
..

DYSER: UNIFYING FUNCTIONALITY
AND PARALLELISM SPECIALIZATION
FOR ENERGY-EFFICIENT COMPUTING

..

THE DYSER (DYNAMICALLY SPECIALIZING EXECUTION RESOURCES) ARCHITECTURE

SUPPORTS BOTH FUNCTIONALITY SPECIALIZATION AND PARALLELISM SPECIALIZATION.

BY DYNAMICALLY SPECIALIZING FREQUENTLY EXECUTING REGIONS AND APPLYING

PARALLELISM MECHANISMS, DYSER PROVIDES EFFICIENT FUNCTIONALITY AND PARAL-

LELISM SPECIALIZATION. IT OUTPERFORMS AN OUT-OF-ORDER CPU, STREAMING SIMD

EXTENSIONS (SSE) ACCELERATION, AND GPU ACCELERATION WHILE CONSUMING LESS

ENERGY. THE FULL-SYSTEM FIELD-PROGRAMMABLE GATE ARRAY (FPGA) PROTOTYPE OF

DYSER INTEGRATED INTO OPENSPARC DEMONSTRATES A PRACTICAL IMPLEMENTATION.

......Future processors must im-
prove microarchitectural efficiency to over-
come slowing transistor energy efficiency
improvements and sustain performance
growth. Specialization and accelerators
are promising directions. A mainstream
specialization technique is to specialize
architectures for data-level parallelism
(DLP)—for example, vector processors,
short-vector instructions such as Streaming
SIMD Extensions (SSE) and Advanced
Vector Extensions (AVX), and GPUs.
Functionality specialization is another
technique, wherein custom hardware is
targeted at application functionality.
Examples include Garp,1 Chimaera,2 Con-
figurable Compute Accelerator (CCA),3

PipeRench,4 Tartan,5 Phoenix,6 Conserva-
tion Cores,7 and Beret (Bundled Execution
of Recurring Traces).8

Thus far, specialization architectures
have targeted only parallelism or functional-
ity specialization, but not both. In fact, the
functionality specialization architectures typ-
ically aren’t evaluated on data-parallel
workloads, and vice versa. The reason for
this distinction is that the fundamental
approaches behind these strategies are con-
flicting. Parallelism specialization uses
homogeneous hardware resources with a
wide and independent interconnect, whereas
functionality specialization uses task-specific
hardware resources with task-specific rout-
ing. Furthermore, parallelism specialization’s
homogeneous resources are simple to
virtualize, to support mapping arbitrarily
large computations, whereas functionality
specialization’s heterogeneity means arbi-
trary computations face resource-mapping
problems. Nevertheless, architectures such

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 38

Venkatraman Govindaraju

Chen-Han Ho

Tony Nowatzki

University of Wisconsin�Madison

Jatin Chhugani

Nadathur Satish

Intel

Karthikeyan Sankaralingam

University of Wisconsin�Madison

Changkyu Kim

Intel

..

38 Published by the IEEE Computer Society 0272-1732/12/$31.00 �c 2012 IEEE

as short-vector extensions (for example,
SSE) and GPUs are taking incremental
steps toward unifying functionality special-
ization with their parallelism specialization
approach. The driving force is that the
combination of specialization types can
provide further energy and performance
benefits.

We can view the DySER (Dynamically
Specializing Execution Resources) architec-
ture as the natural progression of this trend
toward unification, culminating in both
functionality and parallelism specialized in
a single architecture. The enabling mecha-
nism is a configurable lightweight switching
network that connects a set of heterogeneous
functional units and allows customization.
DySER exploits parallelism by creating logi-
cal lanes of independent computation in this
substrate and exploits functionality by creat-
ing specific data paths for each particular
computation.

Practically speaking, DySER is integrated
into a general-purpose processor’s execution
stage, which acts as a load/store engine to
feed the DySER computation substrate. To
achieve functionality specialization, a com-
piler synthesizes data paths among functional
units, specific to an application’s phase. To
achieve parallelism specialization, we use a
judicious mix of vectorization techniques
and novel hardware mechanisms. We enable
high performance by providing a dense com-
putational fabric with low-latency integration
to a processor, and we attain energy effi-
ciency through the elimination of per-
instruction overheads by converting code
regions into dynamically formed compound
functional units. These gains are possible
without significant disruption to either the
general-purpose processor architecture into
which DySER is integrated or the software
development environment.

We designed and implemented the
DySER architecture and its compiler, ported
applications to it, and implemented a field-
programmable gate array (FPGA) prototype.
Employing functionality specialization,
DySER outperforms a dual-issue out-of-
order (OOO) processor by 1.1� to 4.1�,
while simultaneously reducing energy by
9 percent. Employing parallelism specializa-
tion, DySER outperforms single instruction,

multiple data (SIMD): it is 1.3� to 4.7�
faster than SSE, consuming 86 percent less
energy. It also outperforms GPUs, with a
geometric-mean speedup of 1.4�, while con-
suming 8 percent less energy.

DySER and functionality specialization
The main insight in designing DySER is

that programs execute in phases, and only a
few of these phases or regions contribute to
most of the program’s execution time. Spe-
cializing such frequently executing regions
can eliminate overheads and provide energy
efficiency. However, the cost of having spe-
cialized hardware for all such possible regions
is prohibitive. Instead, DySER dynamically
creates specialized data paths for only fre-
quently executed regions. We also leverage
the processor’s memory system, using its
cache, prefetch, memory disambiguation,
and memory-dependence prediction mecha-
nisms, thus overcoming load/store serializa-
tion bottlenecks in irregular code.

