
Overview of 15-740
15-740 SPRING’18

NATHAN BECKMANN

Topics
What is computer architecture?

Underlying technology

Information about the class

History

I WELCOME YOUR
INTERRUPTIONS!

An interactive class is better for everyone…

We will all learn more and have more fun!

(also it helps your grade…)

The most important thing

The science and art of selecting and interconnecting hardware components to create computers
that meet functional, performance and cost goals. [wikipedia]

Abstractions to bridge gap

Application

Physics

What is computer architecture?

•Underlying components:
◦ Relays → Tubes → Transistors → VLSI → ?

◦ Magnetic core → SRAM → DRAM → FLASH → ?

•What to optimize for:
◦ Transistors

◦ Memory

◦ Instructions

◦ Performance

◦ Power

◦ Parallelism

•Technology constantly changing!

Responsive to technology

Responsive to applications

•The answer is constantly changing.

•As technology and application space change, so too the focus of computer architecture:

•1950s-60s: Computer arithmetic

•1970s-80s: Instruction set architecture

•1980s-90s: CPU design

•1990s-2000s: Memory system, I/O, networks

•2000s-today: Power, multicore

•2010s: Specialized accelerators

So what is computer architecture?

Ever-Changing
Technology
50 YEARS IN 15 SLIDES

Moore’s Law

G
o

o
d

n
e

ss
 (

lo
g

sc
al

e
)

Time

Moore’s Law

G
o

o
d

n
e

ss
 (

lo
g

sc
al

e
)

Time

Moore’s Law

G
o

o
d

n
e

ss
 (

lo
g

sc
al

e
)

Time

Moore’s Law

Happy

B’day
Happy
B ‘Day

G
o

o
d

n
e

ss
 (

lo
g

sc
al

e
)

Time

Case study: Eniac → Playstation 4
How much would enough Eniac’s weigh to equal 2.8Kg of PS/4 computing?

A little perspective.

Empire State Building
weighs ~2.7x108 Kg ?

1000 Empire State Buildings of Eniac’s!!!

Alternatively, more than all the
buildings in Pittsburgh!

Moore’s original prediction from 1965

Moore’s law really about economics?

Technology changes architecture
•It isn’t just transistor density

◦ Transistor size, density, speed, power, cost

◦ Memory size, density, latency, throughput

◦ Disks

◦ Networks

◦ Communication

•These trends lead to exponential increase in ops/sec-$-m3-watt

•Which in turn leads to changes in applications
Mainframes → Desktops → Mobile

•Which leads to new design goals

Case study: The CPU-memory gap

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1980 1985 1990 1995 2000 2005

Year

n
s Disk seek time

DRAM access time

SRAM access time

CPU cycle time

When did architects optimize multiplies?

When did architects optimize loads?

 Technology has a dramatic impact on
what’s important in architecture.

Q: Why isn’t memory getting faster?

A: Exponential growth in memory size.
 It’s not all about performance!

Technology constantly on the move!
•Not optimizing for # transistors anymore

◦ Currently > 1 billion transistors/chip

•Issues:

◦ Complexity

◦ Power

◦ Heat

◦ Latency

◦ Parallelism

•Huge change in thinking

◦ Improve sequential vs. parallel performance?

◦ Improve throughput vs. decrease power?

◦ Specialized vs. general purpose?

Nehalem

(‘08)

•“Deep learning” (a.k.a. neural networks) are taking over the world

•…An old technique that had fallen out of favor for decades

•What happened?
◦ 1) Big data – massive training datasets

◦ 2) GPUs – massive compute available for little $$

•Now, “neural accelerators” are the hottest topic in computer architecture
◦ E.g., 11 out of ~50 papers at ISCA in 2016

◦ Google, Apple, Microsoft building & deploying custom hardware at scale

Case study: Deep learning

•Understand how computers work

•Its not just how to build them:
◦ Why does my program run slowly?

◦ How do I increase performance?

◦ How do I improve reliability?

◦ Is my system secure?

◦ What can I expect tomorrow?

•We are at a crossroads…

Why you should study computer architecture

Combination of Hans Moravac + Larry Roberts + Gordon Bell

WordSize*ops/s/sysprice

[Gray Turing Award Lecture]

1.E-06

1.E-03

1.E+00

1.E+03

1.E+06

1.E+09

1880 1900 1920 1940 1960 1980 2000

doubles every

7.5 years
doubles every

2.3 years

doubles

every 1.0

years

Ops/sec/$

Mechanical/
Relays

Tubes/

Transistor
CMOS

2010 2020 2030

1.E+10

or is Moore’s
Law coming to
an end?

nanometer

doubles every
few months?

Dramatic changes
for architecture
and computing

History perspective:

•Graph: The Economist, April 2015

Moore’s Law already finished?

