
SEDA: An Architecture for Well-
Conditioned, Scalable Internet

Services.

 Welsh01: Matt Welsh, David Culler,
Eric Brewer. ACM Symp. on Operating
Systems Principles (SOSP-18), October

2001.

Managing Concurrency

•  Internet services suffer spikes of lots of work
•  Thread switch expensive for memory

– Fewer threads can be more efficient
– Need threads for real parallelism (cores)

•  FCFS scheduling not Quality of Service
– Head-of-line blocking (concurrent threads allow

bypass of slow operations by fast)
– Want application control of ordering

•  Load shedding (reject) or change implementation

Classic threading
•  Fixed pool of threads pull from RPC requests

–  No control of work to be done, which block etc
–  Pool size limits work in progress, thrashes memory

Classic vs event-driven
•  Event driven uses minimal threads

–  Receives requests into internal queues and schedules
invoking work as subroutines based on knowledge

–  x

Haboob HTTP server
•  Split function into modules with queues between

–  Parse vs page cache – parse sometimes responds w/o
calling page cache which can block

–  Same for cache miss and file io
–  Sometimes 3rd party modules have different threading

(Berkeley DB for example)
–  Really a messaging system

Controller for introspection
•  Controllers resources (threads, pages if possible)

–  Eg. Based on incoming queue, add concurrency
–  Based on throughput, �

deepen batch

Managing concurrency works
•  Avoid refusing connections
•  Slow down some to bound other responses

–  Note median response time is 10x & 100x slower

Yahoo: >.7s is useless
•  That is, lower worst case is not big win

–  Lowers thruput of Haboob by 10-20%
–  Scale all RT %tiles up – Hadoop loses everywhere

Evaluation

•  Excellent, to be expected in 2000+
– Public systems compared to
– Full implementations
– Multiple use cases
– Lots of numbers
– A little boring and wordy