Architecture
DySER achieves functionality specializa-

tion by employing a heterogeneous array of
functional units connected with simple
switches (see Figure 1a). A functional unit
is connected to four neighboring switches,
which deliver its inputs and consume its
output. It can be configured to get its
inputs from any of its neighboring switches.
Once all of its inputs have arrived, it per-
forms the configured operation and delivers
the output to the switch. Switches form a
circuit-switched network and can create
hardware data paths, as the example config-
uration in Figure 1b shows. Once config-
ured, which takes about 64 cycles, DySER
computes efficiently because it eliminates
per-instruction overheads such as decode,
commit, and unnecessary register reads
and writes.

To allow pipelining inside DySER, we
implement a simple credit-based flow control
using a forward signal (valid) and a back-
ward signal (credit). Functional units perform
the operation when all its inputs are valid,
and data is forwarded only when the credit
signal is asserted. Functional units and
switches send credits only when they can ac-
cept new data. This network and data-flow

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 39

..

SEPTEMBER/OCTOBER 2012 39

execution model create a pipelined function-
ality specialization engine.

Figure 1a shows how DySER is integrated
into a processor. The processor pipeline
communicates to DySER through a set of
named I/O ports corresponding to first-in,
first-out (FIFO) buffers that deliver data to
the switches. We extend the instruction set
architecture (ISA) with five instructions that
configure DySER, send/receive register
data, and send/receive memory values.

Execution model
Figures 1c through 1f compare the con-

ceptual execution model of a dual-issue
OOO processor to that of DySER. The pro-
cessor in Figure 1d executes up to two oper-
ations at a time, and is shown performing
two iterations of the loop from Figure 1c.

The DySER version in Figure 1e begins
by first configuring DySER for a region’s
data path before the region is encountered.
For every instance of the region, the

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 40

Dynamic Specialized

Execution Resources

Register

file

Fast-configuration
switching (FCS) Dyser Region

Configuration

Vector-port

mapping

Wide

memory

interface

Instruction

cache

Data

cache

Fetch Decode Execute

(a) (b)

Memory Writeback

Decode
Execution

pipeline

FU FU

FUFU

S S S

S

SSS

S

Switches

Functional unit

Parallelism

specialization

enhancements

FU

S

S

+

+

+

× × ×

×

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

+

+

+

D
y
s
e
r in

p
u
t in

te
rfa

c
e

D
y
s
e
r o

u
tp

u
t in

te
rfa

c
e

× × × ×

+

+

+

St

CPU: memory subregion

Dyser

CPU: configure Dyser

ldldld ld

Comp.

subregion

+

St

ld ld

ld ld1

2

3

4

5

6

7

8

Cycle

× ×

×

× × × ×

×+

+

+

St

ld ld

ld ld

× ×

× ×+

+

Invocation 1

In
vo

ca
ti

o
n

 2

…

+

St

× × × ×

+ +

CPU: whole region

ldldld ld

+

St

ldld

ldld

× ×

× ×

+ +

1

2

3

4

5

6

7

+

St

× ×

× ×

+ +

8

9

10

11

12

13

Cycle

…

It
er

at
io

n
 1

It
er

at
io

n
 2

ld

ld

ld ld

(c) (d) (e) (f)

Figure 1. Overview of the DySER (Dynamically Specializing Execution Resources) architecture integrated into a processor

pipeline highlighting the data-parallel extension. The bottom half of the figure contrasts execution in a conventional

processor with execution on a processor with DySER. DySER architecture (a), example configuration (b), static program

control-flow graph (CFG) (c), dual-issue CPU execution (d), and pipelined DySER execution (f).

..

40 IEEE MICRO

...

ENERGY-AWARE COMPUTING

processor either sends register values or loads
data directly to DySER. We refer to all of the
sends and loads for one instance as an invo-
cation. As the data reaches DySER, it is
routed to functional units through switches
according to the configuration, and execu-
tion occurs in data-flow fashion, producing
results for the processor. Similar to the
CPU, DySER can be speculatively invoked
with the next instance of the computation,
pipelining both instances together, as
Figure 1f shows. In this example, DySER
executes five fewer cycles than the processor.

Compiler role
DySER relies on a compiler in order to

create its configurations and insert instruc-
tions in the program to communicate with
the processor. Our compiler identifies
regions using profiling or static analysis; par-
titions them into a memory subregion, which
includes loads, stores, and address calcula-
tions, and a computation subregion, which
has all other instructions; generates DySER
configurations for computation subregions;
and inserts communication instructions
into the memory subregion.

Workload characterization
Across the benchmarks in the Parsec and

SPECint benchmark suites, there are many
candidate regions to specialize—ranging in
size from nine to 906 for Parsec and 46 to
10,018 for SPECint. However, about 10 per-
cent of the regions contribute to 90 percent
of the execution within each benchmark.
These regions are 51 to 264 instructions
in length. With a 64-unit heterogeneous
DySER block, we can specialize 60 to
100 percent of these regions.

DySER and parallelism specialization
DySER’s many functional units provide

an opportunity for supporting data-parallel
execution. However, for DySER, parallelism
specialization presents several challenges.
We developed parallelism specialization
mechanisms to overcome these challenges
by analyzing DySER’s performance on
data-parallel applications. We considered
hand-optimized workloads from Intel’s
research lab and Parboil (http://impact.crhc.
illinois.edu/parboil.php). Table 1 describes

the workloads we considered and their
characteristics.

Challenges for DySER on data-parallel workloads
The computation subregions of the appli-

cations we considered, while providing paral-
lelism, are ill-suited for DySER because of
their size and shape. Figure 2 illustrates
four types of computation subregions, and
column 4 in Table 1 shows the type for
each benchmark.