A Brief History of
Computer Architecture

•Microprocessor revolution

◦ Technology threshold crossed in 1970s:
Enough transistors (~25K) to fit a 16-bit processor on one chip

◦ Huge performance advantages: fewer slow chip-crossings

◦ Even bigger cost advantages: one “stamped-out” component

•Created new applications
◦ Desktops, CD/DVD players, laptops, game consoles, set-top boxes, mobile phones, digital

camera, mp3 players, GPS, automotive, …

•And replaced incumbents in existing segments
◦ Supercomputers, “mainframes”, “minicomputers”, etc.

The microprocessor

First microprocessor
•Intel 4004 (1971)

◦ The first single-chip CPU!

◦ Application: calculators

◦ Technology: 10000 nm

◦ 2300 transistors in 13 mm2

◦ 740 KHz, 8 or 16 cycles/instr.
◦ Multiple cycles to xfer data

◦ 12 Volts

◦ 640-byte address space

◦ 4-bit data

Reminder: This looks
silly today, but it is a
miraculous machine

by any historical
standard.

Tracing the microprocessor revolution
•How were growing transistor counts used?

•Initially to widen the datapath
◦ 4004: 4 bits  Pentium4: 64 bits

•… and also to add more powerful instructions
◦ To amortize overhead of fetch and decode

◦ To simplify programming (which was done by hand then)

◦ To reduce memory requirements for program

◦ Could get absurd: e.g., VAX “POLY” instruction

•Intel 8086 (1978)
◦ Application: microcomputers

◦ Technology: 3000nm

◦ 29,000 transistors in 33 mm2

◦ 5-10 MHz, 2-190 cycles/instr.
◦ What took 190 cycles? (Not memory!)

◦ 5 Volts

◦ 1MB address space

◦ 16-bit datapath

◦ Microcoded design: each instruction invokes a
microprogram with architecture-specific micro-
instructions

◦ Idea from MIT Whirlwind in 1950s!

The first x86

•Then to extract implicit instruction-level parallelism (ILP)
◦ Hardware provides parallel resources, figures out how to use them

◦ Software is oblivious

•Initially using pipelining …
◦ Which also enabled increased clock frequency

•… caches …
◦ Which became necessary as processor clock frequency increased

•… deeper pipelines and branch speculation

•… multiple instructions per cycle (superscalar)

•… dynamic scheduling (out-of-order execution)

•Meanwhile, also continued to add features, e.g., integrated floating point

Implicit parallelism

– for the most part!

•Intel Pentium4 (2003)

◦ Application: desktop/server

◦ Technology: 90nm (1% of 4004)

◦ 55M transistors (20,000x)

◦ 101 mm2 (10x)

◦ 3.4 GHz (10,000x)

◦ 3 instrs / cycle (superscalar)

◦ 1.2 Volts (1/10x)

◦ 32/64-bit data (16x)

◦ 22-stage pipelined datapath

◦ Two levels of on-chip cache

◦ Data-parallel “vector” (SIMD) instructions, hyperthreading

Nearing the end of uniprocessors

•Then to support explicit data & thread-level parallelism
◦ Hardware provides parallel resources, software specifies usage
◦ Why? diminishing returns on instruction-level-parallelism

•First using (sub-word) vector instructions …
◦ E.g., in Intel’s SSE, one instruction does four parallel multiplies

•… adding support for multi-threaded programs …
◦ Coherent caches, hardware synchronization primitives

•… multiple concurrent threads …
◦ First single-core multi-threading, now multi-core

•New architectures, e.g., GPUs
◦ GPUs becoming more programmable
◦  convergence between CPUs and GPUs (e.g., Intel’s Xeon Phi)

Explicit parallelism

Multicore
•Intel Core i7 (2013)

◦ Application: desktop/server

◦ Technology: 22nm (25% of P4)

◦ 1.4B transistors (30x)

◦ 177 mm2 (2x)

◦ 3.5 GHz to 3.9 Ghz (~1x)

◦ 1.8 Volts (~1x)

◦ 256-bit data (2x)

◦ 14-stage pipelined datapath (0.5x)

◦ 4 instructions per cycle (~1x)

◦ Three levels of on-chip cache (1.5x)

◦ Data-parallel “vector” (SIMD) instructions, hyperthreading

◦ Four-core multicore (4x)

???

RISC

Move to multi-processor

Performance over the years

Specialization
Hard to get parallel speedup for many applications

◦ Writing parallel software is hard!

◦ Extra cores give little benefit

◦  Can we put those transistors to better use?

