
Memory Hierarchy
15-740 SPRING’18

NATHAN BECKMANN

Topics

Memories

Caches

Improving direct-mapped cache performance by the addition of a small fully-associative cache
and prefetch buffers

Famous paper; won “Test of Time Award”

Norm Jouppi

• DEC, Hewlett-Packard, Google (TPUs)

• Winner of Eckert-Mauchly Award

• “The Nobel Prize of Computer Architecture”

L3 Reading

diskDiskdiskDisk

Memory-I/O bus

Processor

Memory

I/O

controller
I/O

controller

I/O

controller

Display Network

interrupts

Early computer system

Recall: Processor-memory gap

Ideal memory
We want a large, fast memory

…But technology doesn’t let us have this!

Key observation: Locality
◦ All data are not equal

◦ Some data are accessed more often than others

Architects solution: Caches Memory hierarchy

diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller
I/O

controller

I/O

controller

Display Network

interrupts

Modern computer system

Technological tradeoffs in accessing data

Memory Technology

Physical size affects latency

12

Small
Memory

CPU

Big Memory

CPU

▪ Signals have further to travel
▪ Fan out to more locations

•Physics slows us down

•Racing the speed of light?
◦ take recent Intel chip (Haswell-E 8C)

◦ how far can I go in a clock cycle @ 3 GHz?
(3.0x10^8 m/s) / (3x10^9 cycles/s) = 0.1m/cycle

◦ for comparison: Haswell-E 8C is about 19mm = .019m across

◦  speed of light doesn’t directly limit speed, but its in ballpark

•Capacitance:
◦ long wires have more capacitance

◦ either more powerful (bigger) transistors required, or slower

◦ signal propagation speed proportional to capacitance

◦ going “off chip” has an order of magnitude more capacitance

Why is bigger slower?

14

TiN top electrode (VREF)

Ta2O5 dielectric

W bottom
electrode

poly
word

line access
transistor

1-T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate,

trench, stack)

VREF

Single-transistor (1T) DRAM cell (one bit)

Modern “3D” DRAM structure

15

[Samsung, sub-70nm DRAM, 2004]

16

R
o

w
 A

d
d

re
ss

D

e
co

d
e

r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

DData

▪ Bits stored in 2-dimensional arrays on chip
▪ Modern chips have around 4-8 logical banks on each chip
▪ each logical bank physically implemented as many smaller arrays

DRAM architecture

DRAM Physical Layout

17

II. DRAM TECHNOLOGY AND ARCHITECTURE

DRAMs are commoditized high volume products which
need to have very low manufacturing costs. This puts
significant constraints on the technology and architecture.
The three most important factors for cost are the cost of a
wafer, the yield and the die area. Cost of a wafer can be kept
low if a simple transistor process and few metal levels are
used. Yield can be optimized by process optimization and by
optimizing the amount of redundancy. Die area optimization
is achieved by keeping the array efficiency (ratio of cell area
to total die area) as high as possible. The optimum approach
changes very little even when the cell area is shrunk
significantly over generations. DRAMs today use a transistor
process with few junction optimizations, poly-Si gates and
relatively high threshold voltage to suppress leakage. This
process is much less expensive than a logic process but also
much lower performance. It requires higher operating
voltages than both high performance and low active power
logic processes. Keeping array efficiency constant requires
shrinking the area of the logic circuits on a DRAM at the
same rate as the cell area. This is difficult as it is easier to
shrink the very regular pattern of the cells than
lithographically more complex circuitry. In addition the
increasing complexity of the interface requires more circuit
area.