Insufficient regions. Figure 2a shows compu-
tation subregions that are small in relation to
DySER’s resources, limiting the potential
speedup and utilization.

Proportional regions. Figure 2b shows com-
putation subregions that are appropriately
sized for DySER. These generally come in
the form of multilane and reduction pat-
terns. Even though the potential for these
regions is high, these patterns have a high
communication/computation ratio, which
limits speedups, because the computation
subregion can’t be fed fast enough for high
utilization.

Superfluous regions. Figure 2c shows a very
large computation subregion. Although
we can configure DySER separately for dif-
ferent sections of the computation subregion,
DySER’s functional units will be inactive
during reconfiguration. Because we must
perform reconfiguration on every invocation,
overall utilization of DySER is low.

Ideal regions. Figure 2d depicts some best-
case scenarios of computation subregions,
distinguished by small numbers of inputs
and outputs, with numerous computations.
Assuming invocations that can be pipelined,
these patterns are ideal, because they have
little communication overhead. However,
these are rare in most workloads, so we
develop techniques to transform regions
into this type.

Mechanisms for parallelism specialization
‘‘Transformation flow’’ in Figure 3 shows

our overall strategy for transforming an arbi-
trary computational subregion to act like an
ideal region. Although we performed them

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 41

..

SEPTEMBER/OCTOBER 2012 41

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 42

manually for this article, we designed these
transformations to be implementable in a
compiler. Only the TPACF and Merge
benchmarks require additional algorithmic
changes for effective parallelism specializa-
tion. Column 5 in Table 1 shows the trans-
formations for each benchmark.

Region growing. If regions are too small to
attain high utilization, we must expand
them by transforming the loops. Specifically,
we apply loop unrolling (UNR) until an ap-
propriately sized computation subregion is
formed, as Figure 3a shows. If the loops are
independent, we create a multilane pattern.

Table 1. Benchmark characterization.

Benchmark Description GPU and SIMD performance analysis Region type

NBDY N-body simulation Large kernel with regular access pattern Superfluous

VR Volume rendering Nested loop with lots of control-flow Insufficient

TSRCH Tree search Irregular data accesses prevent SSE vectorization Insufficient

MRG Sorting Small kernel with unpredictable data-dependent

control flow

Superfluous

RDR Complex convolution Small kernel with regular access pattern Insufficient

CONV Image convolution Regular computation and data accesses; no control-flow

divergence.

Insufficient

MRI-Q Magnetic resonance imaging Heavy use of sine and cosine; use of constant memory for

less global memory bandwidth.

Proportional

SPMV Sparse matrix-vector multiplication Indirect loads are software pipelined; uses constant and

texture memory.

Insufficient

CTCP 3D grid and point calculation Significant use of transcendentals; overlaps CPU and

GPU execution.

Superfluous

MM Dense matrix multiplication Standard algorithm; shared memory and synchronization

to reduce global memory bandwidth.

Insufficient

STNCL 3D Jacobi stencil operation Small compute-to-memory ratio; shared memory and

synchronization reduce global memory bandwidth.

Proportional

SAD Sum of absolute differences Extremely high compute-to-memory ratio; good memory

locality.

Proportional

LBM Fluid dynamics Extremely large computation region; large-region control-

flow divergence.

Superfluous

TPACF Angular correlation Irregular memory access due to histograming; causes

branch divergence.

Superfluous

KMNS K-Means clustering Uses texture as cache; regular memory access. Insufficient

NNW Neural networks Some transcendentals; strided memory access. Insufficient

FFT Fast Fourier transform Regular memory access; heavy use of sine and cosine. Proportional

NDL Dynamic programming GPU diagonal iteration inhibits memory coalescing;

shared memory and synchronization.

Insufficient

..
* abs(): an operation that computes the absolute value; FCS: fast-configuration switching; SCX: scalar expansion; SIMD: single
instruction, multiple data; SSE: Streaming SIMD Extensions; STR: strip mining; SUB: subgraph matching; UNR: loop unrolling;
VEC-Hybrid: hybrid communication; VEC-Inter: interinvocation communication; VEC-Intra: intra-invocation communication.

..

42 IEEE MICRO

...

ENERGY-AWARE COMPUTING

Data-level parallelism

techniques used DySER analysis Comments

SCX, FCS, VEC-Intra DySER throughput limited by long latency functional units:

division (div) and square root (sqrt).

SIMD benchmark

UNR, SCX Control-flow divergence hinders SSE; DySER limited by

irregular memory.

SIMD benchmark

UNR, SCX, SUB Scalar loads feed region; SSE loses because of irregular

memory access.

SIMD benchmark

SUB, VEC-Intra Emulates 4 � 4 merge network; larger region than SSE.

Control flow limits performance.

SIMD benchmark

UNR, SUB, STR, VEC-Hybrid Emulates four-wide complex multiplier, wins with fewer

instructions.

SIMD benchmark

UNR, SUB, STR, VEC-Intra DySER emulates eight-wide SIMD; DySER wins with larger

region and memory regularity.

SIMD benchmark

STR, VEC-Inter Single computation lane; DySER loses because of non-

pipelined sine and cosine functional units.

GPU benchmark; GPU is faster.

UNR, STR DySER loses because of irregular memory access;

no vectorization is possible.

GPU benchmark; GPU is faster.

FCS, STR, VEC-Hybrid Multilane pattern executes sqrt operations in parallel;

DySER loses because of the sqrt operation’s throughput.

GPU benchmark; GPU is faster.

UNR, VEC-Intra Similar performance due to regular memory access and

high compute-to-memory ratio.

