
Intro to
Microarchitecture:
Basic Pipelining
15-740 SPRING’18

NATHAN BECKMANN

Objective
Design Processor for Alpha Subset

◦ Interesting but not overwhelming quantity

◦ Using high-level functional blocks

Initial Design
◦ One instruction at a time

◦ Single cycle per instruction

Refined Design
◦ 5-stage pipeline

◦ Similar to early RISC processors

◦ Goal: Approach 1 cycle-per-instruction, but with shorter cycle time

ALPHA Instruction Set

Op ra rb funct rc

31-26 25-21 20-16 15-13 11-5 4-0

RR-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct rb

000 0

12

Op ra ib funct rc

31-26 25-21 20-13 11-5 4-0

RI-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct ib

1

12

Encoding
◦ ib is 8-bit unsigned literal

Operation Op field funct field
addq 0x10 0x20

subq 0x10 0x29

or/bis 0x11 0x20

xor 0x11 0x40

cmoveq 0x11 0x24 (32b conditional move)

cmplt 0x11 0x4D (compare less-than)

ALPHA Arithmetic Instructions

Encoding
◦ offset is 16-bit signed offset

Operation Op field
ldq 0x29

stq 0x2D

Load: Ra <-- Mem[Rb +offset]
Store: Mem[Rb + offset] <-- Ra

31-26 25-21 20-16 15-0

Op ra rb offset

ALPHA Load/Store Instructions

Encoding
◦ disp is 21-bit signed displacement

Operation Op field Cond
beq 0x39 Ra == 0

bne 0x3D Ra != 0

31-26 25-21 20-0

Cond. Branch: PC <-- Cond(Ra) ? PC + 4 + disp*4 : PC + 4

Op ra disp

Branch [Subroutine]: Ra <-- PC + 4; PC <-- PC + 4 + disp*4

31-26 25-21 20-0

Op ra disp

Operation Op field Convention: Ra = 26

br 0x30

bsr 0x34

Why PC + 4?

Is ALPHA designed
for compilers or
assembly
programmers? (RISC
vs CISC)

ALPHA Branch Instructions

Encoding

◦ High order 2 bits of Hint encode jump type

◦ Remaining bits give information about predicted destination

◦ Hint does not affect functionality

Jump Type Hint 15:14
jmp 00

jsr 01

ret 10

By convention:

jmp, jsr, ret: Ra <-- PC+4; PC <-- Rb

31-26 25-21 20-16 15-0

0x1A ra rb Hint

Instruction Ra Rb

jmp 31 -

jsr - 26

ret 31 26

ALPHA Control Transfers

Object Code
◦ Instructions encoded in 32-bit words

◦ Program behavior determined by bit encodings

◦ Disassembler simply converts these words to readable instructions

0x0: 40220403 addq r1, r2, r3

0x4: 4487f805 xor r4, 0x3f, r5

0x8: a4c70abc ldq r6, 2748(r7)

0xc: b5090123 stq r8, 291(r9)

0x10: e47ffffb beq r3, 0

0x14: d35ffffa bsr r26, 0(r31)

0x18: 6bfa8001 ret r31, (r26), 1

ALPHA Instruction Encoding

0x0: 40220403 addq r1, r2, r3

4

0100

0

0000

2

0010

2

0010

0

0000

4

0100

0

0000

3

0011

10 01 02 0320

0x8: a4c70abc ldq r6, 2748(r7)

a

1010

4

0100

c

1100

7

0111

0

0000

a

1010

b

1011

c

1100

29 06 07 0abc
= 274810

0x10: e47ffffb beq r3, 0

e

1110

4

0100

7

0111

f

1111

f

1111

f

1111

f

1111

b

1011

39 03 1ffffb
= -510

0x18: 6bfa8001 ret r31, (r26), 1

6

0110

b

1011

f

1111

a

1010

8

1000

0

0000

0

0000

1

0001

1a 1f
=3110

21a
=2610

Target = 16 # Current PC
+ 4 # Increment
+ 4 * -5 # Disp

= 0

Decoding Examples

Single-Cycle ALPHA
Implementation

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

Xtnd << 2

Zero
Test

25:21

Wdata

Wdest

20:0

25:21

Wdata

Wdest

Multiplexers

Block diagram for a computer processor, excluding control signals

Datapath

IF
instruction
fetch

ID
instruction decode/
register fetch

MEM
memory
access

EX
execute/
address calculation

WB
write
back

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

Xtnd << 2

Zero
Test

25:21

Wdata

Wdest

20:0

25:21

Wdata

Wdest

Datapath

IF
instruction
fetch

ID
instruction decode/
register fetch

MEM
memory
access

EX
execute/
address calculation

WB
write
back

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

Xtnd << 2

Zero
Test

25:21

Wdata

Wdest

20:0

25:21

Wdata

Wdest

Datapath

Hardware Units
Storage

◦ Instruction Memory

◦ Fetch 32-bit instructions

◦ Data Memory

◦ Load / store 64-bit data

◦ Register Array

◦ Storage for 32 integer registers

◦ Two read ports: can read two registers at once

◦ Single write port

Functional Units
◦ +4 PC incrementer

◦ Xtnd Sign extender

◦ ALU Arithmetic and logical instructions (the big one!)