Figure 1 shows the floorplan of a typical modern DDR2
or DDR3 DRAM and an enlargement of the cell array. The
eight array blocks correspond to the eight banks of the
DRAM. Row logic to decode the row address, implement
row redundancy and drive the master wordlines is placed
between the banks. At the other edge of the banks column

logic includes column address decoding, column redundancy
and drivers for the column select lines as well as the
secondary sense-amplifiers which sense or drive the array
master data lines. The center stripe contains all other logic:
the data and control pads and interface, central control logic,
voltage regulators and pumps of the power system and
circuitry to support efficient manufacturing test. Circuitry
and buses in the center stripe are usually shared between
banks to save area. Concurrent operation of banks is
therefore limited to that portion of an operation that takes
place inside a bank. For example the delay between two
activate commands to different banks is limited by the time it
takes to decode commands and addresses and trigger the
command at a bank. Interleaving of reads and writes from
and to different banks is limited by data contention on the
shared data bus in the center stripe. Operations inside
different banks can take place concurrently; one bank can for
example be activating or precharging a wordline while
another bank is simultaneously streaming data.

The enlargement of a small part of an array block at the
right side of Figure 1 shows the hierarchical structure of the
array block. Hierarchical wordlines and array data lines
which were first developed in the early 1990s [5], [6] are
now used by all major DRAM vendors. Master wordlines,
column select lines and master array data lines are the
interface between the array block and the rest of the DRAM
circuitry. Individual cells connect to local wordlines and
bitlines, bitlines are sensed or driven by bitline sense-
amplifiers which connect to column select lines and local
array data lines. The circuitry making the connection
between local lines and master lines is placed in the local
wordline driver stripe and bitline sense-amplifier stripe

Row logic Column logic

Serializer and driver (begin of write data bus)

Buffer

1:8

Control logicSub-array

Center stripe

column select line (M3 - Al) master array data lines (M3 - Al)

local array data lines

master wordline (M2 - Al)

local wordline (gate poly)

bitlines (M1 - W)

local wordline driver stripe

bitline sense-amplifier stripe

Array block

(bold line)

Figure 1. Physical floorplan of a DRAM. A DRAM actually contains a very large number of small DRAMs called sub-arrays.

364

[Vogelsang, MICRO-2010]

DRAM operation

18

Three steps in read/write access to a given bank

• Precharge
• Row access (RAS)
• Column access (CAS)

Each step has a latency of around 10ns in modern DRAMs

Various DRAM standards (DDR, RDRAM) have different ways of encoding the signals for
transmission to the DRAM, but all share same core architecture

DRAM Operation

19

Three steps in read/write access to a given bank

• Precharge

◦ charges bit lines to known value, required before next row access

• Row access (RAS)
• Column access (CAS)

Each step has a latency of around 10ns

DRAM Operation

20

Three steps in read/write access to a given bank

• Precharge

• Row access (RAS)
◦ decode row address, enable addressed row (often multiple Kb in row)
◦ bitlines share charge with storage cell
◦ small change in voltage detected by sense amplifiers which latch whole row of bits
◦ sense amplifiers drive bitlines full rail to recharge storage cells

• Column access (CAS)

Each step has a latency of around 10ns

DRAM Operation

21

Three steps in read/write access to a given bank

• Precharge
• Row access (RAS)

• Column access (CAS)
◦ decode column address to select small number of sense amplifier latches (4, 8, 16, or 32 bits

depending on DRAM package)
◦ on read, send latched bits out to chip pins
◦ on write, change sense amplifier latches which then charge storage cells to required value
◦ can perform multiple column accesses on same row without another row access (burst

mode / row buffer locality)

Each step has a latency of around 10ns

Different varieties based on # transistors

Fewer transistors more bits / mm^2, but harder to manufacture

Standby: M5 & M6 disconnected, M1-M4 make self-reinforcing inverters

Read: connect M5 & M6, sense + amplify signal on bitlines

Write: connect M5 & M6, bias bitlines to desired value

Static RAM cell (one bit)

Memory parameters
Density

◦ Bits / mm^2

Latency
◦ Time from initiation to completion of one memory read (e.g., in nanoseconds, or in CPU or DRAM clock

cycles)

Bandwidth
◦ Rate at which requests can be processed (accesses/sec, or GB/s)

Occupancy
◦ Time that a memory bank is busy with one request (esp. writes)

Energy

Performance can vary significantly for reads vs. writes, or address, or access history

23

SRAM is simpler
◦ Non-destructive reads

SRAM is faster

DRAM is denser

Q: When does an architect use DRAM? SRAM?