GPU benchmark; DySER and GPU

have similar performance.

STR, VEC-Inter Two-lane stencil; similar performance, limited by low

compute-to-memory ratio.

GPU benchmark; DySER and GPU

have similar performance.

UNR, FCS, STR, VEC-Hybrid Multilaned abs() with sum reduction; similar performance

due to regular memory.

GPU benchmark; DySER and GPU

have similar performance.

FCS, VEC-Intra Many reductions; divergence hurts GPU; scattering memory

hurts DySER.

GPU benchmark; DySER and GPU

have similar performance.

FCS, STR, VEC-Hybrid Performs histogram with reductions; similar because GPU

parallelizes history.

GPU benchmark; DySER and GPU

have similar performance.

UNR, VEC-Intra Large reduction kernel; performance is similar due to

memory access regularity.

GPU benchmark; DySER is faster.

UNR, STR, VEC-Hybrid VEC-Inter and VEC-Intra on different arrays; poor warp

occupancy for GPU.

GPU benchmark; DySER is faster.

UNR, VEC-Hybrid Single lane region. GPU implementation doesn’t cache

reused sine and cosine operations.

GPU benchmark; DySER is faster.

UNR, VEC-Intra Single lane of computation; GPU suffers from excess

synchronization and poor coalescing.

GPU benchmark; DySER is faster.

..

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 43

With a single loop-carried dependence, we
create a reduction pattern, if possible.
When profitable, we alternatively employ
scalar expansion (SCX) (Figure 3b), which
enables loop parallelization by providing
temporary storage for dependent variables.
Scalar expansion lets us break some reduction

patterns into multilane patterns, which can
be beneficial depending on the use of the
region’s outputs.

Vectorizing DySER. Vectorized DySER
instructions can load and store only contigu-
ous words. In order to vectorize send and

..

SEPTEMBER/OCTOBER 2012 43

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 44

spmv

conv

mm

mm, spmv
(post unroll)kmeans

…

lbm

Multilane pattern Reduction pattern

(c)(a) (b) (d)

Figure 2. Types of computation subregions with example benchmarks for each type: insufficient (a), proportional (b),

superfluous (c), and ideal (d). Through a set of transformations, we convert all region types to resemble the ideal

region type.

c. Strip mining (STR)

Insufficient

Superfluous

Proportional

Ideal

g. Subgraph

mapping (SUB)

h. FCS

Example superfluous subregion (g) Subgraph matching (SUB)

4321

1 2 3 4

4321

1
2
3
4

4321 8765 9

1
4
7

2
5
8

3
6
9

(d) Intra-invocation (e) Interinvocation (f) Hybrid

In
p

u
t

F
IF

O
 v

e
c
to

r
m

a
p

Bench: CONV Bench: STNCL Bench: TPACF

Example

insufficient region
(a) Loop unrolling (UNR) (b) Scalar expansion (SCX)

(h) FCS

Confi-

guration

switch

Example

proportional

region

(c) Strip mining

(STR)

Region

virtualization

Vectorized DySER
communication

Software
transformation

Hardware
mechanism

Region growing

Vectorized communication

Region virtualization

Transformation flow

a. Loop

unrolling (UNR)

Region

growing

b. Scalar

expansion (SCX)

Vector port mapping

(VEC)
d. Intra-invocation

e. Interinvocation
f. Hybrid

Vec
ld

Vec
ld

ld

× × ×

++ ++

×

ld

ldld ld

ld ld ld ld

ldld

×
× ×

+

×

+ + + + +

+
+

+

+
+

+++

+

×
× × × ×

+

¼
 I
te

ra
ti
o
n
s

¼
 I
te

ra
ti
o
n
s

¼
 I
te

ra
ti
o
n
s

Figure 3. Overview of hardware and software transformations for parallelism specialization. The transformation flow

indicates the strategy for transforming an arbitrary computational subregion into an ideal region.

..

44 IEEE MICRO

...

ENERGY-AWARE COMPUTING

load instructions efficiently, we must provide
mechanisms to handle arbitrary relationships
between contiguous memory and the inter-
face to the regions. We explain several com-
munication patterns with examples, and
describe the mechanisms that make vectori-
zation possible:

� Intra-invocation communication (VEC-
Intra). Figure 3d shows the computa-
tion subregion from the convolution
(CONV) benchmark. Each contiguous
memory word is mapped to a different
input port of DySER and used by a sin-
gle invocation. Intra-invocation com-
munication converts DySER into a
vector unit.

� Interinvocation communication (VEC-
Inter). Figure 3e shows the compu-
tation subregion from the stencil
(STNCL) benchmark. Each contiguous
memory word is mapped to the same
port because subsequent invocations
use contiguous memory addresses, let-
ting multiple invocations be explicitly
pipelined.

� Hybrid communication (VEC-Hybrid).
Figure 3f shows a computation subre-
gion from the TPACF benchmark.
Neither interinvocation nor intra-
invocation is sufficient to perform a
vector load more than three words
wide. Our strategy is to use a hybrid,
where each word triplet is sent to the
same invocation, and subsequent trip-
lets are pipelined to subsequent invoca-
tions. This example is three words wide
and three words deep.

Employing these communication patterns
requires a transformation called strip mining
(STR), as shown in Figure 3c. Both strip
mining and loop unrolling reduce the loop
trip count, but doing both is usually possible
because the loops we considered have high
bounds.

To implement vectorized communication
in hardware, we augment the configuration
with additional bits that specify a vector
map for each port. This mapping effectively
creates logical vector ports in DySER. When
a vectorized DySER instruction accesses
these ports, an additional state machine in

DySER’s I/O interface coordinates the trans-
fer of data. Also, vector loads/stores require a
wide memory interface similar to that used
by SSE.

