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Managing Concurrency

* Internet services suffer spikes of lots of work

* Thread switch expensive for memory
— Fewer threads can be more efficient

— Need threads for real parallelism (cores)

 FCFS scheduling not Quality of Service

— Head-of-line blocking (concurrent threads allow
bypass of slow operations by fast)

— Want application control of ordering

e [Load shedding (reject) or change implementation



Classic threading
* Fixed pool of threads pull from RPC requests

— No control of work to be done, which block etc
— Pool size limits work 1n progress, thrashes memory
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Figure 1: Threaded server design: Each incoming request is dispatched to a
separate thread, which processes the request and returns a result to the client.
Edges represent control flow between components. Note that other 1/O opera-
tions, such as disk access, are not shown here, but would be incorporated into
each threads’ request processing.
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Classic vs event-driven

e Event driven uses minimal threads

— Receives requests into internal queues and schedules
invoking work as subroutines based on knowledge
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Figure 2: Threaded server throughput degradation: This benchmark mea-
sures a simple threaded server which creates a single thread for each task in the
pipeline. After receiving a task, each thread performs an 8 KB read from a disk
file; all threads read from the same file, so the data is always in the buffer cache.
Threads are pre-allocated in the server to eliminate thread startup overhead
from the measurements, and tasks are generated internally to negate network
effects. The server is implemented in C and is running on a 4-way 500 MHz
Pentium III with 2 GB of memory under Linux 2.2.14. As the number of con-
current tasks increases, throughput increases until the number of threads grows
large, after which throughput degrades substantially. Response time becomes
unbounded as task queue lengths increase; for comparison, we have shown the
ideal linear response time curve (note the log scale on the x axis).
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Figure 4: Event-driven server throughput: This benchmark measures an
event-driven version of the server from Figure 2. In this case, the server uses
a single thread to process tasks, where each task reads 8 KB from a single disk
file. Although the filesystem interface provided by the operating system used
here (Linux 2.2.14) is blocking, because the disk data is always in the cache, this
benchmark estimates the best possible performance from a nonblocking disk 1I/O
layer. As the figure shows, throughput remains constant as the load is increased
to a very large number of tasks (note the change in the horizontal axis scale from
Figure 2), and response time is linear (note the log scale on the x axis).



Haboob HTTP server

e Split function into modules with queues between

— Parse vs page cache — parse sometimes responds w/o
calling page cache which can block

— Same for cache miss and file 10

— Sometimes 3™ party modules have different threading
(Berkeley DB for example)

— Really a messaging system

filedata —
Socket listen CacheMiss file 1/O

t - —
1] (_accept HttoParse PageCach II‘\ " handle reques file
\._connection_<|_connection P HTTP ageC-ache _miss \ o

— request - —_—
S \ " parse ™~ “check ~ ﬁ%gge Socket writ
ocket read / \ packet _cache /< HttpSend ocket write
packet

— o — packet L —
. 0 Tread < ‘send “write
\\ packet cache h't % o response / \ packet _

Figure 5: Staged event-driven (SEDA) HTTP server: This is a structural representation of the SEDA-based Web server, described in detail in Section 5.1. The
application is composed as a set of stages separated by queues. Edges represent the flow of events between stages. Each stage can be independently managed, and
stages can be run in sequence or in parallel, or a combination of the two. The use of event queues allows each stage to be individually load-conditioned, for example,
by thresholding its event queue. For simplicity, some event paths and stages have been elided from this figure.




Controller for introspection

e Controllers resources (threads, pages if possible)

Eg. Based on incoming queue, add concurrencv

Based on throughput,
deepen batch

(E Event Handler r)
11T ( P —'j
Observe ?%%?
Length Thread rool
— Adjust
>/ Si
i ize
Threshold

(a) Thread pool controller

Figure 7: SEDA resource controllers: Each stage has an associated controller
that adjusts its resource allocation and behavior to keep the application within
its operating regime. The thread pool controller adjusts the number of threads
executing within the stage, and the batching controller adjusts the number of
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events processed by each iteration of the event handler.
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Figure 8: SEDA thread pool controller: This graph shows the operation of
the thread pool controller during a run of the Haboob Web server, described in
Section 5.1. The controller adjusts the size of each stage’s thread pool based
on the length of the corresponding event queue. In this run, the queue length
was sampled every 2 seconds and a thread was added to the pool if the queue
exceeded 100 entries (with a maximum per-stage limit of 20 threads). Threads
are removed from the pool when they are idle for more than 5 seconds. The
asyncFile stage uses a controller threshold of 10 queue entries to exaggerate the
controller’s behavior.



Managing concurrency works

e Avoid refusing connections

e Slow down some to bound other responses
— Note median response time 1s 10x & 100x slower
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Figure 12: Haboob Web server performance: This figure shows the performance of the Haboob Web server compared to Apache and Flash. (a) shows the throughput
of each server using a fileset of 3.31 GBytes as the number of clients increases from 1 to 1024. Also shown is the Jain fairness index delivered by each server. A fairness
index of 1 indicates that the server is equally fair to all clients; smaller values indicate less fairness. (b) shows the cumulative distribution function of response times for
1024 clients. While Apache and Flash exhibit a high frequency of low response times, there is a heavy tail, with the maximum response time corresponding to several
minutes.



Y ahoo: >.7s 1s useless

e That 1s, lower worst case 1s not big win

— Lowers thruput of Haboob by 10-20%
— Scale all RT %tiles up — Hadoop loses everywhere
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Evaluation

» Excellent, to be expected 1n 2000+
— Public systems compared to
— Full implementations
— Multiple use cases
— Lots of numbers

— A little boring and wordy