SRAM used for on-chip caches, register file

DRAM used for main memory
◦ Often with a different manufacturing process, optimized for density not speed

◦ That’s why single chips with main memory + logic are rare

◦ “3D stacking” is changing this (kind of)

SRAM vs DRAM

Memory Hierarchy

Processor-DRAM gap (latency)

26

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(growing 50%/yr)

P
e

rf
o

rm
an

ce

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

Temporal Locality: If a location is referenced it is likely to be
referenced again in the near future.

Spatial Locality: If a location is referenced it is likely that
locations near it will be referenced in the near future.

Why does memory hierarchy work?

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journal 10(3): 168-192 (1971) Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

Implement memories of different sizes to serve different latency / latency / bandwidth tradeoffs

Keep frequently accessed data in small memories & large datasets in large memories

Provides illusion of a large & fast memory

Processor

Big & Fast
Memory

Small,
fast

Big, slow

Memory hierarchy

How to manage the hierarchy?

As memory (aka “scratchpads”): software must be aware of different memories and use them
well

• In theory: most efficient

• In practice: inconvenient and difficult (eg, IBM “Cell” in PS3)

As cache: transparent to software; hardware moves data between levels of memory hierarchy

• In theory: overheads and performance loss

• In practice: convenient and h/w does a good job (with software help)

Design choice #1: Cache vs Memory

Cache vs Memory in real systems

31

Small/fast storage, e.g., registers
◦ Address usually specified in instruction

◦ Generally implemented directly as a register file

◦ …But hardware might do things behind software’s back, e.g., stack management, register
renaming, …

Larger/slower storage, e.g., main memory
◦ Address usually computed from values in register

◦ Generally implemented as a hardware-managed cache hierarchy (hardware decides what is
kept in fast memory)

◦ …But software may provide “hints”, e.g., prefetch or don’t cache

Where to store instructions & data?

Harvard architecture:
◦ In early machines, instructions were hard-wired (switchboards) or punchcards

◦ Data was kept in memory

Princeton/von Neumann architecture:
◦ Instructions and data are both in memory

◦ “Instructions are data”

Modern architecture: von Neumann, but…split instruction/data caches; protection bits prevent
execution of data; different optimizations, etc.

Design choice #2: Instructions vs data

Where to store instructions & data?

Harvard architecture:

Princeton/von Neumann architecture:

Modern architecture: von Neumann – but …
◦ Split instruction/data caches

◦ Protection bits prevent execution of data

◦ Different optimizations in instruction vs data caches (e.g., prefetching)

◦ Etc.

Instructions vs data in real systems

Lesson: Real
systems inevitably
compromise and
try to get best of

both worlds!

Memory disk

L1 Icache

L1 Dcacheregs
L2

Cache

Processor

Split data and instruction caches, or a unified cache

How does this affect self modifying code?

Split vs. unified caches

Why?

Microprocessor
Report 9/12/94

Caches:
L1 data

L1 instruction

L2 unified

+ L3 off-chip

Alpha 21164

Right Half
L2

Right Half
L2

L1

I
n
s
t
r.

L1
Data

L2
Tags

L3 ControlAlpha 21164

Microprocessor
Report 9/12/94

Caches:
L1 data

L1 instruction

L2 unified

+ L3 off-chip

(Figure from Jim Keller, Compaq Corp.)

Alpha 21264

•21264 Floorplan

•Register files in middle of
execution units

•64k instr cache

•64k data cache

•Caches take up a large
fraction of the die

•≈30-50% in recent chips

Temporal locality:

• Hardware decides what to keep in cache

• Replacement/eviction policy evicts a victim upon a cache miss to make space

• Least-recently used (LRU) most common eviction policy

Spatial locality:

• Cache stores multiple, neighboring words per block

• Prefetchers speculate about next accesses and fetch them into cache

Note: Cache contents are not “architectural”!

