
Synchronization
15-740 SPRING’18

NATHAN BECKMANN

Types of Synchronization
Mutual Exclusion

◦ Locks

Event Synchronization
◦ Global or group-based (barriers)

◦ Point-to-point (producer-consumer)

Simple Producer-Consumer Example

st xdata, (xdatap)

ld xflag, 1

st xflag, (xflagp)

3

spin: ld xflag, (xflagp)

beqz xflag, spin

ld xdata, (xdatap)

data

flag
Producer Consumer

Initially flag=0

Can consumer read flag=1 before data
written by producer?

Is this correct?

Simple Producer-Consumer Example

sd xdata, (xdatap)

li xflag, 1

sd xflag, (xflagp)

spin: ld xflag, (xflagp)

beqz xflag, spin

ld xdata, (xdatap)

data

flag
Producer Consumer

Initially flag =0

Dependencies from sequential ISA

Dependencies added by sequentially consistent
memory model

Implementing SC in hardware
Only a few commercial systems implemented SC

◦ Neither x86 nor ARM are SC

Requires either severe performance penalty
◦ Wait for stores to complete before issuing new store

Or, complex hardware (MIPS R10K)
◦ Issue loads speculatively

◦ Detect inconsistency with later store

◦ Squash speculative load

Software reorders too!

Compiler can reorder/remove memory operations unless made aware of memory model
◦ Instruction scheduling, move loads before stores if to different address

◦ Register allocation, cache load value in register, don’t check memory

Prohibiting these optimizations would result in very poor performance

//Producer code

*datap = x/y;

*flagp = 1;

//Consumer code

while (!*flagp)

;

d = *datap;

Relaxed memory models
Not all dependencies assumed by SC are supported, and software has to explicitly insert
additional dependencies were needed

Which dependencies are dropped depends on the particular memory model
◦ IBM370, TSO, PSO, WO, PC, Alpha, RMO, …

How to introduce needed dependencies varies by system
◦ Explicit FENCE instructions (sometimes called sync or memory barrier instructions)

◦ Implicit effects of atomic memory instructions

Programmers supposed to work with this????

sd xdata, (xdatap)

li xflag, 1

fence.w.w // Write-Write
// fence

sd xflag, (xflagp)

spin: ld xflag, (xflagp)

beqz xflag, spin

fence.r.r // Read-Read
// fence

ld xdata, (xdatap)

data

flag
Producer Consumer

Initially flag =0

Fences in producer-consumer

Memory

Simple mutual-exclusion example

// Both threads execute:

ld xdata, (xdatap)

add xdata, 1

st xdata, (xdatap)

data
Thread 1 Thread 2

Is this correct?

xdatap xdatap

MutEx with LD/ST in SC
A protocol based on two shared variables c1 and c2.

Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
...
c1=1;

L: if c2=1 then go to L
< critical section>

c1=0;

Process 2
...
c2=1;

L: if c1=1 then go to L
< critical section>

c2=0;

Deadlock!

MutEx with LD/ST in SC (2nd attempt)
To avoid deadlock, let a process give up the reservation

(i.e. Process 1 sets c1 to 0) while waiting.

1. Deadlock impossible, but livelock may occur (low probability)

2. Unlucky processes never get lock (starvation)

Process 1
...

L: c1=1;
if c2=1 then
{ c1=0; go to L}
< critical section>

c1=0

Process 2
...

L: c2=1;
if c1=1 then
{ c2=0; go to L}
< critical section>

c2=0

A Protocol for Mutual Exclusion (+ SC)
T. Dekker, 1966

A protocol based on 3 shared variables c1, c2 and turn.

Initially, both c1 and c2 are 0 (not busy)

turn = 𝑖 ensures that only process 𝑖 can wait

Variables c1 and c2 ensure mutual exclusion

Solution for n processes was given by Dijkstra and is quite tricky!

Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

Components of Mutual Exclusion
Acquire

◦ How to get into critical section

Wait algorithm
◦ What to do if acquire fails

Release algorithm
◦ How to let next thread into critical section

Can be implemented using LD/ST, but…
◦ Need fences in weaker models

◦ Doesn’t scale + complex

Busy Waiting vs. Blocking
Threads spin in above algorithm if acquire fails

Busy-waiting is preferable when:
◦ Scheduling overhead is larger than expected wait time

◦ Schedule-based blocking is inappropriate (eg, OS)

Blocking is preferable when:
◦ Long wait time & other useful work to be done

◦ Especially if core is needed to release the lock!

