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Topics
Instruction set architecture (ISA) design tradeoffs

X86

RISC vs CISC



Assignment 1 released
Due: 30 January 2018 (12 days)

9 problems

Time not equally divided!

Problem 9 uses PIN, which you must learn (≈45% of assignment)
◦ Read online PIN tutorial

◦ Don’t put this off

◦ PIN available at …/15740-s18/public/



Readings
Will be due before the following lecture from now on

Some leeway in turning in first reading

Questions/comments/concerns?



Algorithm

Gates/Register-Transfer Level (RTL)

Application

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Abstraction layers in modern systems

Instruction Set Architecture (ISA) ISA defines functional contract between 
hardware and software

I.e., what the hardware does and (doesn’t) 
guarantee will happen



Microarchitecture

↓

Abstraction & your program
High-level language
◦ Level of abstraction closer to 

problem domain

◦ Provides for productivity and 
portability 

Assembly language
◦ Textual representation of 

instructions (ISA)

Hardware representation
◦ Binary representation of instructions 

(ISA)



The ISA defines the functional contract between the software and the hardware

The ISA is an abstraction that hides details of the implementation from the software

 The ISA is functional abstraction of the processor (a “mental model”)
◦ What operations can be performed

◦ How to name storage locations

◦ The format (bit pattern) of the instructions

ISA typically does NOT define
◦ Timing of the operations

◦ Power used by operations

◦ How operations/storage are implemented

Instruction set architecture (ISA)

If timing leaks information,
is it really Intel’s fault?



Ease of programming (software perspective)

Ease of implementation (hardware perspective)

Good performance

Compatibility

Completeness (eg, Turing)

Compactness – reduce program size

Scalability / extensibility

Features: Support for OS / parallelism / …

Etc

ISA design goals
/ Code generation



The ISA should make it easy to express programs and make it easy to create 
efficient programs.

Who is creating the programs?
◦ Early Days: Humans.  Why?

Ease of programming



The ISA should make it easy to express programs and make it easy to create 
efficient programs.

Who is creating the programs?
◦ Early Days: Humans. 

◦ No real compilers

◦ Resources very limited

◦ Q: What does that mean for the ISA designer?

◦ A: High-level operations

◦ Modern days (~1980 and beyond): Compilers

◦ Today’s optimizing compiler do a much better job than most humans

◦ Q: What does that mean for the ISA designer?

◦ A: Fine-grained, low-level instructions

Ease of programming



ISA shouldn’t get in the way of
optimizing implementation

Examples:
◦ Variable length instructions

◦ Varying instruction formats

◦ Implied registers

◦ Complex addressing modes

◦ Precise interrupts

◦ Appearance of atomic execution

But what is performance?

Fetch

Decode

Read Inputs

Execute

Write Output

Next Instruction

Ease of implementation

Simple processor pipeline:



“Never underestimate the bandwidth of a station wagon full of 
tapes hurtling down the highway.”

Tanenbaum, Computer Networks

xkcd

Performance
Response time:

◦ AKA latency

◦ How long does a task usually take?

Throughput:
◦ AKA bandwidth

◦ How much work can you do per unit time?



Response time (latency)
Elapsed time

◦ Total time from start to finish including everything

CPU time (only time spent in processor)



Response time (latency)
Elapsed time

◦ Total time from start to finish including everything

CPU time (only time spent in processor)

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 = 𝐶𝑃𝑈 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 × 𝐶𝑃𝑈 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒

CPU clock cycles = number of cycles needed to execute program
◦ # of instructions executed

◦ Cycles per instruction

CPU clock time = 1 / frequency



“The Iron Law of Performance”

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑦𝑐𝑙𝑒

What determines each factor? How does ISA impact each?

Instructions / program = dynamic instruction count (not code size)
◦ Determined by program, compiler, and ISA

Cycles / instruction (CPI)
◦ Determined by ISA, 𝜇arch, program, and compiler

Seconds / cycle (critical path)
◦ Determined by 𝜇arch and technology



Cycles per instruction (CPI)
Different instruction classes take different numbers of cycles

In fact, even the same instruction can take a different number of cycles
◦ Example?