◦ Zero Test Detect whether operand == 0

Register-register Instructions
IF: Instruction fetch

◦ IR <-- IMemory[PC]

◦ PC <-- PC + 4

ID: Instruction decode/register fetch
◦ A <-- Register[IR[25:21]]

◦ B <-- Register[IR[20:16]]

Ex: Execute
◦ ALUOutput <-- A op B

MEM: Memory
◦ nop

WB: Write back
◦ Register[IR[4:0]] <-- ALUOutput

Op ra rb funct rc

31-26 25-21 20-16 15-13 11-5 4-0

RR-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct rb

000 0

12

ALU Operation set per op type

Writeback to Rc

Active Datapath for Reg-Reg Instructions

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

IF: Instruction fetch
◦ IR <-- IMemory[PC]

◦ PC <-- PC + 4

ID: Instruction decode/register fetch
◦ A <-- Register[IR[25:21]]

◦ B <-- IR[20:13]

Ex: Execute
◦ ALUOutput <-- A op B

MEM: Memory
◦ nop

WB: Write back
◦ Register[IR[4:0]] <-- ALUOutput

Op ra ib funct rc

31-26 25-21 20-13 11-5 4-0

RI-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct ib

1

12

Register-Immediate Instructions

Active Datapath for Reg-Imm Instructions

ALU Operation set per op type

Writeback to Rc

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

IF: Instruction fetch
◦ IR <-- IMemory[PC]

◦ PC <-- PC + 4

ID: Instruction decode/register fetch
◦ B <-- Register[IR[20:16]]

Ex: Execute
◦ ALUOutput <-- B + SignExtend(IR[15:0])

MEM: Memory
◦ Mem-Data <-- DMemory[ALUOutput]

WB: Write back
◦ Register[IR[25:21]] <-- Mem-Data

Load: Ra <-- Mem[Rb +offset]

31-26 25-21 20-16 15-0

Op ra rb offset

Load Instruction

ALU used to compute address
◦ A input set to extended IR[15:0]

◦ ALU function set to add

Memory Operation
◦ Read

Write Back
◦ To Ra

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

Xtnd

25:21

Wdata

Wdest

15:0

Active Datapath for Load

Store Instruction
IF: Instruction fetch

◦ IR <-- IMemory[PC]

◦ PC <-- PC + 4

ID: Instruction decode/register fetch
◦ A <-- Register[IR[25:21]]

◦ B <-- Register[IR[20:16]]

Ex: Execute
◦ ALUOutput <-- B + SignExtend(IR[15:0])

MEM: Memory
◦ DMemory[ALUOutput] <-- A

WB: Write back
◦ nop

Store: Mem[Rb +offset] <-- Ra

31-26 25-21 20-16 15-0

Op ra rb offset

ALU used to compute address
◦ A input set to extended IR[15:0]

◦ ALU function set to add

Memory Operation
◦ Write

Write Back
◦ None

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

Xtnd
15:0

Active Datapath for Store

Conditional Branch Instruction
IF: Instruction fetch

◦ IR <-- IMemory[PC]

◦ incrPC <-- PC + 4

ID: Instruction decode/register fetch
◦ A <-- Register[IR[25:21]]

Ex: Execute
◦ Target <-- incrPC + SignExtend(IR[20:0]) << 2

◦ Z <-- (A == 0)

MEM: Memory
◦ PC <-- Z ? Target : incrPC

WB: Write back
◦ nop

31-26 25-21 20-0

beq: PC <-- Ra == 0 ? PC + 4 + disp*4 : PC + 4

0x39 ra disp

ALU computes target
◦ A = shifted, extended IR[20:0]

◦ B = IncrPC

◦ Function set to add

Zero Test
◦ Branch condition depends on if Reg[Ra] == 0

PC Selection
◦ Target for taken branch

◦ IncrPC for not taken

Write Back
◦ None

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

Wdata

Wdest

20:0

Active Datapath for Cond. Branch

IF: Instruction fetch
◦ IR <-- IMemory[PC]