Region virtualization. Similar to the way we
handle insufficient regions, we must resize
overly large regions to fit inside DySER in
order to achieve high utilization. Compared
to instruction-level acceleration, DySER’s
dynamic customization introduces resource
limitation challenges, which we overcome
by employing two primary techniques:

� Subgraph matching (SUB). First, we
attempt to reduce the computational
region by identifying similar computa-
tional structures, which we call sub-
graph matching, as shown in Figure 3g.
The transformation is essentially to
cut dataflow edges from a common
subgraph, and combine all common
subgraphs together. These cut edges
will be reconnected through the mem-
ory subregion.

� Fast-configuration switching (FCS). If
subgraph matching can’t reduce the
computation subregion sufficiently, we
employ a further technique to reduce
the configuration penalty. Figure 3h
shows how a superfluous computation
subregion can be cut into appropriately
sized components and mapped to
DySER using multiple configurations.

We enable FCS through two hardware
mechanisms. First, we augment every
DySER tile (functional unit and switch)
with the capability to store multiple config-
urations. Second, we have developed a con-
figuration switch protocol for DySER that
relies on each tile being in either an active
or off state. We add to the network a
1-bit free signal, which is sent from
a tile’s eight neighbors. We add one addi-
tional instruction that sends reset signals
through the old configuration, forcing
every tile that has finished computation
into the off state, triggering them into send-
ing free signals to neighbors. The set signals
that follow the reset signals then change any
off-state tile into the new configuration.
Each set signal propagates to all neighbors

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 45

..

SEPTEMBER/OCTOBER 2012 45

in the new configuration after receiving
their free signals.

This protocol explicitly reuses the data-
flow in the two regions to synchronize the
set and reset signals without any additional
networks or compiler requirements. As
soon as an entire invocation has been sent,
the program can execute the instruction
that sends reset and set signals to DySER.
Figure 4a shows an example of the set and
reset signals performing the configuration
switching. Figure 4b shows the microarchi-
tecture implementation, which requires con-
figuration registers and finite-state machines,
and outlines the protocol.

Using our register-transfer level (RTL)
implementation, the energy consumed by
FCS is about 2 picojoules compared to 120
picojoules for instruction-fetch and decode
in a four-wide OOO processor.

Evaluation
Our evaluation focused on three issues:

functionality specialization effectiveness, par-
allelism specialization effectiveness, and im-
plementation and integration feasibility. We
evaluated DySER in terms of these issues
with simulation, RTL implementation, and
a full-system FPGA implementation.

Evaluation methodology
For our performance and energy evalua-

tion, we used a simulation-based approach.
We considered a dual-issue OOO processor
as our baseline. This baseline processor had
a 64-Kbyte Level-1 (L1) data cache, a
32-Kbyte L1 instruction cache, and a tourna-
ment branch predictor with 4,096 branch
target buffer (BTB) entries. We considered
an SSE implementation in X86 and a GPU
as our reference data-parallel accelerators to
compare to DySER. Specifically, we consid-
ered a GPU that has eight processing ele-
ments in an SM (streaming multiprocessor)
because its area and functional-unit mix
matched one DySER block integrated with
a two-wide OOO processor. In all cases,
we considered applications tuned for each
architecture. We integrated DySER into a
dual-issue OOO processor that was identical
to our baseline.

We evaluated a DySER architecture that
had 64 heterogeneous functional units
(see Table 2). We used the Gem5 simulator
(http://www.m5sim.org), Gem5 þ SSE,
GPGPU-Sim,9 and Gem5 extended for
DySER to evaluate the various platforms, re-
spectively. We augmented our Gem5 infra-
structure with McPAT-based power models.10

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 46

FU

FU

FU

FU

FU FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

R R

Decoder

Configure

register

bank

FSM:

ff_stage

Current

configuration

Data/Set

Data/Ready/

Reset/Set

: Reset signal

• FSM: turns off,

 sends out

 acknowledg-

 ment, forwards

 reset signal

 and marks free

• Switch: is off and free

 to be set if all

 FSMs are free

: Set signal

switched from

(a+b)–c to

(a–b)+c

Data/Ready/

Reset/Set

Cycle 0

Cycle 2 Cycle 3

Cycle 1

(a) (b)

To all

FSMs

to turn

on stage

Credit

Free (FSM)

Free (switch)

broadcast

to neighbor

using a separate

1-bit network

Ready

FSM:

next

config

Reset

Ready

Reset

Reset_ack

+

–

–

+

–

R

+

R

R

R

–

S

S

S

S

S

R

–

–

Set

(sent from input

 port, after it received free)

• FSM: sets to next configuration

• Switch: becomes active

R

S

+

FU

Figure 4. Fast-configuration switching (FCS) example and implementation. The set and reset signals perform configuration

switching (a). The detailed microarchitecture, which requires configuration registers and finite-state machines (b).

..

46 IEEE MICRO

...

ENERGY-AWARE COMPUTING

We developed our own GPU power
model, extending the device-specific
model developed by Hong and Kim12 to
allow parameterization. Its error range
was �20 percent.

For functionality specialization, we con-
sidered the Parsec and SPECint benchmark
suites. We used code optimized with GCC
(GNU Compiler Collection) -O3, and we
used profiling to identify regions. We chose
distinct benchmarks for evaluating parallel-
ism specialization, because we wanted to
manually compile and optimize each bench-
mark, which was intractable for Parsec and
SPECint. A manual approach is appropriate,
because we were evaluating our architectural
mechanisms independently of effects from
potential compiler transformations. The
benchmarks we described earlier were good
choices, because they were simple enough to
manually optimize and were well-suited for
their respective accelerators. For the DySER
versions of these benchmarks, we imple-
mented or obtained scalar C++ code, manu-
ally applied the transformations described
earlier, and compiled the benchmarks with
our GCC-based DySER toolchain.

