
Virtual Memory
15-740 SPRING’18

NATHAN BECKMANN

What is virtual memory?

Why is it important?

Back in the beginning…
Programs accessed memory directly

Processor Memory

Data

Back in the beginning…
Programs accessed memory directly

No protection between programs

Complex loading

Processor Memory

Data

Data

Oops!

Back in the beginning…
If data was larger than memory, applications dealt with it themselves (eg, overlays)

Processor Memory

Data

Data

Data

Back in the beginning…
Virtual memory: give each process the illusion of its own memory

Early implementation: segments (base + bound)
◦ Memory allocated in contiguous chunks

◦ Hardware translation

◦ Inefficient use of space!

Processor

Memory

Data

Base

Bound

Why Virtual Memory?
There are three motivations for Virtual Memory (VM):

1. Allow main memory (DRAM) to act as a “cache” for disk

2. Simplifying memory management

3. Protecting address spaces

But VM works very differently from SRAM caches. Why?
◦ To understand why, let’s begin with the first motivation

◦ (Once we understand that, the other aspects of VM will make more sense.)

Motivation 1: DRAM as cache of disk
The full address space is quite large:

◦ 32-bit addresses: ~4,000,000,000 (4 billion) bytes

◦ 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~100X cheaper than DRAM storage
◦ 2 TB of DRAM: ~ $10,000

◦ 2 TB of disk: ~ $100

To access very large amounts of data in a cost-effective manner, the bulk of the data must be
stored on disk

2 TB: ~$100
16 GB: ~$100

8 MB: ~$100

DiskDRAMSRAM

DRAM vs. SRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAM

◦ Access latencies:

◦ DRAM is ~100X slower than SRAM

◦ disk is ~100,000X slower than DRAM

◦ Importance of exploiting spatial locality:

◦ first byte is ~100,000X slower than successive bytes on disk

◦ vs. ~4X improvement for page-mode vs. regular accesses to DRAM

◦ “Cache” size:

◦ main memory is ~1000X larger than an SRAM cache

◦ Different addressing (memory address vs sector address)

2 TB: ~$100
16 GB: ~$100

8 MB: ~$100

DiskDRAMSRAM

Impact of These Properties on Design
If DRAM was to be organized similar to an SRAM cache, how would we set the following design
parameters?

◦ Line size?

◦ Associativity?

◦ Replacement policy (if associative)?

◦ Write through or write back?

(What would the impact of these choices be on: miss rate, hit time, miss penalty, tag overhead,
…)

But how to implement a multi-GB, fully associative cache?

1. Search for matching tag
◦ SRAM cache

X
Object Name

Tag Data

D 243

X 17

J 105

•
•
•

•
•
•

0:

1:

N-1:

= X?

“Cache”

2. Use indirection to look up actual object location

o Virtual Memory

Data

243

17

105

•
•
•

0:

1:

N-1:

X
Object Name

Location

•
•
•

D:

J:

X: 1

−
N-1

“Cache”Lookup Table

VM: Too many comparisons!

Looking up an object

Tag Overheads
How many tags? How big are they?

Conventional SRAM cache
◦ Tags for each cached item

◦ Tag stores address, other bits

Indirect virtual memory cache
◦ Tags for every item (cached or not)

◦ Tag stores location, other bits

Main difference is # of tags
◦ How to deal with tags for virtual memory?

◦ Strategy: store them in memory and cache the tags

Address Spaces

Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}

Clean distinction between data (bytes) and their attributes (addresses)

Each datum can now have multiple addresses

Every byte in main memory:
one physical address, one (or more) virtual addresses

A System Using Physical Addressing

Used in some “simple” systems, like embedded microcontrollers in cars, elevators,
and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

A System Using Virtual Addressing

Used in all modern servers, desktops, and laptops

One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Why Virtual Memory? (Further Details)
(1) VM allows efficient use of limited main memory (RAM)

◦ Use RAM as a cache for the parts of a virtual address space
◦ some non-cached parts stored on disk

◦ some (unallocated) non-cached parts stored nowhere

◦ Keep only active areas of virtual address space in memory
◦ transfer data back and forth as needed

(2) VM simplifies memory management for programmers
◦ Each process gets a full, private linear address space

(3) VM isolates address spaces
◦ One process can’t interfere with another’s memory

◦ because they operate in different address spaces

◦ User process cannot access privileged information
◦ different sections of address spaces have different permissions

Motivations for VM Revisited
Recall the 3 motivations for Virtual Memory (VM):