◦ incrPC <-- PC + 4

ID: Instruction decode/register fetch
◦ nop

Ex: Execute
◦ Target <-- incrPC + SignExtend(IR[20:0]) << 2

MEM: Memory
◦ PC <-- Target

WB: Write back
◦ Register[IR[25:21]] <-- incrPC

Branch Subroutine (bsr): Ra <-- PC + 4; PC <-- PC + 4 + disp*4

31-26 25-21 20-0

0x34 ra disp

Branch to Subroutine

ALU computes target
◦ A = shifted, extended IR[20:0]

◦ B = IncrPC

◦ Function set to add

PC Selection
◦ Always target

Write Back
◦ Incremented PC as data

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

25:21

Wdata

Wdest

20:0

Active Datapath for Branch to Subroutine

Jump Instruction
IF: Instruction fetch

◦ IR <-- IMemory[PC]

◦ incrPC <-- PC + 4

ID: Instruction decode/register fetch
◦ B <-- Register[IR[20:16]]

Ex: Execute
◦ Target <-- B

MEM: Memory
◦ PC <-- target

WB: Write back
◦ Register[IR[25:21]] <-- incrPC

jmp, jsr, ret: Ra <-- PC+4; PC <-- Rb

31-26 25-21 20-16 15-0

0x1A ra rb Hint

ALU used to compute target
◦ B input set to Rb

◦ ALU function set to select B

Write Back
◦ To Ra

◦ IncrPC as data

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

20:16

+4

aluA

aluB

IncrPC

Instr

25:21

Wdata

Wdest

Active Datapath for Jumps

IF
instruction
fetch

ID
instruction decode/
register fetch

MEM
memory
access

EX
execute/
address calculation

WB
write
back

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

Xtnd << 2

Zero
Test

25:21

Wdata

Wdest

20:0

25:21

Wdata

Wdest

Complete Datapath

What about control?
Implicitly defined already when we looked at each instruction type

Define control signals as function of instruction op code etc
◦ “1”, “0”, “don’t care”

◦ Many ways to get simple combinational circuit

Control is more complex with multi-cycle implementations
◦ E.g., microprogramming

Pipelining

Same datapath, ≈5X higher peak throughput!

Pipelined Datapath

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

Xtnd << 2

Zero
Test

25:21

Wdata

Wdest

20:0

25:21

Wdata

Wdest

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

Combinational
Logic

R
eg

is
te

r

1.2ns 0.1ns

Clock

Delay = 1.3 ns
Throughput = 0.77 GHz

Unpipelined
System

Op 1
• • •

Pipelining Basics

Op 2 Op 3

◦ Space operations 0.5ns apart

◦ 3 operations occur
simultaneously

R
eg

is
te

r
Clock

Comb.
Logic

R
eg

is
te

r

Comb.
Logic

R
eg

is
te

r

Comb.
Logic

0.4ns 0.1ns 0.4ns 0.1ns 0.4ns 0.1ns

Delay = 1.5 ns
Throughput = 2.0 GHz

3-Stage Pipeline

Op 1

• • •

Op 2

Op 3

Op 4

Clock

R
eg

is
te

r

Com.
Log.

R
eg

is
te

r

Comb.
Logic

R
eg

is
te

r

Comb.
Logic

0.2ns 0.1ns 0.6ns 0.1ns 0.4ns 0.1ns

Delay = 0.7 * 3 = 2.1 ns
Throughput = 1.43 GHz

◦ Throughput limited by slowest stage

◦ Delay determined by clock period (= max stage latency) × number of stages

◦ Must balance stages to maximize performance

Limitation: Non-Uniform Pipelining

◦ Diminishing returns as add more pipeline stages

◦ Register delays become limiting factor
◦ Increased latency

◦ Small throughput gains

◦ (Other architectural problems in practice that flush pipeline)

Delay = 1.8ns
Throughput = 3.33GHz

Clock

R
eg

is
te

r

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Limitation: Deep Pipelines

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

◦ Op4 gets result from Op3!

◦ Pipeline Hazard Extra delay

Clock

Comb.
Logic

Comb.
Logic

Comb.
Logic

Limitation: Sequential Dependences

Op 1

• • •

Op 2

Op 3

Op 4

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

Pipe Registers
◦ Inserted between stages

◦ Labeled by preceding & following stage

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

Xtnd << 2

Zero
Test

25:21

Wdata

Wdest

20:0

25:21

Wdata

Wdest

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

Pipelined Datapath

Notes
◦ Each stage consists of logic connecting pipe registers

◦ WB logic merged into ID

◦ Additional paths required for forwarding

PC IF/ID

Instr.
Mem.

Reg.
File

Data
Mem.