Functionality specialization results
Figures 5a and 5c show the performance

and energy improvements from the DySER
integration when compared to the baseline
dual-issue OOO processor and performing
only functionality specialization. We consis-
tently saw improvements across the
benchmarks, with harmonic speedup of

39 percent and energy reduction of 9 per-
cent. We achieved performance improve-
ments in irregular workloads by forming
large regions and specializing such regions
with control-flow support inside DySER.
With some benchmarks (such as freqmine
and gobmk), we saw little performance
gain, because of the many insufficient regions
that weren’t amenable to our transforma-
tions. Govindaraju et al. present further anal-
ysis of these benchmarks and results.13

Parallelism specialization results
The last two columns in Table 1 summa-

rize our results when parallelism specializa-
tion using DySER was performed. For each
benchmark, the table shows how DySER
employs the transformations we described.
These benchmarks primarily benefit from
parallelism specialization, but they can also
implicitly benefit from functionality special-
ization by using the DySER hardware to
represent computations. Figures 5b and 5d
show the performance and energy improve-
ments of DySER, SIMD, and GPU accelera-
tion compared to the baseline.

DySER versus SIMD. DySER performs sig-
nificantly better for all of the SIMD bench-
marks. For highly regular workloads such
as CONV and RDR, DySER emulates a
wider SIMD unit than SSE units and accel-
erates them using vectorized loads. For irreg-
ular workloads such as volume rendering
(VR) and tree search (TSRCH), we found
independent computations across iterations

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 47

Table 2. Details of functional units used in a 64-functional-unit DySER. We use

a unified division (div) and square root (sqrt) implementation.

Unit Count Latency Area (�m2) Description

INT-ADD 16 1 2,482 OpenSparc

INT-MUL 12 5 16,401 OpenSparc

FP-ADD 16 4 14,533 OpenSparc

FP-MUL 12 7 24,297 OpenSparc

FP-DIV 4 12 16,932 Taylor-Series based11

FP-SQRT 4 12 16,932 Taylor-series based11

Switch 81 1 8,009 N/A...
* FP-ADD: floating-point add; FP-DIV: floating-point divide; FP-MUL: floating-point
multiply; FP-SQRT: floating-point square root; INT-ADD: integer add; INT-MUL: integer
multiply.

..

SEPTEMBER/OCTOBER 2012 47

and accelerated them using DySER’s pipe-
line parallelism. However, because of data-
dependent control flow and irregular mem-
ory accesses, we cannot vectorize the code
beneficially. The Merge and N-body bench-
marks have superfluous computation sub-
regions, so we used region virtualization.

DySER provides a harmonic mean
speedup of 3.2� over our baseline, with a
range of 1.5� to 15�. Furthermore, it
reduces energy consumption by 60 percent,
with a range of 33 to 94 percent. It is
1.3� to 4.7� faster than SSE and has similar
energy efficiency.

DySER versus GPU. We see various distinct
types of behavior with GPU workloads. The
sixth column of Table 1 presents details
under three categories. Some highlights are
as follows:

� CUTCP requires long-latency func-
tional units that aren’t pipelined in
DySER but are pipelined in the
GPU, causing the GPU to outperform
DySER.

� Benchmarks like SAD, STNCL, and
MM perform similarly in both archi-
tectures because they can all exploit
highly regular data access efficiently.
For TPACF, the GPU and DySER
end up with similar performance but
take different approaches for efficient
histogram calculation. DySER can par-
allelize each index calculation, whereas
the GPU uses threads to calculate mul-
tiple indices simultaneously.

� The DySER implementation of fast
Fourier transform (FFT) caches the
reused transcendental operations per-
formed on the load slice, which turns
out to be highly beneficial to DySER,
and outperforms the GPU approach.

DySER provides a harmonic mean
speedup of 3.6� over our baseline, with a
range of 1.5� to 8.5�. It reduces energy
consumption 64 percent, with a range of
34 percent to 81 percent. It is up to 4�
faster than the GPU and 64 percent more
energy efficient.

Overall, DySER can be trivially con-
figured to exactly imitate SIMD and can

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 48

(a) Bla
c

Bod
y

C
an

n
Fa

ce Fl
ui

Fr
eq

Sw
ap Stre H

M
Per

l

Bzi
p

G
ccM

cf

G
ob

m

H
m

m
e
Li
bq

H
26

4
Ast

a
H
M

1

2

3

4

S
p

e
e
d

u
p

Parsec SPECint
CPU

DySER

(c)

(d)

(b)

Bla
c

Bod
y

C
an

n
Fa

ce Fl
ui

Fr
eq

Sw
ap Stre H

M
Per

l

Bzi
p

G
ccM

cf

G
ob

m

H
m

m
e
Li
bq

H
26

4
Ast

a
H
M

Parsec SPECint
CPU

DySER

N
BD

Y VR

TS
RC

H
M

RG
RD

R

C
O
N
V

H
M

2

4

6

8

10

12

S
p

e
e
d

u
p

15.1

SPM
V

C
TC

P
M

M

STN
C
L
SAD

LB
M

TP
AC

F

KM
N
S

N
N
W

FF
T
N
D
L

H
M

GPU

DySER

SIMD-4

DySER

N
BD

Y VR

TS
RC

H
M

RG
RD

R

C
O
N
V

H
M

0

20

40

60

80

100

E
n
e
rg

y
 r

e
d

u
c
ti
o
n
 (

%
)

SPM
V

C
TC

P
M

M

STN
C
L
SAD

LB
M

TP
AC

F

KM
N
S

N
N
W

FF
T
N
D
L

H
M

GPU

DySER

SIMD-4

DySER

0

20

40

60

80

100

E
n
e
rg

y
 r

e
d

u
c
ti
o
n
 (

%
)

Figure 5. Performance and energy improvements from DySER specializa-

tion: functionality specialization performance improvement (a), parallelism

specialization performance improvement (b), functionality specialization

energy reduction (c), and parallelism specialization energy reduction (d).