Caches exploit locality

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

*v = sum;
Locality in Example:

• Data

– Reference array elements in succession (spatial)

– sum variable (temporal, allocated to register)

• Instructions

– Reference instructions in sequence (spatial)

– Cycle through loop repeatedly (temporal)

Example: Locality of reference
Principle of Locality:

◦ Programs tend to reuse data and instructions near those they have used recently.

◦ Temporal locality: recently referenced items are likely to be referenced in the near future.

◦ Spatial locality: items with nearby addresses tend to be referenced close together in time.

Main Memory
◦ Stores words

◦ A–Z in example

Cache
◦ Stores subset of next level

◦ E.g., ABGH in example

◦ An inclusive hierarchy

◦ Tags track what’s in the cache

◦ Organized in lines of multiple words
◦ Exploit spatial locality

◦ Amortize overheads

Access
◦ Processor requests address from cache, which handles misses itself

◦ What happens when processor accesses C?

Big, Slow Memory

A

B

C
•

•

•

Y

Z

Small,

Fast Cache

A B

G H

“A”

“G”

Processor

Caching: The basic idea

LineTag

Three ways to improve memory performance:

1. Reduce hit time

2. Reduce miss rate

3. Reduce miss penalty

There’s a tension between these

MPKI and AMAT

MPKI =
Misses

1000 Instructions
=
Miss ratio × Memory accesses

1000 Instructions
= Miss ratio ×

Memory accesses

1000 Instructions

AMAT = Average memory access time = Hit time + Miss ratio × Miss penalty

Note that speculative and multithreaded processors may execute
other instructions during a miss
◦ Reduces performance impact of misses

◦ Memory-level parallelism (MLP) overlaps miss latency

MPKI and AMAT in parallel programs

MPKI =
Misses

1000 Instructions
=
Miss ratio × Memory accesses

1000 Instructions
= Miss ratio ×

Memory accesses

1000 Instructions

AMAT = Average memory access time = Hit time + Miss ratio × Miss penalty

AMAT example

Memory AMAT = 200 cycles

L2 AMAT = 10 cycles + 0.25 * 200 = 60 cycles

L1 AMAT = 1 cycle + 0.10 * 60 cycles = 7 cycles

Memory CPI = (1 + 0.10) * 7 = 7.7 cycles

Processor L1I/D L2 Memory

1 cycle access
10% miss ratio 10 cycle access

25% miss ratio

200 cycle access

10% LDs

◦ Effect on cache area (tags + data)?

◦ Effect on hit time?

◦ Effect on miss ratio?

◦ Effect on miss penalty?

Impact of increasing cache size?

Key Questions:
◦ Where should a line be placed in the cache? (line placement)

◦ How is a line found in the cache? (line identification)

◦ Which line should be replaced on a miss? (line replacement)

◦ What happens on a write? (write strategy)

Constraints:
◦ Design must be simple

◦ Hardware realization

◦ All decision making within nanosecond time scale

◦ Want to optimize performance for “typical” programs

◦ Do extensive benchmarking and simulations

◦ Many subtle engineering tradeoffs

Design issues for caches

Mapping of Memory Lines
◦ Cache consists of single set holding A=S lines

◦ Given memory line can map to any line in set

◦ Only practical for small caches

◦ Useful for analysis and simulation

◦ Common in software caches

Entire Cache

0 1 • • • B–1Tag Valid

•

•

•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State

Line 0:

Line 1:

Line A–1:

Fully associative cache

Identifying Line
◦ Must check all of the tags for match

◦ Must have Valid = 1 for this line

t b

tag offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word within
cache line