Hybrid spin-then-block often used

Need atomic primitive!
Many choices…

Test&Set – set to 1 and return old value

Swap – atomic swap of register + memory location

Fetch&Op
◦ E.g., Fetch&Increment, Fetch&Add, …

Compare&Swap – “if *mem == A then *mem == B”

Load-linked/Store-Conditional (LL/SC)

Release Lock

Acquire Lock

Critical Section

Memory

Mutual Exclusion with Atomic Swap

li xone, 1

spin: amoswap xlock, xone, (xlockp)

bnez xlock, spin

ld xdata, (xdatap)

add xdata, 1

st xdata, (xdatap)

st x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

Assumes SC memory model

Release Lock

Acquire Lock

Critical Section

Memory

li xone, 1

spin: amoswap xlock, xone, (xlockp)

bnez xlock, spin

fence.r.r

ld xdata, (xdatap)

add xdata, 1

sd xdata, (xdatap)

fence.w.w

sd x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

Mutual Exclusion with Relaxed Consistency

Mutual Exclusion with Atomic Swap
Atomic swap: amoswap x, y, (z)

◦ Semantics:
x = Mem[z]

Mem[z] = y

lock: li r1, #1

spin: amoswap r2, r1, (lockaddr)

bnez r2, spin

ret

unlock: st (lockaddr), #0

ret

Much simpler than LD/ST with SC!

Mutual Exclusion with Test & Set
Test & set: t&s y, (x)

◦ Semantics:
y = Mem[x]

If y == 0 then Mem[x] = 1

lock: t&s r1, (lockaddr)

bnez r1, lock

ret

unlock: st (lockaddr), #0

ret

Load-linked / store-conditional
Load-linked/Store-Conditional (LL/SC)

◦ LL y, (x):
y = Mem[x]

◦ SC y, z, (x):
if (x is unchanged since LL) then

Mem[x] = y

z = 1

else

z = 0

endif

Useful to efficiently implement many atomic primitives

Fits nicely in 2-source reg, 1-destination reg instruction formats

Typically implemented as weak LL/SC: intervening loads/stores result in SC failure

lock: ll r1, (lockaddr)

bnez r1, lock

add r1, r1, #1

sc r1, r2, (lockaddr)

beqz r2, lock

ret

unlock: st (lockaddr), #0

ret

Mutual Exclusion with LL/SC

Implementing fetch&op with LL/SC
f&op: ll r1, (location)

op r2, r1, value

sc r2, r3, (location)

beqz r3, f&op

ret

Implementing Atomics
Lock cache line or entire cache:

Get exclusive permissions

Don’t respond to invalidates

Perform operation (e.g., add in fetch&add)

Resume normal operation

Implementing LL/SC
Invalidation-based directory protocol
◦ SC requests exclusive permissions

◦ If requestor is still sharer, success

◦ Otherwise, fail and don’t get permissions (invalidation in flight)

Add link register to store address of LL
◦ Invalidated upon coherence / eviction

◦ Only safe to use register-register instructions between LL/SC

How to Evaluate?
• Scalability

• Network load

• Single-processor latency

• Space Requirements

• Fairness

• Required atomic operations

• Sensitivity to co-scheduling

T&S Lock Performance
Code: for (i=0;i<N;i++) { lock; delay(c); unlock; }

Same total no. of lock calls as 𝑃 increases; measure time per transfer

s

s

s

s

s

s

s

s

s

s

s

s

s
s

s

s

lnu

Number of processors

T
im

e
 (
m

s
)

11 13 15
0

2

4

6

8

10

12

14

16

18

20

9753

Evaluation of Test&Set based lock
lock: t&s reg, (loc)

bnz lock

ret

unlock: st location, #0

ret

• Scalability poor

• Network load large

• Single-processor latency good

• Space Requirements good

• Fairness poor

• Required atomic operations T&S

• Sensitivity to co-scheduling good?

Test and Test&Set
A: while (lock != 0);

if (test&set(lock) == 0) {

/* critical section */;

lock = 0;

} else {

goto A;

}

+ Spinning happens in cache

− Bursts of traffic when lock released

Test&Set with Backoff
Upon failure, delay for a while before retrying

◦ either constant delay or exponential backoff

Tradeoffs:
(+) much less network traffic

(-) exponential backoff can cause starvation for high-contention locks

◦ new requestors back off for shorter times

But exponential found to work best in practice

T&S Lock Performance
Code: for (i=0;i<N;i++) { lock; delay(c); unlock; }

Same total no. of lock calls as 𝑃 increases; measure time per transfer

s

s

s

s

s

s

s

s

s

s

s

s

s
s

s

s

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

n
n n n

n

n

n

n

n

n
n

n

n
n

n

n

u

U U u u u u u u u u u u u u u

Number of processors

T
im

e
 (
m

s
)