ID/EX EX/MEM MEM/WB

IF ID EX MEM

Write Back Reg. & DataNext PC

Branch Flag & Target

Pipeline Structure

Operation
◦ Current State stays constant while Next State being updated

◦ Update involves transferring Next State to Current

Current
State

Next
State

Pipe Register

Pipeline Stage
Computes next state based on current

◦ From/to one or more pipe registers

May have internal memory elements (e.g., Reg File)
◦ Low level timing signals control their operation during

clock cycle

◦ Writes based on current pipe register state

◦ Reads supply values for Next State
Reg.
File

ID

Current
State

Next
State

Data Hazards in ALPHA Pipeline
Problem

◦ Registers read in ID, and written in WB

◦ Must resolve conflict between instructions competing for registers

◦ Assume reads get a value written in same stage

◦ But what about intervening instructions?

$2

$3

$4

$5

0

0

0

0

0$6

addq $2, 63, $2

addq $2, 0, $3

addq $2, 0, $4

addq $2, 0, $5

addq $2, 0, $6

63

63

63

63

63

Sequential execution

Data Hazards in ALPHA Pipeline
Problem

◦ Registers read in ID, and written in WB

◦ Must resolve conflict between instructions competing for registers

◦ Assume reads get a value written in same stage

◦ But what about intervening instructions?

$2

$3

$4

$5

0

0

0

0

0$6

addq $2, 63, $2

addq $2, 0, $3

addq $2, 0, $4

addq $2, 0, $5

addq $2, 0, $6

63

?

?

?

?

IF ID EX M WB

addq $2, 63, $2addq $2, 0, $3addq $2, 0, $4addq $2, 0, $5addq $2, 0, $6

Data Hazards in ALPHA Pipeline
Problem

◦ Registers read in ID, and written in WB

◦ Must resolve conflict between instructions competing for registers

◦ Assume reads get a value written in same stage

◦ But what about intervening instructions?

IF ID

IF

EX

ID

IF

M

EX

ID

IF

WB

M

EX

ID

IF

WB

M

EX

ID

WB

M

EX

WB

M WB

$2

$3

$4

$5

0

0

0

0

0$6

Time

addq $2, 63, $2

addq $2, 0, $3

addq $2, 0, $4

addq $2, 0, $5

addq $2, 0, $6

63

?

?

?

?

$2 written

$2 read

Problem
◦ Instruction fetched in IF, branch condition set in MEM

◦ When does branch take effect?

◦ E.g.: assume initially that all registers = 0

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

beq $0, target

mov 63, $2

mov 63, $3

mov 63, $4

mov 63, $5

target: mov 63, $6

$2

$3

$4

$5

$6

Time

PC Updated

Control Hazards in ALPHA Pipeline

RISC design simplifies implementation
◦ Small number of instruction formats

◦ Simple instruction processing

RISC leads naturally to pipelined implementation
◦ Partition activities into stages

◦ Each stage simple computation

We’re not done yet!
◦ Need to deal with data & control hazards

Conclusions

Advanced Pipelining

Handling Hazards by Stalling
Idea

◦ Delay instruction until hazard eliminated

◦ Put “bubble” into pipeline

◦ Dynamically generated NOP

Pipe Register Operation
◦ “Transfer” (normal operation) indicates should transfer next state to current

◦ “Stall” indicates that current state should not be changed

◦ “Bubble” indicates that current state should be set to NOP

◦ E.g., stage logic designed so that 0 is like NOP

Stall
Bubble

Current
State

Next
State

Transfer

Pending Register Reads
◦ By instruction in ID

◦ ID_in.IR[25:21]: Operand A

◦ ID_in.IR[20:16]: Operand B (only for RR)

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr
datOut

aluA

aluB

IncrPC

Instr

4:0 Wdest

Wdata

20:13

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

W
Dst

W
Dst

W
Dst

Pending Register Writes
◦ EX_in.WDst: Destination register of instruction in EX

◦ MEM_in.WDst: Destination register of instruction in MEM

Read Sources

Write Dests.

Detecting Dependencies

Stall Control Logic
◦ Determines which stages to stall, bubble, or transfer on next update

Rule:
◦ Stall in ID if either pending read matches either pending write (eg, EX_in.Wdst == ID_in.IR[25:21])
◦ Must also stall IF & bubble EX

Effect
◦ Instructions with pending writes allowed to complete before instruction allowed out of ID

Instr.
Mem.

Reg.
File

Data
Mem.