0 1 • • • B–1Tag Valid

•

•

•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

•

•

•

Fully associative cache tag matching

Simplest Design
◦ Each memory line has a unique cache location

Parameters
◦ Line (aka block) size B = 2b

◦ Number of bytes in each line
◦ Typically 2X–8X word size

◦ Number of sets S = 2s

◦ Number of lines cache can hold
◦ Total Cache Size = B*S = 2b+s

Physical Address
◦ Address used to reference main memory
◦ n bits to reference N = 2n total bytes
◦ Partition into fields

◦ Offset: Lower b bits indicate which byte within line
◦ Set: Next s bits indicate how to locate line within cache
◦ Tag: Identifies this line when in cache

n-bit Physical Address

t s b

tag set index offset

Direct-mapped caches

◦ Use set index bits to select
cache set

Set 0: 0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

Set 1:

Set S–1:

•

•

•

t s b

tag set index offset

Physical Address

Words (in blocks)

Indexing into a direct-mapped cache

Identifying Line
◦ Must have tag match high order

bits of address

◦ Must have Valid = 1

0 1 • • • B–1Tag Valid

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word within
cache line

Direct-mapped tag matching

Strength
◦ Minimal control hardware overhead

◦ Simple design

◦ (Relatively) easy to make fast

Weakness
◦ Vulnerable to conflicts (i.e., thrashing)

◦ Two heavily used lines have same cache index

◦ Repeatedly evict one to make room for other

Cache Line

Tradeoffs of direct-mapped caches

Machine
◦ DECStation 5000

◦ MIPS Processor with 64KB direct-mapped cache, 16 B line size

Performance
◦ Good case: 24 cycles / element

◦ Bad case: 66 cycles / element

float dot_prod(float x[1024], y[1024])

{

float sum = 0.0;

int i;

for (i = 0; i < 1024; i++)

sum += x[i]*y[i];

return sum;

}

Conflict example: Dot product

◦ Access one element from each array per iteration

x[1]

x[0]

x[1020]

•

•

•

•

•

•

x[3]

x[2]

x[1021]

x[1022]

x[1023]

y[1]

y[0]

y[1020]

•

•

•

•

•

•

y[3]

y[2]

y[1021]

y[1022]

y[1023]

Cache

Line

Cache

Line

Cache

Line

Cache

Line

Cache

Line

Cache

Line

Conflict example (cont’d)

x[1]

x[0]

x[3]

x[2]

y[1]

y[0]

y[3]

y[2]

Cache

Line

Access Sequence
◦ Read x[0]

◦ x[0], x[1], x[2], x[3] loaded

◦ Read y[0]

◦ y[0], y[1], y[2], y[3] loaded

◦ Read x[1]

◦ Hit

◦ Read y[1]

◦ Hit

◦ • • •

◦ 2 misses / 8 reads

Analysis
◦ x[i] and y[i] map to different cache lines

◦ Miss rate = 25%

◦ Two memory accesses / iteration

◦ On every 4th iteration have two misses

Timing
◦ 10 cycle loop time

◦ 28 cycles / cache miss

◦ Average time / iteration =

10 + 0.25 * 2 * 28

Conflict example (cont’d): Good case

x[1]

x[0]

x[3]

x[2]

y[1]

y[0]

y[3]

y[2]

Cache

Line

Access Pattern
◦ Read x[0]

◦ x[0], x[1], x[2], x[3] loaded

◦ Read y[0]

◦ y[0], y[1], y[2], y[3] loaded

◦ Read x[1]

◦ x[0], x[1], x[2], x[3] loaded

◦ Read y[1]

◦ y[0], y[1], y[2], y[3] loaded

• • •

◦ 8 misses / 8 reads

Analysis
◦ x[i] and y[i] map to same cache lines

◦ Miss rate = 100%

◦ Two memory accesses / iteration

◦ On every iteration have two misses

Timing
◦ 10 cycle loop time

◦ 28 cycles / cache miss

◦ Average time / iteration =

10 + 1.0 * 2 * 28

Conflict example (cont’d): Bad case

◦ Effect on cache area (tags + data)?

◦ Effect on hit time?

◦ Effect on miss rate?