(CPU: CPU without SIMD; DySER: 64-functional-unit DySER þ CPU;

GPU: one streaming multiprocessor (SM) with eight processing elements;

SIMD-4: four-wide SIMD þ CPU).

..

48 IEEE MICRO

...

ENERGY-AWARE COMPUTING

surpass SIMD’s performance. DySER is
competitive with GPU performance, and its
mechanisms are equally flexible.

Feasibility of implementing and integrating DySER
We implemented DySER as a stand-alone

RTL for verification and to determine its fea-
sibility in terms of design, area, and power.
To attain an area estimate, we synthesized
DySER using Synopsys Design Compiler
with the Taiwan Semiconductor Manufac-
turing Company (TSMC) 55-nm Standard
Cell library. For the area of the FP-DIV
and SQRT units, we scaled previous esti-
mates11 to 55 nm. In total, the 64-unit
DySER we described earlier occupies an
area of 1.54 mm2. When all are scaled to
55 nm, this is approximately the size of the
Intel Atom floating-point and SIMD units
(from die photos, Atom’s FPC [floating-
point cluster] unit is 1.45 mm2 in 45 nm),
and is about half the size of a GPU SM
(from die photos, the area of one SM in
Nvidia’s GT200 is 2.7 mm2 at 65 nm).
The interfaces, switches, and flip-flops con-
tribute to 42 percent of DySER’s area and
18 percent of its energy. Overall, DySER is
area and energy efficient.

To demonstrate that DySER can be
integrated easily into conventional pro-
cessors, we integrated a prototype of
DySER into the OpenSparc processor,
including Sparc ISA extensions and a com-
piler based on LLVM. We also verified the
implementation on an off-the-shelf Virtex-
5 FPGA board booting unmodified Linux
and running applications. Owing to FPGA
size limitations, we could only map a four-
functional-unit DySER, which limited
performance analysis. We are exploring a
full-fledged 64-unit prototype.

T he DySER architecture unifies dispa-
rate attempts at functionality and

parallelism specialization in a single archi-
tecture with a set of mechanisms. DySER’s
unifying functionality and data-parallel
specialization mechanisms provide a plat-
form for energy-efficient computing. Our
quantitative results show that DySER is
competitive or outperforms SIMD and
GPU accelerators, performs well in terms
of functionality specialization, and is a

feasible design that is easy to integrate with
a processor.

SIMD accelerators or short-vector exten-
sions can provide speedup, but compilers
have difficulty targeting SIMD well. Pro-
grammers typically must use compiler intrin-
sics, which create severe portability and
maintainability problems. Although there
have been successful GPGPU programming
languages like CUDA, GPUs pose their
own set of programming challenges. Not
only must the user learn a new language,
but they must learn a massively multi-
threaded paradigm, give up on familiar se-
quential program debugging, and apply
GPU-specific optimizations. DySER pro-
gramming is relatively simple, uses sequential
C++ code, and uses established debugging
methodologies.

Even though the SSE family is SIMD,
many extensions to SSE (SSE3 and later)
have instructions that are not purely word
parallel. For example, the HADDPD instruc-
tion and its variants operate on elements
from the same vector. Also, there are instruc-
tions specializing the functionality, such as
MPSADBW, which computes the sum of ab-
solute differences. This exemplifies a trend
toward providing functionality specialization
in data-parallel accelerators. SIMD evolu-
tion, by increasing width, does not provide
scalable performance benefits across work-
loads, whereas DySER scalably adapts.
Thus, DySER is the natural evolution of
these instructions sets.

Conversely, GPUs are leaning toward the
CPU side by providing caches and eliminat-
ing redundant work with their scalarization
approach, which effectively creates a control
core and a set of computing cores, much
like DySER’s organization. Again, DySER-
like integration is the direction in which
GPUs appear to be headed.

Hence, DySER is a viable candidate for
replacing SIMD short-vector instruction
sets. With some simple extensions, we can
augment DySER to emulate existing instruc-
tion sets such as SSE, thus providing back-
ward compatibility. Clearly, DySER is not
a GPU replacement, because it can’t perform
graphics tasks well. However, it’s a promising
alternative for design-constrained environ-
ments such as Tilera, ARM in servers, and

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 49

..

SEPTEMBER/OCTOBER 2012 49

Oracle’s T4 successor targeting high-
performance computing. In these cases,
a completely new processor design like a
GPU, or the integration of a GPU with a
core, along with the adoption of a new soft-
ware ecosystem, could be prohibitively com-
plex. In contrast, DySER’s hardware and
software ecosystem are nondisruptive. M I CR O

..
References

1. T.J. Callahan, J.R. Hauser, and J. Wawrzy-

nek, ‘‘The GARP Architecture and C Com-

piler,’’ Computer, Apr. 2000, pp. 62-69.

2. Z. Ye et al., ‘‘Chimaera: A High-Performance

Architecture with a Tightly-Coupled Recon-

figurable Functional Unit,’’ Proc. 27th Int’l

Symp. Computer Architecture (ISCA 00),

IEEE CS, 2000, pp. 225-235.