1. Allow main memory (DRAM) to act as a “cache” for disk

2. Simplifying memory management

3. Protecting address spaces

To solve #1, we introduced a new form of indirection

This indirection also makes it easy to solve #2 and #3:
◦ Simplifying memory management:

◦ flexible mapping of virtual to physical addresses

◦ Protecting address spaces:
◦ protection information can be stored in the lookup table

◦ and enforced before allowing access to physical memory

(1) VM as a Tool for Caching
Virtual memory is an array of N contiguous bytes

◦ You can think of VM backed by storage on disk

The contents of the array on disk are cached in physical memory (ie, DRAM as a cache)
◦ These cache blocks are called pages (size is P = 2p bytes)

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

Cached

0

N-1

Virtual pages (VPs)
stored on disk

(1) VM as a Tool for Caching
Virtual memory is an array of N contiguous bytes

◦ You can think of VM backed by storage on disk

The contents of the array on disk are cached in physical memory (ie, DRAM as a cache)
◦ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs) / page frames
cached in DRAM

(1) VM as a Tool for Caching
Virtual memory is an array of N contiguous bytes

◦ You can think of VM backed by storage on disk

The contents of the array on disk are cached in physical memory (ie, DRAM as a cache)
◦ These cache blocks are called pages (size is P = 2p bytes)

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

Cached

0

N-1

Virtual pages (VPs)
stored on disk

PP 2m-p-1

Physical memory

Empty

Empty

PP 0

PP 1

Empty

M-1

0

Physical pages (PPs) / page frames
cached in DRAM

Disk

Enabling Data Structure: Page Table
Page table: an array of page table entries (PTEs) that maps virtual pages to physical pages. (==
tags)

◦ Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Page Hit
Page hit: reference to VM word that is in physical memory (== cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Page Fault
Page fault: reference to VM word that is not in physical memory (== cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
Page miss causes page fault (an exception – invoking software!)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
Page miss causes page fault

Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
Page miss causes page fault

Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
Page miss causes page fault

Page fault handler selects a victim to be evicted (here VP 4)

Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Locality to the Rescue Again!
Virtual memory works because of locality

At any point in time, programs tend to access a set of active virtual pages called the working set
◦ Programs with better temporal locality will have smaller working sets

If (working set size < main memory size)
◦ Good performance for one process after compulsory misses

If (SUM(working set sizes) > main memory size)
◦ Thrashing: Performance meltdown where pages are moved (copied) in and out continuously

(2) VM as a Tool for Memory Management
Key idea: each process has its own virtual address space

◦ It can view memory as a simple linear array

◦ Mapping function scatters addresses through physical memory
◦ Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Simplifying allocation and sharing
Memory allocation

◦ Each virtual page can be mapped to any physical page

◦ A virtual page can be stored in different physical pages at different times

Sharing code and data among processes
◦ Map multiple virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Simplifying Linking
◦ Each process has similar virtual address space

◦ Code, stack, and shared libraries always start
at the same address

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Linux Virtual Address Space

(3) VM as a Tool for Memory Protection
Extend PTEs with permission bits

Page fault handler checks these before remapping
◦ If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

Views of virtual memory
Programmer’s view of virtual memory

◦ Each process has its own private linear address space

◦ Cannot be corrupted by other processes

System view of virtual memory
◦ Uses memory efficiently by caching virtual memory pages

◦ (Efficient only because of locality)

◦ Simplifies memory management and programming

◦ Simplifies protection by providing a convenient point to check permissions

VM Address Translation

Virtual Address Space
◦ V = {0, 1, …, N–1}

Physical Address Space
◦ P = {0, 1, …, M–1}

Address Translation
◦ MAP: V P U {}

◦ For virtual address a:

◦ MAP(a) = a’ if data at virtual address a is at physical address a’ in P

◦ MAP(a) = if data at virtual address a is not in physical memory

◦ Either invalid or stored on disk

Address Translation Symbols
Basic Parameters

◦ N = 2n : Number of addresses in virtual address space

◦ M = 2m : Number of addresses in physical address space

◦ P = 2p : Page size (bytes)

Components of the virtual address (VA)
◦ VPO: Virtual page offset

◦ VPN: Virtual page number

Components of the physical address (PA)
◦ PPO: Physical page offset (same as VPO, usually V/P dropped)

◦ PPN: Physical page number

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table

Page table
base register

(PTBR)

Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

Physical page offset (PPO)

0p-1

Physical page number (PPN)

pm-1

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception!