◦ Effect on miss penalty?

Impact of increasing block size

Mapping of Memory Lines
◦ Each set can hold A lines (usually A=2-8 for L1, A=8-32 for L3)

◦ Given memory line can map to any entry within its given set

Tradeoffs
◦ Fewer conflict misses

◦ Forced by virtual memory

◦ Longer access latency

◦ More complex to implement

Set i:

0 1 • • • B–1Tag Valid

•

•

•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State

Line 0:

Line 1:

Line A–1:

Set-associative cache

Set 0:

Set 1:

Set S–1:

•

•

•

t s b

tag set index offset

Physical Address

◦ Use middle s bits to select from
among S = 2s sets

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

Indexing a 2-way set-associative cache

Identifying Line
◦ Must have one of the tags match

high order bits of address

◦ Must have Valid = 1 for this line

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word within
cache line

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

Set-associative tag matching

◦ Set index selects a set from the cache

◦ The two tags in the set are compared in parallel

◦ Data is selected based on the tag result

Cache Data

Cache Line 0

Cache TagValid

:: :

Cache Data

Cache Line 0

Cache Tag Valid

: ::

Set Index

Mux 01Sel1 Sel0

Cache Line

Compare
Adr Tag

Compare

OR

Hit

Adr Tag

Implementation of 2-way set-associative

(eg, direct-mapped  set associative  fully associative)

Effect on cache area (tags+data)?

Hit time?

Miss rate?

Miss Penalty?

Impact of increasing associativity

Compulsory/Cold-start Misses – address not seen previously; difficult to avoid (not impossible!)

• Compulsory misses = misses @ infinite size

Capacity Misses – cache not big enough; larger cache size

• Capacity misses = fully associative misses – compulsory misses

Conflict/Collision Misses – poor block placement evicts useful blocks

• Conflict misses = actual misses – capacity misses

Categorizing misses: The “3 Cs”

Simple answer: number of replacement candidates

More associativity  better hit rates

• 1-way < 2-way < 3-way < … < fully associative

What is associativity?

What about…

Victim caches

• Candidates include recently evicted blocks

• Does 1-way + 1-entry victim cache == 2-way?

• 1-way < 1-way + 1-entry victim cache < 2-way

What is associativity?

What about…

Hashing

• Hash address to compute set

• Reduce conflict misses

• Add latency + tag size + complexity

• 1-way < 1-way hashed < 2-way ??????

• 8-way < 8-way hashed ??????

What is associativity?

What about…

Skew-associative caches [Seznec, ISCA‘93]

• Use different hash function for each way

• Mixes candidates across sets for diff addresses

• 2-way < 2-way hash < 2-way skew < 3-way ?????

What is associativity?

Associativity can be thought as a distribution of victims’ eviction priority [Sanchez, MICRO‘10]

• Distribution answers two questions: Among all cached blocks, how much did I want to evict
the victim? (y-axis) How likely was that? (x-axis)

• Fully associative always evicts the highest rank

• Random sampling converges toward fully associative with larger samplers

• Can plot associativity distribution (eg, through simulation) for different cache organizations

Associativity through the lens of probability

If there’s not enough space in the cache, what should we kick out?

Optimal algorithm (Belady/MIN/OPT)

Usage based algorithms

Non-usage based algorithms

Replacement/eviction algorithms

If there’s not enough space in the cache, what should we kick out?

Optimal algorithm (Belady/MIN/OPT)
◦ Replace the block that is next referenced furthest in the future

◦ Must know the future (can’t be implemented)

◦ Tricky to prove optimality; only optimal under “vanilla” cache designs

Usage based algorithms

Non-usage based algorithms

Replacement/eviction algorithms

If there’s not enough space in the cache, what should we kick out?

Optimal algorithm (Belady/MIN/OPT)

Usage based algorithms
◦ Least-recently used (LRU)

◦ Replace the block that has been referenced least recently (longest ago)

◦ Seen as hard to implement (but isn’t, really)

◦ Least-frequently used (LFU)

◦ Replace the block that has been referenced the fewest times

◦ Even harder to implement (“true” LFU—track blocks not in cache?)