Specialized processors are much more efficient
◦ Customized datapath for common operations (many instructions  1 cycle)

◦ Customized memories keep data near where its used

◦ Eliminate features that aren’t needed (less power)

…But only worthwhile for the most important workloads
◦ Design & verification is expensive

◦ Software now must support custom hardware

◦ Wastes chip real estate when idle

System-on-chip
Qualcomm Snapdragon 835

◦ Application: Mobile
◦ Technology: 10nm

◦ ARM CPUs – heterogeneous “big.LITTLE” design
◦ 4 “performance” cores – 2.45 GHz, 2MB L2 cache

◦ 4 “efficiency” cores – 1.9 GHz, 1MB L2 cache

◦ “Performance” cores are 20% faster; “efficiency” cores used 80% of the time

◦ Graphics processing unit (GPU)
◦ ~650 MHz

◦ Specialized floating-point datapath, e.g., for interpolation of textures

◦ Data-parallel: 16 pixels / clock

◦ Processor dynamically finds & schedules work (“warp scheduling”)

◦ Digital signal processor (DSP)
◦ Data-parallel SIMD architecture with 4 instructions / cycle

◦ No floating-point

◦ Compiler statically schedules parallelism (“VLIW”)

◦ Other custom accelerators (camera, modem, etc)

*Snapdragon 820
(only die shot I could find)

Architectures today
Multicore CPUs (e.g., Intel Xeon)

◦ Traditional hard-to-parallelize code – web serving

◦ Renewed focus on CPU microarchitecture – sequential performance still matters!

GPUs (e.g., Nvidia)
◦ “Embarrassingly parallel” code – science, graphics, DNNs

◦ Increasing programmability, converging towards traditional vector design

System-on-chip & domain-specialized accelerators
◦ Energy-efficiency – embedded, mobile, (datacenter – Google’s TPU???)

◦ Lots of open questions ...
◦ How many accelerators do we need?

◦ Which ones?

◦ How specialized should they be?

What computer architects do
Given constraints of

◦ Technology

◦ Application

Use essential themes
◦ Locality (e.g., caching)

◦ Prediction / speculation

◦ Pipelining

◦ Parallelism

◦ Virtualization / indirection

◦ Specialization

And, always, using abstraction…

What computer architects do
Given constraints of

◦ Technology

◦ Application

Use essential themes
◦ Locality (e.g., caching)

◦ Prediction / speculation

◦ Pipelining

◦ Parallelism

◦ Virtualization / indirection

◦ Specialization

Can often seem like going in circles…

What computer architects do
Given constraints of

◦ Technology

◦ Application

Use essential themes
◦ Locality (e.g., caching)

◦ Prediction / speculation

◦ Pipelining

◦ Parallelism

◦ Virtualization / indirection

◦ Specialization

Can often seem like going in circles… but there is progress!

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

A
rc

h
it

e
ct

u
re

 in
 t

h
e

 ‘5
0

s

th
e

 ‘9
0

s

th
e

 f
u

tu
re

?

Abstraction layers in modern systems

What would you do with
one trillion transistors?

Course logistics

•Lectures

•Paper readings & reviews

•Paper presentations

•Labs

•Project

•Exams

Logistics

•Please come

•Please come prepared

•Participation (10% of grade)

•Lecture schedule and slides are online
• Until Spring break: Memory hierarchy & parallelism

• After Spring break: Microarchitecture & specialization

Lectures

Paper readings instead of textbook

Reviews/summaries
◦ 10% of grade – more importantly, an essential skill

◦ Submit before class on Gradescope

Review contents:
◦ Identify essential (good) idea

◦ What is the goal of the paper?

◦ How does it relate to other papers/ideas?

◦ What questions does it raise?

◦ How are its ideas evaluated?

◦ What are the results? Broader conclusions?

◦ At most half a page

◦ Include 3 questions you would ask authors

Paper readings & reviews

Paper presentations
Logistics

◦ Pick a topic by 2/1 – hopefully related to project

◦ Groups of 2-3

◦ All group members read all papers on chosen topic

◦ 20 minute presentation in class

Presentation
◦ Background question/problem for topic

◦ What are the good ideas?

◦ How are they evaluated?

◦ Follow-up ideas

◦ More advice on website

Labs
2 labs early in semester

◦ 5% grade each

Work in groups of 2-3

Goal:
◦ Become familiar with some tools

◦ Understand performance measurement

◦ Understand optimization aka
How architecture affects use

First lab out this week! (more on Thursday)

Project
Main focus, takes ~half of semester!

◦ 40% of grade

Do some real research

Work in groups of 2-3

Timeline:
◦ Proposal 3/10

◦ Milestone presentation 4/10, 4/12, 4/17

◦ Poster 5/1

◦ Final report 5/8

Exams
2 in-class exams

◦ 90 mins each

◦ 15% grade each

Closed book

Not cumulative

Exam 1: 3/8 (before Spring break)

Exam 2: 5/3 (last class)

Waitlist
Keeping class at ≤25 people

◦ Only 1 TA

Will accept students off waitlist in following order:
◦ Urgent circumstance (e.g., must take this class right now to graduate)

◦ Students who have kept up with readings & assignments
◦ In waitlist order

You should know within a few weeks

•Architecture: physics  applications

•Constantly changing field:
◦ New problems

◦ New solutions

◦ …But many common patterns and useful insights

•One must understand architecture to understand computer systems

Overview