6

7

Question:
Are the PTEs cached like other memory accesses?

Yes (and no: see next question)

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address,

PTE: page table entry, PTEA = PTE address

1
2

3

4

5

2a

2b

4a

4b

Question:
Isn’t it slow to have to go to memory twice every time?

Yes, it would be… so, real MMUs don’t

Speeding up Translation with a TLB
Page table entries (PTEs) are cached in L1 like any other memory word

◦ PTEs may be evicted by other data references

◦ But even PTE hit still requires a small L1 delay!

Solution: Translation Lookaside Buffer (TLB)
◦ Small hardware cache in MMU

◦ Maps virtual page numbers to physical page numbers

◦ Contains complete page table entries for small number of pages

TLBs get high hit rates with few entries. Why?
◦ 512 entries reach of 512 * 4KB = 2MB

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare.

TLB Coherence
Observation: Page tables rarely change

◦ “Read mostly” data

…and only change at clearly defined points
◦ Viz., page faults

TLBs are not kept coherent by hardware

Software (OS) invalidates TLB entries when PTEs change
◦ Called a “TLB shootdown”

◦ Mechanism: inter-process interrupt (IPI)

Question(s):
Isn’t accessing memory still slower than without VM?

Yes, if TLB is on critical path
◦ Instead, access cache using virtual addresses

Problem solved?

No, synonyms and homonyms lose coherence (!!)
◦ Synonym: different VAs, same PAs

◦ Homonym: same VAs, different PAs

Common solution: index the cache using virtual address but tag using physical addresses (VIPT)
◦ What must we guarantee for this to work?

Speeding Up L1 Access

Bits that determine cache index are identical in virtual and physical address
◦ Can index into cache while address translation taking place

◦ TLB hit rate >> cache hit rate, so tag generally available

Cache carefully sized to make this possible
◦ Each cache way ≤ page size forced associativity in L1s

◦ But see: SIPT: Speculatively Indexed, Physically Tagged by Zheng et al, HPCA’18

Physical

address

(PA)

CT CO

36 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1 Cache

CT Tag Check

Simple Memory System Example
Addressing

◦ 14-bit virtual addresses

◦ 12-bit physical address

◦ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Simple Memory System Page Table

Only show first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

Simple Memory System TLB
16 entries

4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System Cache
16 lines, 4-byte block size

Physically addressed

Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Address Translation Example #1
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

Address Translation Example #2
Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100

0x2E 2 0x0B N Y TBD

Address Translation Example #3
Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem

Question:
Isn’t the page table huge? How can it be stored in RAM?

Yes, it would be… so, real page tables aren’t simple arrays

Multi-Level Page Tables
Suppose:

◦ 4KB (212) page size, 64-bit address space, 8-byte PTE

Problem:
◦ Would need a 32,000 TB page table!

◦ 264 * 2-12 * 23 = 255 bytes

Common solution:
◦ Multi-level page tables

◦ Example: 2-level page table

◦ Level 1 table: each PTE points to a page table (always memory resident)

◦ Level 2 table: each PTE points to a page
(paged in and out like any other data)

Level 1

Table

...

Level 2

Tables

...

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

Translating with a k-level Page Table

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

End-to-end Core i7 Address Translation
CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

5-level page tables coming soon

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12

Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

CD: Caching disabled or enabled for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

G: Global page (don’t evict from TLB on task switch)

Page table physical base address: 40 most significant bits of physical page table address
(forces page tables to be 4KB aligned)

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

CD: Cache disabled (1) or enabled (0)

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address (forces pages to
be 4KB aligned)

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Recent research into virtual memory
Problems:

◦ Many levels of indirection are slow

◦ Hard to map large (many GBs) working sets with small TLB

Recall motivations for page-based VM
◦ Make more efficient use of limited DRAM

◦ Simplify memory management for programmers

◦ Protection between programs

Mechanisms to map large memory regions
◦ Huge pages (2MB, 1GB), supported in current hardware & Linux

◦ Segments [Karakostas et al, ISCA’15]

◦ Fine-grain coalescing of pages into continuous regions [Park et al, ISCA’17]

These ideas compromise on DRAM efficiency & require contiguous allocations in physical memory

✓

?

✓

Virtual Memory Summary
Virtual memory several important problems

◦ Efficient use of physical memory

◦ Simplifies memory management

◦ Protection in shared systems

Implemented by using DRAM as a cache
◦ Design differs from processor caches

Scaling up this abstraction involves many tricks throughout the processor
◦ Improving the VM abstraction is an active research area