11 13 15
0

2

4

6

8

10

12

14

16

18

20

s Test&set, c = 0

l Test&set, exponential backoff, c = 3.64

n Test&set, exponential backoff, c = 0

u Ideal

9753

Test&Set with Update
Test&Set sends updates to processors that cache the lock

Tradeoffs:
(+) good for bus-based machines

(-) still lots of traffic on distributed networks

Main problem with test&set-based schemes:
◦ a lock release causes all waiters to try to get the lock, using a test&set to try to get it.

Ticket Lock (fetch&incr based)
Two counters:

◦ next_ticket (number of requests)

◦ now_serving (number of releases that have happened)

Algorithm:

Release Lock

Acquire Lock

Critical Section

ticket = fetch&increment(next_ticket)
while (ticket != now_serving) delay(x)
/* mutex */
now_serving++

What delay to use?
Not exponential! Why?
Instead: ticket – now_serving

+ Guaranteed FIFO order  no starvation
+ Latency can be low (f&i cacheable)
+ Traffic can be low, but…
− Polling  no guarantee of low traffic

Release Lock

Acquire Lock

Critical Section

Array-Based Queueing Locks
Every process spins on a unique location, rather than on a single now_serving counter

next-slot WaitLock Wait Wait Wait

my-slot = F&I(next-slot)

my-slot = my-slot % num_procs

while (slots[my-slot] == Wait);

slots[my-slot] = Wait;

// mutex

slots[(my-slot+1)%num_procs] = Lock;

List-Base Queueing Locks (MCS)
All other good things + O(1) traffic even without coherent caches (spin locally)

Uses compare&swap to build linked lists in software

Locally-allocated flag per list node to spin on

Can work with fetch&store, but loses FIFO guarantee

Tradeoffs:
(+) less storage than array-based locks

(+) O(1) traffic even without coherent caches

(-) compare&swap not easy to implement (three read-register operands)

Barriers

Barrier
Single operation: wait until P threads all reach synchronization point

Barrier

Barrier

Barriers
We will discuss five barriers:

◦ centralized

◦ software combining tree

◦ dissemination barrier

◦ tournament barrier

◦ MCS tree-based barrier

Barrier Criteria

Length of critical path
◦ Determines performance on scalable network

Total network communication
◦ Determines performance on non-scalable network (e.g., bus)

Storage requirements

Implementation requirements (e.g., atomic ops)

Critical Path Length
Analysis assumes independent parallel network paths available

May not apply in some systems

◦ Eg, communication serializes on bus

◦ In this case, total communication dominates critical path

More generally, network contention can lengthen critical path

Centralized Barrier
Basic idea:

◦ Notify a single shared counter when you arrive

◦ Poll that shared location until all have arrived

◦ Implemented using atomic fetch & op on counter

Centralized Barrier – 1st attempt
int counter = 1;

void barrier(P) {

if (fetch_and_increment(&counter) == P) {

counter = 1;

} else {

while (counter != 1) { /* spin */ }

}

}

Is this implementation correct?

Centralized Barrier
Basic idea:

◦ Notify a single shared counter when you arrive

◦ Poll that shared location until all have arrived

◦ Implemented using atomic fetch & decrement on counter

Simple solution requires polling/spinning twice:
◦ First to ensure that all procs have left previous barrier

◦ Second to ensure that all procs have arrived at current barrier

Centralized Barrier – 2nd attempt
int enter = 1; // allocate on diff cache lines

int exit = 1;

void barrier(P) {

if (fetch_and_increment(&enter) == P) { // enter barrier

enter = 1;

} else {

while (enter != 1) { /* spin */ }

}

if (fetch_and_increment(&exit) == P) { // exit barrier

exit = 1;

} else {

while (exit != 1) { /* spin */ }

}

}

Do we need to count to P twice?