When we say CPI, we really mean: Weighted CPI

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡
=෍

𝑖=1

𝑛

𝐶𝑃𝐼𝑖 ×
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑖
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡



CPU time

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑦𝑐𝑙𝑒

How to improve performance:

Reduce instruction count

Reduce cycles per instruction

Reduce clock time

But there is a tension between these…



CPI example – which machine is faster?
Computer A: Cycle time = 250ps, CPI = 2.0

Computer B: Cycle time = 500ps, CPI = 1.2

Same ISA

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝐴
= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼𝐴 × 𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒𝐴
= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 2 × 250𝑝𝑠
= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 500𝑝𝑠

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝑏
= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼𝐵 × 𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒𝐵
= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 1.2 × 500𝑝𝑠
= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 600𝑝𝑠

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝐵
𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝐴

=
600𝑝𝑠

500𝑝𝑠
= 1.2

A is faster…

…by this much



Performance is not just CPU time

Or, even elapsed time

E.g., ?

Other measures of “performance”



Performance is not just CPU time

Or, even elapsed time

Power

Area (in mm2 of Si, a.k.a., # transistors)

Complexity

Compatibility 

Other measures of “performance”



In CMOS IC technology:

FrequencyVoltageload CapacitivePower 2 

×1000×30 5V → 1V

CMOS & power



Compatibility

“Between 1970 and 1985 many thought the primary job of the computer 
architect was the design of instruction sets. …The educated architect was 
expected to have strong opinions about the strengths and especially the 
weaknesses of the popular computers. The importance of binary compatibility 
in quashing innovation in instruction set design was unappreciated by many 
researchers and textbook writers, giving the impression that many architects 
would get a chance to design an instruction set.” - H&P, Appendix A



ISA separates interface from implementation

Thus, many different implementations possible
◦ IBM/360 first to do this and introduce 7 different machines all with same ISA

◦ Intel from 8086  core i7 Xeon Phi ?

◦ ARM ISA mobile  server

Protects software investment

Important to decide what should be exposed and what should be kept hidden.
◦ E.g., MIPS “branch delay slots”

Compatability



Operands
◦ How many?

◦ What kind?

◦ Addressing mechanisms

Operations
◦ What kind?

◦ How many?

Format/encoding
◦ Length(s) of bit pattern

◦ Which bits mean what

What goes into an ISA?



Three basic types of machine
◦ Stack

◦ Accumulator

◦ Register

Two types of register machines
◦ Register-memory

◦ Most operands in most instructions can be either a register or a memory address

◦ Load-store

◦ Instructions are either load/store or register-based

Operands Machine model



Stack

Accumulator

Register-Memory

Load-Store

1 address add A Acc ← Acc + mem[A]

0 address add push(pop() + pop())

2 address add R1, A R1 ← R1 + mem[A]

3 address add R1, R2, A R1 ← R2 + mem[A]

3 address add R1, R2, R3 R1 ← R2 + R3

2 address load R1, R2 R1 ← mem[R2]

store R1, R2 mem[R1] ← R2

Operands per instruction



Code for: A=X*Y – B*C

X
Y
B
C
A

SP

+ 4

+ 8

+12

+16

Stack

push 8(SP)
push 16(SP)
mult
push 4(sp)
push 12(sp)
mult
sub
st 20(sp)
pop

Examples



Code for: A=X*Y – B*C

X
Y
B
C
A

SP

+ 4

+ 8

+12

+16

Stack

push 8(SP)
push 16(SP)
mult
push 4(sp)
push 12(sp)
mult
sub
st 20(sp)
pop

Examples

Accumulator

ld 8(SP)
mult 12(SP)
st 20(SP)
ld 4(SP)

mult 0(SP)
sub 20(sp)
st 16(sp)



