
SEDA: An Architecture for Well-
Conditioned, Scalable Internet

Services.

 Welsh01: Matt Welsh, David Culler,
Eric Brewer. ACM Symp. on Operating
Systems Principles (SOSP-18), October

2001.

Managing Concurrency

•  Internet services suffer spikes of lots of work

•  Thread switch expensive for memory

– Fewer threads can be more efficient

– Need threads for real parallelism (cores)

•  FCFS scheduling not Quality of Service

– Head-of-line blocking (concurrent threads allow

bypass of slow operations by fast)

– Want application control of ordering

•  Load shedding (reject) or change implementation

Classic threading

•  Fixed pool of threads pull from RPC requests

–  No control of work to be done, which block etc

–  Pool size limits work in progress, thrashes memory

Classic vs event-driven

•  Event driven uses minimal threads

–  Receives requests into internal queues and schedules
invoking work as subroutines based on knowledge

–  x

Haboob HTTP server

•  Split function into modules with queues between

–  Parse vs page cache – parse sometimes responds w/o
calling page cache which can block

–  Same for cache miss and file io

–  Sometimes 3rd party modules have different threading

(Berkeley DB for example)

–  Really a messaging system

Controller for introspection

•  Controllers resources (threads, pages if possible)

–  Eg. Based on incoming queue, add concurrency

–  Based on throughput, �

deepen batch

Managing concurrency works

•  Avoid refusing connections

•  Slow down some to bound other responses

–  Note median response time is 10x & 100x slower

Yahoo: >.7s is useless

•  That is, lower worst case is not big win

–  Lowers thruput of Haboob by 10-20%

–  Scale all RT %tiles up – Hadoop loses everywhere

Evaluation

•  Excellent, to be expected in 2000+

– Public systems compared to

– Full implementations

– Multiple use cases

– Lots of numbers

– A little boring and wordy