Centralized Barrier
Basic idea:

◦ Notify a single shared counter when you arrive

◦ Poll that shared location until all have arrived

◦ Implemented using atomic fetch & decrement on counter

Simple solution requires polling/spinning twice:
◦ First to ensure that all procs have left previous barrier

◦ Second to ensure that all procs have arrived at current barrier

Avoid spinning with sense reversal

Centralized Barrier – Final version
int counter = 1;

bool sense = false;

void barrier(P) {

bool local_sense = ! sense;

if (fetch_and_increment(&counter) == P) {

counter = 1;

sense = local_sense;

} else {

while (sense != local_sense) { /* spin */ }

}

}

Centralized Barrier Analysis
Remote spinning  on single shared location

• Maybe OK on broadcast-based coherent systems, spinning traffic on non-coherent or
directory-based systems can be unacceptable

𝑂(𝑃) operations on critical path

𝑂(1) space

𝑂(𝑃) best-case traffic, but 𝑂(𝑃2) or even unbounded in practice (why?)

Atomic fetch&increment

How about exponential backoff?

Software Combining-Tree Barrier

Writes into one tree for barrier arrival

Reads from another tree to allow procs to continue

Sense reversal to distinguish consecutive barriers

Flat
Tree structured

Contention Little contention

Combining Barrier – Why binary?
With branching factor 𝒌 what is critical path?

Depth of barrier tree is log𝒌𝑷

Each barrier notifies 𝒌 children

 Critical path is 𝒌 log𝒌𝑷

Critical path is minimized by choosing 𝒌 = 𝟐

Software Combining-Tree Analysis
Remote spinning 

𝑂(log𝑃) critical path

𝑂(𝑃) space

𝑂(𝑃) total network communication
◦ Unbounded without coherence

Needs atomic fetch & increment

Dissemination Barrier
log 𝑃 rounds of synchronization

In round 𝑘, proc 𝑖 synchronizes with proc (𝑖 + 2𝑘) mod 𝑃

Threads signal each other by writing flags

• One flag per round  log 𝑃 flags per thread

Advantage:

• Can statically allocate flags to avoid remote spinning

• Exactly log 𝑃 critical path

???

Dissemination Barrier with P=5

Barrier

Dissemination Barrier with P=5

Barrier

3 = log2𝑃 rounds

Dissemination Barrier with P=5

Barrier

3 = log2𝑃 rounds

Round 1: offset 20 = 1

Dissemination Barrier with P=5

Barrier

3 = log2𝑃 rounds

Round 1: offset 20 = 1

Round 2: offset 21 = 2

Dissemination Barrier with P=5

Barrier

Round 1: offset 20 = 1

Round 2: offset 21 = 2

Round 3: offset 22 = 4

3 = log2𝑃 rounds

Dissemination Barrier with P=5

Barrier

Round 1: offset 20 = 1

Round 2: offset 21 = 2

Round 3: offset 22 = 4

3 = log2𝑃 rounds

Dissemination Barrier with P=5
Threads can progress
unevenly through barrier

But none will exit until all
arrive

Why Dissemination Barriers Work
Prove that:

Any thread leaves barrier


All threads entered barrier

???

Thread leaving

Why Dissemination Barriers Work
Prove that:

Any thread exits barrier


All threads entered barrier

Forward propagation
proves:

All threads exit barrier

Just follow dependence
graph backwards!
• Each exiting thread is the

root of a binary tree with
all entering threads as
leaves (requires log P
rounds)

Proof is symmetric (mod
P) for all threads

Dissemination Implementation #1
const int rounds = log(P);

bool flags[P][rounds]; // allocated in local storage per thread

void barrier() {

for (round = 0 to rounds – 1) {

partner = (tid + 2^round) mod P;

flags[partner][round] = 1;

while (flags[tid][round] == 0) { /* spin */ }

flags[tid][round] = 0;

}

}

What’d we forget?

Dissemination Implementation #2
const int rounds = log(P);

bool flags[P][rounds]; // allocated in local storage per thread

local bool sense = false;

void barrier() {

for (round = 0 to rounds – 1) {

partner = (tid + 2^round) mod P;

flags[partner][round] = !sense;

while (flags[tid][round] == sense) { /* spin */ }

}

sense = !sense;

}

Good?

Sense Reversal in Dissemination
Thread 2 isn’t scheduled for a while…

Thread 2 blocks waiting on old sense

Sense reversed!But this is the same barrier!

Dissemination Implementation #3
const int rounds = log(P);

bool flags[P][2][rounds]; // allocated in local storage per thread

local bool sense = false;

local int parity = 0;

void barrier() {

for (round = 0 to rounds – 1) {

partner = (tid + 2^round) mod P;

flags[partner][parity][round] = !sense;

while (flags[tid][parity][round] == sense)

{ /* spin */ }

}

if (parity == 1) {

sense = !sense;

}

parity = 1 – parity;

}

Allocate 2 barriers,
alternate between them
via ‘parity’.

Reverse sense every
other barrier.