Code for: A=X*Y – B*C

X
Y
B
C
A

SP

+ 4

+ 8

+12

+16

Stack

push 8(SP)
push 16(SP)
mult
push 4(sp)
push 12(sp)
mult
sub
st 20(sp)
pop

Examples

Accumulator

ld 8(SP)
mult 12(SP)
st 20(SP)
ld 4(SP)

mult 0(SP)
sub 20(sp)
st 16(sp)

reg-mem

mult R1,8(SP),12(SP)

mult R2,0(SP),4(SP)

sub 16(sp),R2,R1



Code for: A=X*Y – B*C

X
Y
B
C
A

SP

+ 4

+ 8

+12

+16

Stack

push 8(SP)
push 16(SP)
mult
push 4(sp)
push 12(sp)
mult
sub
st 20(sp)
pop

Examples

Accumulator

ld 8(SP)
mult 12(SP)
st 20(SP)
ld 4(SP)

mult 0(SP)
sub 20(sp)
st 16(sp)

reg-mem

mult R1,8(SP),12(SP)

mult R2,0(SP),4(SP)

sub 16(sp),R2,R1

ld/st

ld r1,8(SP)
ld r2,12(SP)
ld r3,4(SP)
ld r4,0(SP)
mult r5,r1,r2
mult r6,r3,r4
sub r7,r6,r5
st 16(SP),r7



Machine model tradeoffs
Stack and Accumulator:

◦ Each instruction encoding is short

◦ IC is high

◦ Very simple exposed architecture

Register-Memory:
◦ Instruction encoding is much longer 

◦ More work per instruction

◦ IC is low

◦ Architectural state more complex

Load/Store:
◦ Medium encoding length

◦ Less work per instruction

◦ IC is high

◦ Architectural state more complex



Common operand types
Register add r1,r2,r3

add r1,r2

Immediate add r1,#7

Memory
◦ direct add r1,[0x1000]

◦ register indirect add r1,(r2)

◦ displacement add r1,100(r2)

◦ indexed add r1,(r2+r3)

◦ indexed+displacement add r1,100(r2+r3)

◦ scaled+displacement add r1,100(r2+r3*s)

◦ memory indirect add r1,([0x1000])

◦ autoincrement add r1,(r2)+

◦ autodecrement add r1,(r2)-



Memory addressing modes, i.e.,
How to specify an effective address

How many?

How complex?

How much memory can be addressed?

Trade-offs
◦ How useful is the addressing mode?

◦ What is the impact on CPI? IC? Freq?

◦ How many bits needed to encode in instruction?

Memory operands



memory indirect

scaled

register indirect

direct

displacement

Another question: How big of a displacement?

Frequency of addressing modes



How many registers?
More registers means:

◦ Longer instruction encoding

◦ Each register access is slower and/or

◦ More power per access

◦ More state is exposed 
(more saves/restores per func call, context switch, …)

Fewer registers means:
◦ Harder for the compiler

◦ Think of registers as “cache level-0”

◦ Small instructions

◦ More instructions

Trend towards more registers.  Why?



Arithmetic

Logical

Data transfer

Control flow

OS support

Parallelism support

Operations



Control flow
Types:

◦ Jump

◦ Conditional Branch

◦ Indirect Jump 

◦ call

◦ return

◦ Trap

Destination Specified
◦ Register

◦ Displacement

Condition Codes
◦ Set as side-effect?

◦ Set explicitly?



Length
◦ How long?

◦ Fixed or Variable?

Format
◦ consistent? Specialized?

Trade-offs:

Instruction encoding



Length
◦ How long?

◦ Fixed or Variable?

Format
◦ consistent? Specialized?

Trade-offs:
◦ Fixed length

◦ Simple fetch/decode/next

◦ Not efficient use of instruction memory

◦ Variable length

◦ Complex fetch/decode/next

◦ Improved code density

Instruction encoding



x86 Overview



Intel x86 Processors
Totally dominate laptop/desktop/server market

◦ ARM trying to gain a foothold

Evolutionary design
◦ Backwards compatible up until 8086, introduced in 1978

◦ Added more features as time goes on

Complex instruction set computer (CISC)
◦ Many different instructions with many different formats

◦ But, only small subset encountered with Linux programs

◦ Hard to match performance of Reduced Instruction Set Computers (RISC)

◦ But, Intel has done just that!