IF ID EX MEM

Stall Control
Stall Stall Bubble Transfer Transfer

Implementing Stalls

Operation
◦ First instruction progresses unimpeded

◦ Second waits in ID until first hits WB

◦ Third waits in IF until second allowed to progress

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

addq $31, 63, $2

addq $2, 0, $3

addq $2, 0, $4

addq $2, 0, $5

addq $2, 0, $6

$2

$3

$4

$5

$6

Time

$2 written

IDID

IF IF

Stalling for Data Hazards

Observations on Stalling
Good ☺

◦ Relatively simple hardware

◦ Only penalizes performance when hazard exists

Bad
◦ As if placed NOPs in code

◦ (Except that does not waste instruction memory)

Reality
◦ Some problems can only be dealt with by stalling

◦ Instruction cache miss

◦ Data cache miss

◦ Otherwise, want technique with better performance

Q: Do we really need to stall?

Forwarding (Bypassing)
Observation: The data we want is available, but not in the right place!

◦ ALU data generated at end of EX

◦ ALU data consumed at beginning of EX

We shouldn’t need to stall at all!

Idea
◦ Expedite passing of previous instruction result to ALU

◦ By adding extra data pathways and control

Operand Destinations
◦ ALU input A

◦ Register EX_in.ASrc
◦ ALU input B

◦ Register EX_in.BSrc

Operand Sources
◦ MEM_in.ALUout

◦ Pending write to MEM_in.WDst
◦ WB_in.ALUout

◦ Pending write to WB_in.WDst

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr
datOut

aluA

aluB

IncrPC

Instr

4:0 Wdest

Wdata

20:13

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

W
Dst

A
Src

B
Src

W
Dst

W
Dst25:21

20:16

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr
datOut

aluA

aluB

IncrPC

Instr

4:0 Wdest

Wdata

20:13

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

W
Dst

A
Src

B
Src

W
Dst

W
Dst25:21

20:16

Forwarding for ALU instructions

EX-EX
◦ From instruction that just finished EX

MEM-EX
◦ From instruction that finished EX two cycles earlier

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr
datOut

aluA

aluB

IncrPC

Instr

4:0 Wdest

Wdata

20:13

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

W
Dst

A
Src

B
Src

W
Dst

W
Dst25:21

20:16

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr
datOut

aluA

aluB

IncrPC

Instr

4:0 Wdest

Wdata

20:13

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

W
Dst

A
Src

B
Src

W
Dst

W
Dst25:21

20:16

EX-EX

MEM-EX

Bypassing Possibilities

Operation
◦ First instruction progresses down pipeline

◦ When in MEM, forward result to second instruction (in EX)
◦ EX-EX forwarding

◦ When in WB, forward result to third instruction (in EX)
◦ MEM-EX forwarding

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

addq $31, 63, $2

addq $2, 0, $3 # EX-EX

addq $2, 0, $4 # MEM-EX

addq $2, 0, $5

addq $2, 0, $6

$2

$3

$4

$5

$6

Time

$2 written

IF ID EX M WB

IF ID EX M WB

Bypassing Data Hazards

ID: Instruction decode/register fetch
◦ Store: A <-- Register[IR[25:21]]

◦ Both: B <-- Register[IR[20:16]]

MEM: Memory
◦ Load: Mem-Data <-- DMemory[ALUOutput]

◦ Store: DMemory[ALUOutput] <-- A

WB: Write back
◦ Load: Register[IR[25:21]] <-- Mem-Data

Load: Ra <-- Mem[Rb +offset]

31-26 25-21 20-16 15-0

Op ra rb offset

Load & Store Instructions

Store: Mem[Rb +offset] <-- Ra

31-26 25-21 20-16 15-0

Op ra rb offset

Data Sources
◦ Available after EX

◦ ALU Result Reg-Reg Result

◦ Available after MEM
◦ Read Data Load result

◦ ALU Data Reg-Reg Result passing through MEM stage

Data Destinations
◦ ALU A input Need in EX

◦ Reg-Reg or Reg-Immediate Operand

◦ ALU B input Need in EX
◦ Reg-Reg Operand

◦ Load/Store Base

◦ Write Data Need in MEM
◦ Store Data

Analysis of Data Transfers

Some Hazards with Loads & Stores

Load-ALU

ldq $1, 8($2)

addq $2, $1, $2

Load-Store Data

ldq $1, 8($2)

stq $1, 16($2)

Load-Store (or Load) Addr.

ldq $1, 8($2)

stq $2, 16($1)

ALU-Store Data

addq $2, $3, $1

stq $1, 16($2)

Data Generated by Store

Store-Load Data

stq $1, 8($2)

ldq $3, 8($2)

Not a
concern
for us

ALU-Store (or Load) Addr

addq $1, $3, $2

stq $3, 8($2)

Data Generated by ALU

Data Generated by Load

MEM-MEM Forwarding
Condition

◦ Data generated by load instruction
◦ Register WB_in.WDst

◦ Used by immediately following store
◦ Register MEM_in.ASrc

Load-Store Data

ldq $1, 8($2)

stq $1, 16($2)