◦ Many approximations: CLOCK, tree-based pseudo-LRU, etc

Non-usage based algorithms

Replacement/eviction algorithms

If there’s not enough space in the cache, what should we kick out?

Optimal algorithm (Belady/MIN/OPT)

Usage based algorithms

Non-usage based algorithms
◦ First-in First-out (FIFO)

◦ Weird pathologies (eg, hit rate degrades at larger cache size)

◦ Random (RAND)

◦ Bad hit ratio, but sometimes necessary (eg, when updating tags is expensive)

Replacement/eviction algorithms

• FIFO: Keep per-set counter, replace block at counter offset + increment

• Random: Like FIFO, but a global counter instead

• Naïve LRU: encode ordering within set (n log n bits) + state machine

• Simple LRU: track time in # accesses, each candidate stores timestamp it was last accessed

• Tradeoff?

• Efficiency vs complexity

• Coarsened ages (eg, high bits of timestamp) save space with ~no performance loss

Implementing replacement algorithm

• Fix pathologies in, eg, LRU [Qureshi, ISCA’07]

• E.g.: ???

• Shared caches (“thread-aware” variants, cache partitioning) [Qureshi, MICRO’06]

• Throughput vs fairness vs latency targets [Kasture, ASPLOS’14]

• Different object sizes
• E.g., compressed caches, software caches [Pekhimenko, HPCA’15]

• How to predict future reuse?
• PC of referencing instruction  (turns out to be an excellent predictor) [Jain, ISCA’16]

• Perceptron (i.e., neural network) predictors [Teran, MICRO’16][Jiminez, MICRO’17]

• Guaranteeing theoretical properties
• E.g., convex miss curves [Beckmann, HPCA’15]

• Ways to think about things more rigorously? [Beckmann, HPCA’17][Beckmann, NSDI’18]

Eviction algorithms are active research area

Compulsory misses - unchanged

Capacity Misses – cache not big enough

• Capacity misses = fully associative misses with optimal replacement – compulsory misses

Replacement misses: those due to sub-optimal replacement decisions

• Replacement misses = fully associative misses – capacity misses

Conflict/Collision Misses – poor block placement

• Conflict misses = actual misses – replacement misses

Categorizing misses: The 3 C’s++

Impact of Replacement Policy
Improving replacement policy
(eg, random  LRU)

Effect on cache area (tags+data)?

Hit time?

Miss rate?

Miss penalty?

◦ What happens when processor writes to the cache?

◦ Should memory be updated as well?

Write Through:
◦ Store by processor updates cache and memory

◦ Memory always consistent with cache

◦ Never need to store from cache to memory

◦ ~2X more loads than stores

Processor

Cache

Memory

Store

Load
Cache

Load

Write policy

Write Back:
◦ Store by processor only updates cache line

◦ Modified line written to memory only when it is evicted

◦ Requires “dirty bit” for each line

◦ Set when line in cache is modified

◦ Indicates that line in memory is stale

◦ Memory not always consistent with cache

Processor

Cache
Memory

Store

Load Cache

Load

Write

Back

Write policy (cont’d)

Write Buffer
◦ Common optimization for all caches

◦ Overlaps memory updates with processor execution

◦ Read operation must check write buffer for matching address

Cache

CPU

Memory

Write

Buffer

Write buffering

17

5 7 11 13

write buffer block

memory block

17

5 7 11 13

read

5 7 11 13

17

5 7 11 13

modify

5 7 17 13

17

5 7 17 13

write

5 7 17 13temporary buffer

On a write miss, is the block loaded from memory into the cache?

Write Allocate:
◦ Block is loaded into cache on a write miss.
◦ Usually used with write back
◦ Otherwise, write back requires read-modify-write to replace word within block

◦ But if you’ve gone to the trouble of reading the entire block, why not load it in cache?