◦ In terms of speed …not so much for power



Name Date Transistors MHz

8086 1978 29K 5-10
◦ First 16-bit Intel processor.  Basis for IBM PC & DOS

◦ 1MB address space

386 1985 275K 16-33
◦ First 32 bit Intel processor , referred to as IA32

◦ Added “flat addressing”, capable of running Unix

Pentium 4F 2004 125M 2800-3800
◦ First 64-bit Intel processor, referred to as x86-64

Core 2 2006 291M 1060-3500
◦ First multi-core Intel processor

Kaby Lake 2016 ~1.7B 2700-3500
◦ Recent “Core i7” branded processor

Intel x86 Milestones



x86 Clones (AMD)
Historically
◦ AMD has followed just behind Intel

◦ A little bit slower, a lot cheaper

The Best of Times…
◦ Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies

◦ Built Opteron: tough competitor to Pentium 4

◦ Developed x86-64, their own extension to 64 bits



The worst of times…

“Bulldozer”: re-designed from scratch (2011)
◦ Focus on threading

◦ Poor single-thread performance (low IPC)

◦ Built for parallel software that didn’t arrive!

Intel dominates performance for years…

“Zen”: re-re-design (2017)
◦ Re-focused on single-thread IPC

Many proclaimed the death of core microarchitecture, but parallelism is hard.

x86 Clones (AMD)



Intel’s 64-Bit
Intel Attempted Radical Shift from IA32 to IA64
◦ Totally different architecture (Itanium)

◦ Executes IA32 code only as legacy

◦ Relied on compiler  disappointing performance (will talk more about this later)

AMD Stepped in with Evolutionary Solution
◦ x86-64 (now called “AMD64”)

Intel felt obligated to focus on IA64
◦ Hard to admit mistake or that AMD is better

2004: Intel Announces EM64T extension to IA32
◦ Extended Memory 64-bit Technology

◦ Almost identical to x86-64!

All but low-end x86 processors support x86-64



CPU

Programmer-Visible State
◦ PC: Program counter

◦ Address of next instruction

◦ Called “EIP” (IA32) or “RIP” (x86-64)

◦ Register file
◦ Heavily used program data

◦ Condition codes
◦ Store status information about most recent 

arithmetic operation

◦ Used for conditional branching

PC

Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

◦ Memory

◦ Byte addressable array

◦ Code and user data

◦ Stack to support procedures

Assembly programmer’s view



Code in files  p1.c p2.c

Compile with command:  gcc –O1 p1.c p2.c -o p

◦ Use basic optimizations (-O1)

◦ Put resulting binary in file p text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries 
(.a)

Turning C into object code



C Code

int sum(int x, int y)

{

int t = x+y;

return t;

}

Generated IA32 Assembly

sum:

pushl %ebp

movl %esp,%ebp

movl 12(%ebp),%eax

addl 8(%ebp),%eax

popl %ebp

ret

Obtain with command

/usr/local/bin/gcc –O1 -S code.c

Produces file code.s

Compiling into assembly



Assembly characteristics: data types
“Integer” data of 1, 2, 4, or 8 bytes

◦ Data values

◦ Addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes

No aggregate types such as arrays or structures
◦ Just contiguously allocated bytes in memory



Assembly characteristics: operations
Perform arithmetic function on register or memory data

Transfer data between memory and register
◦ Load data from memory into register

◦ Store register data into memory

Transfer control
◦ Unconditional jumps to/from procedures

◦ Conditional branches



Code for sum
0x401040 <sum>:     

