
CS 740, Fall 2014

Homework Assignment 2

Assigned: Friday, October 6
Due: Friday, October 20, 11:59PM

The purpose of this assignment is to understand the impact of architectural features on perfor-
mance by developing techniques for determining the architectural features of a system.

1 Policy

You can work in alone or in groups of two people in solving the problems for this assignment.
(Groups of two are preferred.) Turn in a single writeup per group, indicating the group members
as indicated below.

2 Logistics

Any clarifications and revisions to the assignment will be posted on the class “assignments” web
page.

To get started, download assignment1-handout.tar from Autolab (https://autolab.cs.
cmu.edu) to a directory accessible only to your team. We recommend using AFS space and
the cluster machines ghc01.ghc.andrew.cmu.edu – ghc50.ghc.andrew.cmu.edu, or one of the
general purpose linux machines linux.gp.cs.cmu.edu (you can log in with your Andrew cre-
dentials).

When you are ready to hand in your solution, upload it to Autolab. Your submission should be
a .tar file consisting of the following:

1. writeup.pdf, your writeup as a pdf

2. Makefile

3. mountain.c for Problem 1

4. cores.c for Problem 2

5. linesize.c for Problem 3

6. smt.c for Problem 4

7. lock.c for Problem 5

8. mmt.c for Problem 6

Please hand in your assignment using Autolab. You may submit as many times as you would
like.

Your writeup should begin with a section which lists the name of the machine you ran your
programs on and the output of lshw -class processor.

Your Makefile, when executed, should create all the executables for each problem, i.e., mountain
for problem 1, cores for problem 2, etc.

1



3 Understanding the Memory Hierarchy

Modern processors have multiple levels of cache to improve performance. The goal of this
problem is to determine the number of levels of the cache and the basic paramters of each level
of the cache, e.g., the cache’s total size and its linesize.

The basic idea is to compare the time it takes to read n bytes of memory with stride of s where
n varies from Cmin to Cmax for reasonable values of Cmin and Cmax. As the stride increases
from 1 to smax the time to read n bytes should increase until s is greater than the line size. For
a given stride, as n increases the time to read each byte should increase whenever n gets bigger
than a particular level in the hierarchy.

Using your timing routines developed in assignment 1, write a program, called mountain.c

which can be used to determine the characteristics of the cache on your machine. Your program
should take one parameter which is either simple or better. When it is called with simple

core loop used to determine performance should be something on the order of:

void

test(int elems, int stride)

{

int i;

double result = 0.0;

volatile double sink;

for (i = 0; i < elems; i += stride) {

result += data[i];

}

sink = result; // So compiler does not optimize away the loop

}

The output of your program should be in a format that you can use gnuplot to create a 3D plot,
where the X axis is the stride from 1 to s and the Y axis is the log of the size of the array being
read from Cmin to Cmax and the Z axis is the MB/sec. E.g., Each line should be of the form

1 26 9166.2

2 26 8506.6

3 26 6283.4

...

1 25 9159.3

2 25 8529.8

3 25 6604.9

...

Include in your writeup for problem 1a your conclusions about cache size, line size, and the
graph your program generates.

You will probably notice that there is no perceptable drop-off in performance even as n exceeds
the size of the largest cache on the chip. Explain why this happens in your writeup for problem
1b.

For the final part of this problem, modify mountain.c so that when it is give the parameter
better it uses a different method for measuring the MB/sec for a given n and s. Include in
your writeup a basic explaintion of how you achieved this, the cache parameters, and the graph
your obtained with this better method.

2



4 How many cores?

For this problem you will use the pthreads package to write a simple program which can be
used to determine how many cores there are on a system. The output of cores.c should be a
table which shows the performance of our microbench when run with 1 to n threads for some
n which exceeds the number of cores on your system. Explain the results in your writeup for
problem 2 and using those results determine how many cores the system has.

5 Determining the Shared Cache Linesize

For this problem you will determine the size of the cache linesize that is shared between cores.
One way to do this is to determine when false sharing takes place. False sharing happens when
two threads access and update distinct memory locations, but because of the cache coherence
protocal find that they are competing with each other because both memory locations are in
the same cache line.

Using pthreads write a simple program which determines the linesize of the shared cache.
The output of linesize.c should be a table which lists the linesize and the operations/sec for
linesizes from 4 bytes to 1024 bytes. In your writeup indicate the linesize for the system you
were running on.

6 SMT or Core?

In your solution to problem 2 (I.e., cores.c) you might have seen that you misrepresented the
number of cores due to the processor also supporting multiple threads per core, e.g., by im-
plementing some form of simultanous multithreading. In this problem you should implement
a micro-kernel that can determine how many SMT threads there are per core. smt.c should
output a table which determines the operations/sec obtained from 1 to n threads for some rea-
sonable n. Your writeup for this problem should describe the method you use to distinguish
between SMT threads and number of cores. Then, using the output from smt.c show how many
cores and threads per core there are on the system.

7 A Better Lock

Semaphores and other syncronization methods are notoriously slow in Pthreads. Using asm

statements implement a more efficient mechanism to atomically read, modify, and write a mem-
ory location a routine called atomicIncr(int* location). Compare the performance of a
multithreaded program which spawns n threads (1 <= n <= 16) which all increment a single
variable 220/n times using either pthreads semaphores to surround the critical region of the up-
date versus your atomicIncr routine. Include the output of lock.c in your writeup along with
a brief conjecture as to why your routine is more (or less) efficient than the pthreads version.

8 Optimized Parallel Matrix Multiply

In this final problem you are tasked with using the information you obtained in the previous
sections to write an efficient parallel blocked matrix multiply for square matrices. Your ma-

3



trix multiply program should begin with a set of #define statements which can be used to
parameterize the core matrix multiply routine:

#define THREADS t

#define BLOCK b

Where t are the number of threads the matrix multiple routine will use and b is the block size
each thread will use. Determine the optimal t and b for the system you are running on and
report the performance of your matrix multiply in MB/sec for matrix sizes of bxb to 16bx16b.
(You may assume that the matrix size is an even multiple of b for this problem.)

4