Dissemination Barrier Analysis
Local spinning only

𝑂(log𝑃) messages on critical path

𝑂(𝑃 log𝑃) space – log𝑃 variables per processor

𝑂(𝑃 log𝑃) total messages on network

Only uses loads & stores

Minimum Barrier Traffic
What is the minimum number of messages needed to implement a barrier with N processors?

P-1 to notify everyone arrives

P-1 to wakeup

 2P – 2 total messages minimum

P1 …P2 P3 P4 PN

Tournament Barrier
Binary combining tree

Representative processor at a node is statically chosen
◦ No fetch&op needed

In round 𝑘, proc 𝑖 = 2𝑘 sets a flag for proc 𝑗 = 𝑖 − 2𝑘

◦ 𝑖 then drops out of tournament and 𝑗 proceeds in next round

◦ 𝑖 waits for signal from partner to wakeup

◦ Or, on coherent machines, can wait for global flag

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Tournament Barrier with P=8

Why Tournament Barrier Works
As before, threads can progress at different rates through tree

Easy to show correctness:
◦ Tournament root must unblock for any thread to exit barrier

◦ Root depends on all threads (leaves of tree)

Implemented by two loops, up & down tree
Depth encoded by first 1 in thread id bits

Depth == First 1 in Thread ID

000 001 010 011 100 101 110 111

Tournament Barrier Implementation
// for simplicity, assume P power of 2

void barrier(int tid) {

int round;

for (round = 0; // wait for children (depth == first 1)

((P | tid) & (1 << round)) == 0; round++) {

while (flags[tid][round] != sense) { /* spin */ }

}

if (round < logP) { // signal + wait for parent (all but root)

int parent = tid & ~((1 << (round+1)) - 1);

flags[parent][round] = sense;

while (flags[tid][round] != sense) { /* spin */ }

}

while (round-- > 0) { // wake children

int child = tid | (1 << round);

flags[child][round] = sense;

}

sense = !sense;

}

Tournament Barrier Analysis
Local spinning only

𝑂(log 𝑃) messages on critical path (but > dissemination)

𝑂(𝑃) space

𝑂(𝑃) total messages on network

Only uses loads & stores

MCS Software Barrier
Modifies tournament barrier to allow static allocation in wakeup tree, and to use
sense reversal

Every thread is a node in two P-node trees:
◦ has pointers to its parent building a fan-in-4 arrival tree

◦ fan-in = flags / word for parallel checks

◦ has pointers to its children to build a fan-out-2 wakeup tree

MCS Barrier with P=7

MCS Barrier with P=7

MCS Barrier with P=7

MCS Barrier with P=7

MCS Barrier with P=7

MCS Barrier with P=7

MCS Barrier with P=7

MCS Barrier with P=7

MCS Barrier with P=7

MCS Software Barrier Analysis
Local spinning only

𝑂(log𝑃) messages on critical path

𝑂(𝑃) space for P processors

Achieves theoretical minimum communication of (2𝑃 – 2) total messages

Only needs loads & stores

Review: Critical path
All critical paths 𝑂(log𝑃), except centralized 𝑂(𝑃)

But beware network contention!

 Linear factors dominate bus

Review: Network transactions
Centralized, combining tree:

◦ 𝑂(𝑃) if broadcast and coherent caches;

◦ unbounded otherwise

Dissemination:
◦ 𝑂(𝑃 log𝑃)

Tournament, MCS:
◦ 𝑂(𝑃)

Review: Storage requirements
Centralized:
◦ 𝑂(1)

MCS, combining tree:
◦ 𝑂(𝑃)

Dissemination, Tournament:
◦ 𝑂(𝑃 log𝑃)

Review: Primitives Needed
Centralized and software combining tree:

◦ atomic increment / atomic decrement

Others (dissemination, tournament, MCS):
◦ atomic read

◦ atomic write

Without broadcast on distributed memory:

◦ Dissemination

◦ MCS is good, only critical path length is about 1.5X longer (for wakeup tree)

◦ MCS has somewhat better network load and space requirements

Cache coherence with broadcast (e.g., a bus):

◦ MCS with flag wakeup

◦ But centralized is best for modest numbers of processors

Big advantage of centralized barrier:

◦ Adapts to changing number of processors across barrier calls

Barrier recommendations

Synchronization Summary
Required for concurrent programs

◦ mutual exclusion

◦ producer-consumer

◦ barrier

Hardware support
◦ ISA

◦ Cache

◦ Memory

Complex interactions
◦ Scalability, Efficiency, Indirect effects

◦ What about message passing?