0x55

0x89

0xe5

0x8b

0x45

0x0c

0x03

0x45

0x08

0x5d

0xc3

Assembler
◦ Translates .s into .o

◦ Binary encoding of each instruction

◦ Nearly-complete image of executable code

◦ Missing linkages between code in different files

Linker
◦ Resolves references between files

◦ Combines with static run-time libraries

◦ E.g., code for malloc, printf

◦ Some libraries are dynamically linked

◦ Linking occurs when program begins execution

• Total of 11 bytes

• Each instruction 
1, 2, or 3 bytes

• Starts at address 
0x401040

Object code



C Code
◦ Add two signed integers

Assembly
◦ Add two 4-byte integers

◦ “Long” words in GCC parlance

◦ Same instruction whether signed or 
unsigned

◦ Operands:

x: Register %eax

y: Memory M[%ebp+8]

t: Register %eax

◦ Return function value in %eax

Object Code
◦ 3-byte instruction

◦ Stored at address 0x80483ca

int t = x+y;

addl 8(%ebp),%eax

0x80483ca:  03 45 08

Similar to expression: 

x += y

More precisely:

int eax;

int *ebp;

eax += ebp[2]

Machine instruction example



Disassembled

Disassembler
objdump -d p

◦ Useful tool for examining object code

◦ Analyzes bit pattern of series of instructions

◦ Produces approximate rendition of assembly code

◦ Can be run on either a.out (complete executable) or .o file

080483c4 <sum>:

80483c4:  55        push   %ebp

80483c5:  89 e5     mov %esp,%ebp

80483c7:  8b 45 0c  mov 0xc(%ebp),%eax

80483ca:  03 45 08  add    0x8(%ebp),%eax

80483cd:  5d        pop    %ebp

80483ce:  c3        ret 

Disassembling object code



Disassembled
Dump of assembler code for function sum:

0x080483c4 <sum+0>:     push   %ebp

0x080483c5 <sum+1>:     mov %esp,%ebp

0x080483c7 <sum+3>:     mov 0xc(%ebp),%eax

0x080483ca <sum+6>:     add    0x8(%ebp),%eax

0x080483cd <sum+9>:     pop    %ebp

0x080483ce <sum+10>:    ret

Within gdb Debugger
gdb p

disassemble sum

◦ Disassemble procedure

x/11xb sum

◦ Examine the 11 bytes starting at sum

Object
0x401040: 

0x55

0x89

0xe5

0x8b

0x45

0x0c

0x03

0x45

0x08

0x5d

0xc3

Alternative disassembly



Anything that can be interpreted as executable code

Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE:   file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000:  55             push   %ebp

30001001:  8b ec mov %esp,%ebp

30001003:  6a ff          push   $0xffffffff

30001005:  68 90 10 00 30 push   $0x30001090

3000100a:  68 91 dc 4c 30 push   $0x304cdc91

What can be disassembled?



Integer registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
n

er
al

 p
u

rp
o

se

accumulate

counter

data

base

source 

index

destination

index

stack 

pointer

base

pointer

Origin
(mostly obsolete)



Moving Data
movl Source, Dest:

Operand Types
◦ Immediate: Constant integer data

◦ Example: $0x400, $-533

◦ Like C constant, but prefixed with ‘$’

◦ Encoded with 1, 2, or 4 bytes

◦ Register: One of 8 integer registers

◦ Example: %eax, %edx

◦ But %esp and %ebp reserved for special use

◦ Others have special uses for particular instructions

◦ Memory: 4 consecutive bytes of memory at address given by register

◦ Simplest example: (%eax)

◦ Various other addressing modes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Moving data: IA32



Moving Data: IA32
Moving Data
movl Source, Dest:

Operand Types
◦ Immediate: Constant integer data

◦ Example: $0x400, $-533

◦ Like C constant, but prefixed with ‘$’

◦ Encoded with 1, 2, or 4 bytes

◦ Register: One of 8 integer registers

◦ Example: %eax, %edx

◦ But %esp and %ebp reserved for special use

◦ Others have special uses for particular instructions

◦ Memory: 4 consecutive bytes of memory at address given by register

◦ Simplest example: (%eax)