IF ID EX M WB ldq $1, 8($2)

stq $1, 16($2)IF ID EX M WB

Time

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

W
Dst

A
Src

B
Src

W
Dst

A
Src

W
Dst

25:21

20:16

EX-EX

MEM-EX

MEM-MEM
Complete Bypassing for ALU + L/S

Load-ALU

ldq $1, 8($2)

addq $2, $1, $2

Load-Store Data

ldq $1, 8($2)

stq $1, 16($2)

Load-Store (or Load) Addr.

ldq $1, 8($2)

stq $2, 16($1)

ALU-Store Data

addq $2, $3, $1

stq $1, 16($2)

Data Generated by Store

Store-Load Data

stq $1, 8($2)

ldq $3, 8($2)

Not a
concern
for us

ALU-Store (or Load) Addr

addq $1, $3, $2

stq $3, 8($2)

Data Generated by ALU

MEM-MEM

EX-EX

EX-EX

Some Hazards with Loads & Stores

Data Generated by Load

Single Remaining Unsolved Hazard Class
◦ Load followed by ALU operation / address calculation

Load-ALU

ldq $1, 8($2)

addq $2, $1, $2

Value not available soon enough!

IF ID EX M WB ldq $1, 8($2)

addq $2, $1, $2IF ID EX M WB

Time

Just Forward?

IF ID EX M WB ldq $1, 8($2)

addq $2, $1, $2IF ID EX M WB

Time

Then can use MEM-EX forwarding

With 1 Cycle Stall

ID

Load-Store (or Load) Addr.

ldq $1, 8($2)

stq $2, 16($1)

Impact of Forwarding

New Data Hazards
Branch Uses Register Data

◦ Generated by ALU instruction

◦ Read from register in ID

Handling
◦ Same as other instructions with register data source

◦ Bypass
◦ EX-EX

◦ MEM-EX

ALU-Branch

addq $2, $3, $1

beq $1, targ

Distant ALU-Branch

addq $2, $3, $1

or $31, $31, $31

beq $1, targ

Load-Branch

lw $1, 8($2)

beq $1, targ

Still More Data Hazards
Jump Uses Register Data

◦ Generated by ALU instruction

◦ Read from register in ID

Handling
◦ Same as other instructions with register data source

◦ Bypass
◦ EX-EX

◦ MEM-EX

But fetch stalls

ALU-Jump

addq $2, $3, $1

jsr $26 ($1), 1

Distant ALU-Jump

addq $2, $3, $1

bis $31, $31, $31

jmp $31 ($1), 1

Load-Jump

lw $26, 8($sp)

ret $31 ($26), 1

IF ID EX M WB

IF IF ID EX MIF WB

What happens with a branch?

IF
instruction
fetch

ID
instruction decode/
register fetch

MEM
memory
access

EX
execute/
address calc

WB
write
back

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

Data
Mem.

datIn

addr

datOut

aluA

aluB

IncrPC

Instr

4:0
Wdest

Wdata

20:13

Xtnd

25:21

Wdata

Wdest

15:0

Xtnd << 2

Zero
Test

25:21

Wdata

Wdest

20:0

Branch Flag

25:21

Wdata

Wdest

IF/ID ID/EX EX/MEM MEM/WB

Adata

ALUout

W
Dst

A
Src

B
Src

W
Dst

A
Src

W
Dst

25:21

20:16

Pipelined Datapath

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

31-26 25-21 20-0

beq: PC <-- Ra == 0 ? PC + 4 + disp*4 : PC + 4

Op ra disp

Conditional Branch Instruction Handling

Branch Example
Desired Behavior

◦ Take branch at 0x00

◦ Execute target 0x18
◦ PC + 4 + disp << 2

◦ PC = 0x00

◦ disp = 5 Branch Code (demo08.O)

0x0: e7e00005 beq r31, 0x18 # Take

0x4: 43e7f401 addq r31, 0x3f, r1 # (Skip)

0x8: 43e7f402 addq r31, 0x3f, r2 # (Skip)

0xc: 43e7f403 addq r31, 0x3f, r3 # (Skip)

0x10: 43e7f404 addq r31, 0x3f, r4 # (Skip)

0x14: 47ff041f bis r31, r31, r31

0x18: 43e7f405 addq r31, 0x3f, r5 # (Target)

0x1c: 47ff041f bis r31, r31, r31

0x20: 00000000 call_pal halt

Displacement

0x0: beq r31, 0x18 # Take

0x4: addq r31, 0x3f, r1 # Xtra1

0x8: addq r31, 0x3f, r2 # Xtra2

0xc: addq r31, 0x3f, r3 # Xtra3

0x10: addq r31, 0x3f, r4 # Xtra4

0x18: addq r31, 0x3f, r5 # Target◦ With BEQ in Mem stage

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

Yes

0x18

BEQ

Xtra1

Xtra2Xtra3

0xc

0x10

0x18

Branch Hazard Example

0x0: beq r31, 0x18 # Take

0x4: addq r31, 0x3f, r1 # Xtra1

0x8: addq r31, 0x3f, r2 # Xtra2

0xc: addq r31, 0x3f, r3 # Xtra3

0x10: addq r31, 0x3f, r4 # Xtra4

0x18: addq r31, 0x3f, r5 # Target◦ One cycle later

◦ Problem: Will execute 3 extra
instructions!

