
should be started on the server by running robot.world.server.start_server_thread(). Again
a prompt will request the robot’s aruco_id if it has not been set. This will successfully start the
server as shown below.

C> robot.world.server.start_server_thread()

Please enter the aruco id of the robot:90

Server started

Both the client and server should be on the same network.The client_thread is started by running
robot.world.client.start_client_thread("server_ipaddress")

C> robot.world.client.start_client_thread("128.237.138.149")

Please enter the aruco id of the robot:91

Attempting to connect to 128.237.138.149 at port 1800

No server found, make sure the address is correct, retrying in 10 seconds

Connected.

Which shows the following message on the server’s console.

Page 2



Got connection from ("128.237.136.53", 33298)

Started thread for Client-91

Once the server_thread has started, it will keep connecting to new clients automatically. For
now, there is a limit of 100 clients. To fully start the shared map, the perched_camera thread
must be running on all machines. The landmarks and poses are sent automatically and the
transforms are calculated. Please note that to calculate the transform from one robot’s frame to
another, both robots must be visible in at least one camera at the same time.

The following is the sequence of commands to start the shared map between two robots. Each
has one perched camera connected to it.
Server:

C> robot.world.perched.check_camera(1)

C> robot.world.perched.start_perched_camera_thread(1)

Please enter the aruco id of the robot:90

Particle filter now using perched cameras

C> robot.world.server.start_server_thread()

Server started

Got connection from ("128.237.136.53", 53088)

Started thread for Client-91

Client:

C> robot.world.perched.start_perched_camera_thread(1)

Please enter the aruco id of the robot:91

Particle filter now using perched cameras

C> robot.world.client.start_client_thread("128.237.138.149")

Attempting to connect to 128.237.138.149 at port 1800

Connected.

Note that now all the perched camera data is shared among the robots. Thus even if a camera
is not directly connected to a robot, it can act as a landmark via the server. Finally run show
worldmap_viewer on the server to view the shared map. Again, this map become more accu-
rate as the robot moves. Run WarmUp().now() on both the server and clients to get an accurate
estimation.

C> show worldmap_viewer

C> WarmUp().now()

Page 3



A special case is when a robot is not connected to any perched cameras, in that case, it can
be part of the sharedmap by running robot.world.perched.start_perched_camera_thread().
The following is the special case with the server connected to two cameras and the client to no
cameras.

Server:

C> robot.world.perched.check_camera(1)

C> robot.world.perched.check_camera(2)

C> robot.world.perched.start_perched_camera_thread([1,2])

Please enter the aruco id of the robot:90

Particle filter now using perched cameras

C> robot.world.server.start_server_thread()

Server started

Got connection from ("128.237.136.53", 43696)

Started thread for Client-91

C> show worldmap_viewer

Client:

C> robot.world.perched.start_perched_camera_thread()

Please enter the aruco id of the robot:91

Particle filter now using perched cameras

C> robot.world.client.start_client_thread("128.237.138.149")

Attempting to connect to 128.237.138.149 at port 1800

Connected.

Page 4



To safely stop using the perched cameras, run the following command.

C> robot.world.perched.stop_perched_camera_thread()

Use use_shared_map() on the client to view sharedmap on client’s worldmap_viewer.

Client:

C> robot.world.client.use_shared_map()

Note: While the sharedmap is running all functions that require the pilot fails due to high cpu
usage.

Page 5



3 New Fuctions

doorpass.fsm and pickup.fsm includes a few new functions as described below,

3.1 GoToWall()

GoToWall(wall_number) instructs the robot to go through the closest door of the specified wall.

C> GoToWall(25).now()

GoToWall(wall_number, door_number) instructs the robot to go through the specified door of
the specified wall.

C> GoToWall(25,26).now()

Note that the wall must be present in robot.world.world_map.objects or a foreign wall sent
over the network must be present. The robot adds a wall when it sees atleast two markers of
the wall at the same time.

C> robot.world.world_map.objects

{"Wall-25": <WallObj 25: (252.7,-23.8) @ 24 deg. for 610.0>}

3.2 Explore()

This is just to test the GoToWall function. The robot looks around, goes through the first wall it
sees and repeats the process until it sees no new doors.

C> Explore().now()

3.3 WarmUp()

The robot moves forward 10cm and backward 10cm. Useful to initialize the sharedmap for
accurate estimation.

C> WarmUp().now()

3.4 GoToRobot()

Similar to GoToWall(), GoToRobot(aruco_id) instructs the robot to come face to face with the
specified robot. This function requires the sharedmap to be running. Currently, it is quite buggy
as the pilot fails while the shared map is running.

C> GoToRobot(91).now()

Page 6



3.5 WallPilotToPose()

Similar to PilotToPose(), WallPilotToPose(pose) instructs the robot to go to the required pose.
However, this uses the GoToWall() method automatically to use doors if walls are present in the
workplane. Currently, it is quite buggy and unpredictable. This code assumes that a straight
global path is the optimal path and that there are no obstacles near the doors.

C> WallPilotToPose(Pose(1200,0,0,angle_z=Angle(0))).now()

3.6 PickUpCubeForeign()

Picks us cube using WallPilotToPose() when seen by another robot in shared map. Currently, it
is quite buggy and unpredictable. This code assumes that a LightCubeForeignObj is present
in worldmap.

C> PickUpCubeForeign(3).now()

Page 7