◦ Various other addressing modes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp



movl Operand Combinations

Cannot do memory-memory transfer with a single instruction

movl

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Dest C Analog

movl $0x4,%eax temp = 0x4;

movl $-147,(%eax) *p = -147;

movl %eax,%edx temp2 = temp1;

movl %eax,(%edx) *p = temp;

movl (%eax),%edx temp = *p;

Src,Dest



Simple memory addressing modes
Indirect (R) Mem[Reg[R]]

◦ Register R specifies memory address

◦ Aha! Pointer dereferencing in C

movl (%ecx),%eax

Displacement D(R) Mem[Reg[R]+D]

◦ Register R specifies start of memory region

◦ Constant displacement D specifies offset

◦ D is an arbitrary integer constrained to fit in 1-4 bytes

movl 8(%ebp),%edx



Complex memory addressing modes
Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
◦ D: Constant “displacement” 1, 2, or 4 bytes

◦ Rb: Base register: Any of 8 integer registers

◦ Ri: Index register: Any, except for %esp

◦ Unlikely you’d use %ebp, either

◦ S: Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]



Sizes of C Objects (in Bytes)
C Data Type Generic 32-bit Intel IA32 x86-64

◦ unsigned 4 4 4

◦ int 4 4 4

◦ long int 4 4 8

◦ char 1 1 1

◦ short 2 2 2

◦ float 4 4 4

◦ double 8 8 8

◦ long double 8                   10/12 10/16

◦ char * 4 4 8

◦ Or any other pointer

Data Representations: IA32 + x86-64



void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}
Body

Setup

Finish

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp), %edx

movl 12(%ebp), %ecx

movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx)

popl %ebx

popl %ebp

ret

Using simple addressing modes



swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp), %edx

movl 12(%ebp), %ecx

movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx)

popl %ebx

popl %ebp

ret

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

Machine specifies calling convention
(a.k.a. application binary interface or 
ABI):

• Args passed on stack

• Result in EAX

• Everything except EAX, 
ECX, and EDX are caller-
saved

Body

Setup

Finish

Using simple addressing modes



Understanding Swap

Stack
(in memory)

Register Value

%edx xp

%ecx yp

%ebx t0

%eax t1

yp

xp

Rtn adr

Old %ebp %ebp0 

4 

8 

12 

Offset

•
•
•

Old %ebx-4 %esp

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}



Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x104

0x120

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104

0x124

0x124

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x120

123

0x104

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123

123

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



456

456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456456

0x124

0x120

123

0x104

123

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

456

123

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123123

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



%rsp

x86-64 Integer Registers
◦ Extend existing registers.  Add 8 new ones.

◦ Make %ebp/%rbp general purpose

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp



Instructions
Long word l (4 Bytes) ↔ Quad word q (8 Bytes)

New instructions:
◦ movl➙ movq

◦ addl➙ addq

◦ sall➙ salq

◦ etc.

32-bit instructions that generate 32-bit results
◦ Set higher order bits of destination register to 0

◦ Example: addl



32-bit code for swap
swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp), %edx

movl 12(%ebp), %ecx

movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx)

popl %ebx

popl %ebp

ret

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

Body

Setup

Finish



64-bit code for swap

Operands passed in registers (why useful?)
◦ First (xp) in %rdi, second (yp) in %rsi

◦ 64-bit pointers

No stack operations required

32-bit data
◦ Data held in registers %eax and %edx

◦ movl operation

swap:

movl (%rdi), %edx

movl (%rsi), %eax

movl %eax, (%rdi)

movl %edx, (%rsi)

ret

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

Body

Setup

Finish



64-bit code for long int swap

64-bit data
◦ Data held in registers %rax and %rdx

◦ movq operation

◦ “q” stands for quad-word

swap_l:

movq (%rdi), %rdx

movq (%rsi), %rax

movq %rax, (%rdi)

movq %rdx, (%rsi)

ret

void swap(long *xp, long *yp) 