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

No

Xtra1

Xtra2

Xtra3Target

0x18

0x1c

0x1c

Branch Hazard Example

Problem
◦ Instruction fetched in IF, branch condition set in MEM

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

beq $31, target

addq $31, 63, $1

addq $31, 63, $2

addq $31, 63, $3

addq $31, 63, $4

target: addq $31, 63, $5

Time

PC Updated

Branch Hazard Pipeline Diagram

Stall Until Resolved Branch
◦ Detect when branch in stages ID or EX

◦ Stop fetching until resolve
◦ Stall IF. Inject bubble into ID

Instr.
Mem.

Reg.
File

Data
Mem.

IF ID EX MEM

Stall Control
Stall Bubble Transfer Transfer Transfer

Perform when branch in either stage

0x0: beq r31, 0x18 # Take

0x4: addq r31, 0x3f, r1 # Xtra1

0x8: addq r31, 0x3f, r2 # Xtra2

0xc: addq r31, 0x3f, r3 # Xtra3

0x10: addq r31, 0x3f, r4 # Xtra4

0x18: addq r31, 0x3f, r5 # Target◦ With BEQ in Mem stage

◦ Will have stalled twice
◦ Injects two bubbles

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

Yes

0x18

BEQ

Bubble1

Bubble2Xtra1

0x4

0x8

0x18

Stalling Branch Example

Taken Branch Resolution
◦ When branch taken, still have instruction Xtra1 in pipe

◦ Need to flush it when detect taken branch in Mem
◦ Convert it to bubble

Instr.
Mem.

Reg.
File

Data
Mem.

IF ID EX MEM

Stall Control
Transfer Bubble Transfer Transfer Transfer

Perform when detect taken branch

0x0: beq r31, 0x18 # Take

0x4: addq r31, 0x3f, r1 # Xtra1

0x8: addq r31, 0x3f, r2 # Xtra2

0xc: addq r31, 0x3f, r3 # Xtra3

0x10: addq r31, 0x3f, r4 # Xtra4

0x18: addq r31, 0x3f, r5 # Target◦ When branch taken

◦ Generate 3rd bubble

◦ Begin fetching at target

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

No

Bubble1

Bubble2

Bubble3Target

0x18

0x1c

0x1c

Taken Branch Resolution Example

Behavior
◦ Instruction Xtra1 held in IF for two extra cycles

◦ Then turn into bubble as enters ID

IF ID EX M WB

IF

IF ID EX M WB

beq $31, target

addq $31, 63, $1 # Xtra1

target: addq $31, 63, $5 # Target

Time

PC Updated

IF IF

Taken Branch Pipeline Diagram

Not Taken Branch Resolution
◦ [Stall two cycles with not-taken branches as well]

◦ When branch not taken, already have instruction Xtra1 in pipe

◦ Let it proceed as usual

Instr.
Mem.

Reg.
File

Data
Mem.

IF ID EX MEM

Stall Control
Transfer Transfer Transfer Transfer Transfer

0x0: bne r31, 0x18 # Don’t Take

0x4: addq r31, 0x3f, r1 # Xtra1

0x8: addq r31, 0x3f, r2 # Xtra2

0xc: addq r31, 0x3f, r3 # Xtra3

0x10: addq r31, 0x3f, r4 # Xtra4

◦ Branch not taken

◦ Allow instructions to proceed

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

No

Bubble1

Bubble2

Xtra1Xtra2

0x8

0xc

0xc

demo09.O

Not Taken Branch Resolution Example

Behavior
◦ Instruction Xtra1 held in IF for two extra cycles

◦ Then allowed to proceed

IF ID EX M WB

IF IF ID EX M WB

beq $31, target

addq $31, 63, $1 # Xtra1

Time

PC Not Updated

IF

IF ID EX M WB

IF ID EX M WB

addq $31, 63, $2 # Xtra2

addq $31, 63, $3 # Xtra3

addq $31, 63, $4 # Xtra4IF ID EX M WB

Not Taken Branch Pipeline Diagram

Branch Instruction Timing
◦ 1 instruction cycle

◦ 3 extra cycles when taken

◦ 2 extra cycles when not taken

Performance Impact
◦ Branches ≈20% of instructions

◦ ≈67% branches are taken

◦ Adds 0.2 * (0.67 * 3 + 0.33 * 2) = 0.54 increase to CPI

◦ Serious performance impact!