Allocation strategies

Allocation strategies (cont’d)
On a write miss, is the block loaded from memory into the cache?

No-Write Allocate (Write Around):
◦ Block is not loaded into cache on a write miss

◦ Usually used with write through

◦ Memory system directly handles word-level writes

Writeback vs write-through

Effect on cache area (tags+data)?

Hit time?

Miss rate?

Miss penalty?

Impact of write policy

Example: Matrix
multiply

Interactions Between Program & Cache

Major Cache Effects to Consider
◦ Total cache size

◦ Try to keep heavily used data in highest level cache

◦ Block size (sometimes referred to “line size”)
◦ Exploit spatial locality

Example Application
◦ Multiply 𝑛 × 𝑛 matrices

◦ 𝑂 𝑛3 total operations

◦ Accesses
◦ n reads per source element

◦ n values summed per destination,
but may be able to hold in register

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Variable sum

held in register

0

20

40

60

80

100

120

140

160

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

m
fl

o
p

s
(d

.p
.)

ijk

ikj

jik

jki

kij

kji

Matmult Performance (Alpha 21164)

Too big for L1 Cache Too big for L2 Cache

Block Matrix Multiplication

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

A11 A12

A21 A22

Example n=8, B = 4:

B11 B12

B21 B22
X =

C11 C12

C21 C22

Key idea: Sub-blocks (i.e., Aij) can be treated just like scalars.

Blocked Matrix Multiply (bijk)

for (jj=0; jj<n; jj+=bsize) {

for (i=0; i<n; i++) {

for (j=jj; j < min(jj+bsize,n); j++) {

c[i][j] = 0.0;

}

}

for (kk=0; kk<n; kk+=bsize) {

for (i=0; i<n; i++) {

for (j=jj; j < min(jj+bsize,n); j++) {

sum = 0.0

for (k=kk; k < min(kk+bsize,n); k++) {

sum += a[i][k] * b[k][j];

}

c[i][j] += sum;

}

}

}

}

Blocked Matrix Multiply Analysis

A B C

block reused

n times

in succession

row sliver accessed

bsize times

Update successive

elements of sliver

i i
kk

kk jjjj

for (i=0; i<n; i++) {

for (j=jj; j < min(jj+bsize,n); j++) {

sum = 0.0

for (k=kk; k < min(kk+bsize,n); k++) {

sum += a[i][k] * b[k][j];

}

c[i][j] += sum;

}

◦ Innermost loop pair multiplies 1 X bsize sliver of A times bsize X bsize block of B
and accumulates into 1 X bsize sliver of C

◦ Loop over i steps through n row slivers of A & C, using same B

Innermost

Loop Pair

Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

m
fl

o
p

s
 (

d
.p

.)

bijk

bikj

ijk

ikj

Gap between memory + compute is growing

Processors often spend most of their time + energy waiting for memory, not doing useful work

Hierarchy and locality are the key ideas to scale memory performance

Most systems use caches, which introduce many parameters to the design with many tradeoffs

• E.g., associativity—hit rate vs hit latency

Summary: Memory hierarchy

Challenge
◦ CPU works with short cycle times

◦ DRAM (relatively) long cycle times

◦ How can we provide enough bandwidth between processor & memory?

Effect of Caching
◦ Caching greatly reduces amount of traffic to main memory

◦ But, sometimes need to move large amounts of data from memory into
cache

Trends
◦ Need for high bandwidth much greater for multimedia applications

◦ Repeated operations on image data

◦ Recent generation machines greatly improve on predecessors

CPU

cache

M

bus

Short

Latency

Long

Latency

Bandwidth matching

High Bandwidth Memory Systems

CPU

cache

M

bus

mux

CPU

cache

M

bus

Solution 1

High BW DRAM

Solution 2

Wide path between memory & cache

Example:

Page Mode DRAM

RAMbus

Example: Alpha AXP 21064

256 bit wide bus, L2 cache,

and memory.