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

} Body

Setup

Finish



RISC vs CISC



RISC: Reduced Instruction Set Computer
◦ Introduced Early 80’s

◦ RISC-I (Berkeley), MIPS (Stanford), IBM 801

◦ Today: ARM

CISC: Complex Instruction Set Computer
◦ What everything was before RISC

◦ VAX, x86, 68000

◦ Today: x86

Outcome:
◦ RISC in academy (and in technology)

◦ CISC in commercial space, but …

◦ RISC in embedded (and under the covers)

RISC vs CISC



CISC
◦ variable length instructions: 1-321 bytes

◦ GP registers+special purpose registers+PC+SP+conditions

◦ Data: bytes to strings

◦ memory-memory instructions

◦ special instructions: e.g., crc, polyf, …

RISC
◦ fixed length instructions: 4 bytes

◦ GP registers + PC

◦ load/store with few addressing modes

Basic comparison





Pre-1980
◦ Lots of hand written assembly

◦ Compiler technology in its infancy

◦ Multi-chip implementations

◦ Small memories at ~CPU speed

Early 80’s
◦ VLSI makes single chip processor possible

(But only if very simple)

◦ Compiler technology improving

Technology trends



Pre-1980
◦ Lots of hand written assembly

◦ Compiler technology in its infancy

◦ Multi-chip implementations

◦ Small memories at ~CPU speed

Early 80’s
◦ VLSI makes single chip processor possible

(But only if very simple)

◦ Compiler technology improving

RISC goals:
◦ Enable single-chip CPU

◦ Rely on compiler

◦ Aim for high frequency & low CPI

Technology trends



MIPS v. VAX



The RISC Design Tenets
Single-cycle execution

◦ CISC: many multicycle operations

Hardwired (simple) control
◦ CISC: microcode for multi-cycle operations

Load/store architecture
◦ CISC: register-memory and memory-memory

Few memory addressing modes
◦ CISC: many modes

Fixed-length instruction format
◦ CISC: many formats and lengths

Reliance on compiler optimizations
◦ CISC: hand assemble to get good performance

Many registers (compilers can use them effectively)
◦ CISC: few registers



Schools of ISA design & performance

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑦𝑐𝑙𝑒

Complex instruction set computer (CISC)
◦ Complex instructions  lots of work per instruction fewer instructions per program

◦ But… more cycles per instruction & longer clock period

◦ Modern 𝜇arch gets around most of this

Reduced instruction set computer (RISC)
◦ Fine-grain instructions less work per instruction more instructions per program

◦ But… lower cycles per instruction & shorter clock period

◦ Heavy reliance on compiler to “do the right thing”



The case for RISC
CISC is fundamentally handicapped

For a given technology, RISC implementation will be faster
◦ Current technology enables single-chip RISC

◦ When it enables single-chip CISC, RISC will be pipelined

◦ When it enables pipelined CISC, RISC will have caches

◦ When it enables CISC with caches, RISC will have ...



Pre-1980
◦ lots of hand written assembly

◦ Compiler technology in its infancy

◦ multi-chip implementations

◦ Small memories at ~CPU speed

Early 80’s
◦ VLSI makes single chip processor possible

(But only if very simple)

◦ Compiler technology improving

Late 90’s
◦ CPU speed vastly faster than memory speed

◦ More transistors makes ops possible

Technology trends



CISC’s rebuttal
CISC flaws not fundamental, can be fixed with more 
transistors

Moore’s Law will narrow the RISC/CISC gap (true)
◦ Good pipeline: RISC = 100K transistors, CISC = 300K

◦ By 1995: 2M+ transistors had evened playing field

Software costs dominate, compatibility is paramount



Intel’s x86 Trick: RISC Inside
1993: Intel wanted “out-of-order execution” in Pentium Pro
◦ Hard to do with a coarse grain ISA like x86

Solution? Translate x86 to RISC micro-ops (ops)
push $eax → store $eax, -4($esp) 

addi $esp,$esp,-4

+ Processor maintains x86 ISA externally for compatibility

+ But executes RISC ISA internally for implementability

◦ Given translator, x86 almost as easy to implement as RISC

◦ Intel implemented “out-of-order” before any RISC company

◦ “OoO” also helps x86 more (because ISA limits compiler)

◦ Also used by other x86 implementations (AMD)

◦ Different ops for different designs

◦ Not part of the ISA specification



Potential Micro-op Scheme
Most instructions are a single micro-op
◦ Add, xor, compare, branch, etc.