3. N. Clark et al., ‘‘An Architecture Framework

for Transparent Instruction Set Customiza-

tion in Embedded Processors,’’ Proc. 32nd

Ann. Int’l Symp. Computer Architecture

(ISCA 05), IEEE CS, 2005, pp. 272-283.

4. S.C. Goldstein et al., ‘‘PipeRench: A Recon-

figurable Architecture and Compiler,’’ Com-

puter, Apr. 2000, pp. 70-77.

5. M. Mishra et al., ‘‘Tartan: Evaluating Spatial

Computation for Whole Program Execu-

tion,’’ Proc. 12th Int’l Conf. Architectural

Support for Programming Languages and

Operating Systems (ASPLOS 06), ACM,

2006, pp. 163-174.

6. S.R. Sarangi, A. Tiwari, and J. Torrellas,

‘‘Phoenix: Detecting and Recovering from

Permanent Processor Design Bugs with

Programmable Hardware,’’ Proc. 39th Ann.

Int’l Symp. Microarchitecture, IEEE CS,

2006, pp. 26-37.

7. G. Venkatesh et al., ‘‘Conservation Cores:

Reducing the Energy of Mature Computa-

tions,’’ Proc. 15th Int’l Conf. Architectural

Support for Programming Languages and

Operating Systems (ASPLOS 10), ACM,

2010, pp. 205-218.

8. S. Gupta et al., ‘‘Bundled Execution of Re-

curring Traces for Energy-Efficient General

Purpose Processing,’’ Proc. 44th Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

ACM, 2011, pp. 12-23.

9. A. Bakhoda et al., ‘‘Analyzing CUDA Work-

loads Using a Detailed GPU Simulator,’’

Proc. IEEE Int’l Symp. Performance Analysis

of Systems and Software (ISPASS 09), IEEE

CS, 2009, pp. 163-174.

10. S. Li et al., ‘‘McPAT: An Integrated Power,

Area, and Timing Modeling Framework

for Multicore and Many-Core Architec-

tures,’’ Proc. 42nd Ann. IEEE/ACM Int’l

Symp. Microarchitecture, ACM, 2009,

pp. 469-480.

11. T.-J. Kwon and J. Draper, ‘‘Floating-Point

Division and Square Root Using a Taylor-

Series Expansion Algorithm,’’ Microelectronics

J., vol. 40, no. 11, 2009, pp. 1601-1605.

12. S. Hong and H. Kim, ‘‘An Integrated GPU

Power and Performance Model,’’ Proc.

37th Ann. Int’l Symp. Computer Architec-

ture (ISCA 10), ACM, 2010, pp. 280-289.

13. V. Govindaraju, C.-H. Ho, and K. Sankaralin-

gam, ‘‘Dynamically Specialized Datapaths

for Energy Efficient Computing,’’ Proc.

IEEE 17th Int’l Symp. High Performance

Computer Architecture (HPCA 11), IEEE

CS, 2011, pp. 503-514.

Venkatraman Govindaraju is a PhD stu-
dent in the Department of Computer
Sciences at the University of Wisconsin�
Madison. His research interests include
energy-efficient computer architecture and
compiler techniques for hardware specializa-
tion. Govindaraju has an MS in computer
science from the University of Wisconsin�
Madison. He is a student member of IEEE
and the ACM.

Chen-Han Ho is a PhD student in the
Department of Computer Sciences at the
University of Wisconsin�Madison. His re-
search interests include computer architec-
ture, register-transfer level (RTL) design, and
field-programmable gate array (FPGA)
prototyping. Ho has a BS in electrical
engineering from National Taiwan Univer-
sity. He is a student member of IEEE.

Tony Nowatzki is a PhD student in the
Department of Computer Sciences at the
University of Wisconsin�Madison. His re-
search interests include architectural specializa-
tion, dynamic optimization, and parallelizing
compilers. Nowatzki has a BS in computer
science and computer engineering from the
University of Minnesota. He is a student
member of IEEE and the ACM.

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 50

..

50 IEEE MICRO

...

ENERGY-AWARE COMPUTING

Jatin Chhugani is a researcher in the Parallel
Computing Lab at Intel. His research
interests include developing parallel algo-
rithms for modern architectures. Chhugani
has a PhD in computer science from Johns
Hopkins University.

Nadathur Satish is a research scientist in the
Parallel Computing Lab at Intel. His
research interests include next-generation
parallel applications and architectures. Satish
has a PhD in electrical engineering and
computer sciences from the University of
California, Berkeley.

Karthikeyan Sankaralingam is an assistant
professor in the Departments of Computer
Sciences and Electrical and Computer En-
gineering at the University of Wisconsin�
Madison, where he also leads the Vertical
Research Group. His research interests
include microarchitecture, architecture,
and very large-scale integration (VLSI).

Sankaralingam has a PhD in computer
science from the University of Texas at
Austin. He is a senior member of IEEE.

Changkyu Kim is a research scientist at
Intel. His research interests include high-
performance computing, memory systems,
and databases on modern parallel archi-
tectures. Kim has a PhD in computer
science from the University of Texas at
Austin.

Direct questions and comments about
this article to Venkatraman Govindaraju,
University of Wisconsin�Madison, Depart-
ment of Computer Sciences, 1210 W.
Dayton St., Madison, WI 53706-1685;
venkatra@cs.wisc.edu.

[3B2-9] mmi2012050038.3d 22/9/012 13:13 Page 51

..

SEPTEMBER/OCTOBER 2012 51

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