◦ Loads   example:    mov -4(%rax), %ebx

◦ Stores   example:   mov %ebx, -4(%rax)

Each memory access adds a micro-op
◦ “addl -4(%rax), %ebx” is two micro-ops (load, add)

◦ “addl %ebx, -4(%rax)” is three micro-ops (load, add, store)

Function call (CALL) – 4 uops
◦ Get program counter, store program counter to stack, 

adjust stack pointer, unconditional jump to function start 

Return from function (RET) – 3 uops
◦ Adjust stack pointer, load return address from stack, jump register

Again, just a basic idea, micro-ops are specific to each chip



More About Micro-ops
Two forms of ops “cracking”

◦ Hard-coded logic: fast, but complex (for insn in few ops)

◦ Table: slow, but “off to the side”, doesn’t complicate rest of machine

◦ Handles the really complicated instructions

Core precept of architecture:

Make the common case fast, make the 
rare case correct.



More About Micro-ops
Two forms of ops “cracking”

◦ Hard-coded logic: fast, but complex (for insn in few ops)

◦ Table: slow, but “off to the side”, doesn’t complicate rest of machine
◦ Handles the really complicated instructions

x86 code is becoming more “RISC-like”
◦ In 32-bit to 64-bit transition, x86 made two key changes:

◦ 2x number of registers, better function conventions

◦ More registers, fewer pushes/pops

◦ Result?  Fewer complicated instructions

◦ Smaller number of ops per x86 insn



Winner for Desktop PCs: CISC
x86 was first mainstream 16-bit microprocessor by ~2 years
◦ IBM put it into its PCs…

◦ Rest is historical inertia, Moore’s law, and “financial feedback”

◦ x86 is most difficult ISA to implement and do it fast but…

◦ Because Intel sells the most non-embedded processors…

◦ It hires more and better engineers…

◦ Which help it maintain competitive performance …

◦ And given competitive performance, compatibility wins…

◦ So Intel sells the most non-embedded processors…

◦ AMD as a competitor keeps pressure on x86 performance

Moore’s Law has helped Intel in a big way
◦ Most engineering problems can be solved with more transistors



Winner for Embedded: RISC
ARM (Acorn RISC Machine  Advanced RISC Machine)
◦ First ARM chip in mid-1980s (from Acorn Computer Ltd).

◦ 3 billion units sold in 2009 (>60% of all 32/64-bit CPUs)

◦ Low-power and embedded devices (phones, for example)

◦ Significance of embedded? ISA Compatibility less powerful force

32-bit RISC ISA
◦ 16 registers, PC is one of them

◦ Rich addressing modes, e.g., auto increment

◦ Condition codes, each instruction can be conditional

ARM does not sell chips; it licenses its ISA & core designs

ARM chips from many vendors
◦ Qualcomm, Freescale (was Motorola), Texas Instruments, STMicroelectronics, 

Samsung, Sharp, Philips, etc.



Redux: Are ISAs Important?
Does “quality” of ISA actually matter?

◦ Not for performance (mostly)

◦ Mostly comes as a design complexity issue

◦ Insn/program: everything is compiled, compilers are good

◦ Cycles/insn and seconds/cycle: ISA, many other tricks

◦ What about power efficiency?  Maybe

◦ ARMs are most power efficient today…
◦ …but Intel is moving x86 that way (e.g, Intel’s Atom)

◦ Open question: can x86 be as power efficient as ARM? 

Does “nastiness” of ISA matter?
◦ Mostly no, only compiler writers and hardware designers see it

Even compatibility is not what it used to be
◦ Software emulation, cloud services

◦ Open question: will “ARM compatibility” be the next x86?