Analysis of Stalling

Instruction does not cause any updates until MEM or WB stages

Instruction can be “cancelled” from pipe up through EX stage
◦ Replace with bubble

Strategy
◦ Continue fetching under assumption that branch not taken Speculate!

◦ If decide to take branch, cancel undesired ones

Instr.
Mem.

Reg.
File

Data
Mem.

IF ID EX MEM

Stall Control
Transfer Bubble Bubble Bubble Transfer

Perform when detect taken branch

Fetch & Cancel When Taken

0x0: beq r31, 0x18 # Take

0x4: addq r31, 0x3f, r1 # Xtra1

0x8: addq r31, 0x3f, r2 # Xtra2

0xc: addq r31, 0x3f, r3 # Xtra3

0x10: addq r31, 0x3f, r4 # Xtra4

0x18: addq r31, 0x3f, r5 # Target
◦ With BEQ in Mem stage

◦ Will have fetched 3 extra
instructions

◦ But no register or memory updates

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

Yes

0x18

BEQ

Xtra1

Xtra2Xtra3

0xc

0x10

0x18

Fetch & Cancel Example

0x0: beq r31, 0x18 # Take

0x4: addq r31, 0x3f, r1 # Xtra1

0x8: addq r31, 0x3f, r2 # Xtra2

0xc: addq r31, 0x3f, r3 # Xtra3

0x10: addq r31, 0x3f, r4 # Xtra4

0x18: addq r31, 0x3f, r5 # Target◦ When branch taken

◦ Generate 3 bubbles

◦ Begin fetching at target

P
C

Instr.
Mem.

Reg.
Array

regA

regB

regW

datW

datA

datB

ALU

25:21

20:16

+4

aluA

aluB

IncrPC

Instr

Xtnd << 2

Zero
Test

20:0

Branch Flag

IF/ID ID/EX EX/MEM

Adata

ALUout

No

Bubble1

Bubble2

Bubble3Target

0x18

0x1c

0x1c

Cancelling Branch Resolution Example

Operation
◦ Process instructions assuming branch will not be taken

◦ When is taken, cancel 3 following instructions

IF ID EX M WB

IF ID EX

IF ID

IF

IF ID EX M WB

beq $31, target

addq $31, 63, $1

addq $31, 63, $2

addq $31, 63, $3

addq $31, 63, $4

target: addq $31, 63, $5

Time

PC Updated

Cancelling Branch Pipeline Diagram

Operation
◦ Process instructions assuming branch will not be taken

◦ If really isn’t taken, then instructions flow unimpeded

IF ID EX M WB

IF ID EX M WB

bne $31, target

addq $31, 63, $1

addq $31, 63, $2

addq $31, 63, $3

addq $31, 63, $4

target: addq $31, 63, $5

Time

PC Not Updated

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Non-cancelling Branch Pipeline Diagram

We have implemented a “static not taken” branch predictor
◦ But 67% of branches are taken

◦ Impact on CPI: 0.2 * 0.67 * 3.0 = 0.4
◦ Still not very good

Alternative Schemes
◦ Predict taken

◦ Would be hard to squeeze into our pipeline

◦ Can’t compute target until ID one bubble

◦ MIPS branch delay slot exposes this bubble in ISA

◦ Backwards taken, forwards not taken
◦ Predict based on sign of displacement

◦ Exploits fact that loops usually closed with backward branches

◦ Branch target buffer (BTB) speculates on branch destination in IF
◦ What’s done in practice

Fetch & Cancel Analysis

Exceptions and
Multi-Cycle Instructions

Exceptions
An exception is a transfer of control to the OS in response to some event (i.e. change in
processor state)

User Process Operating System

exception

exception processing
by exception handler

exception
return (optional)

event

Issues with Exceptions

User Process Operating System

exception

exception
handler

exception
return (optional)

A

B

C

A1: What kinds of events can cause an
exception?

A2: When does the exception occur?

B1: How does the handler determine the
location and cause of the exception?

B2: Are exceptions allowed within
exception handlers?

C1: Can the user process restart?

C2: If so, where?

Internal (CPU) Exceptions
Internal exceptions occur as a result of events generated by executing instructions.

Execution of a CALL_PAL instruction.
◦ allows a program to transfer control to the OS (ie, syscall)

Errors during instruction execution
◦ arithmetic overflow, address error, parity error, undefined instruction

Events that require OS intervention
◦ virtual memory page fault

External (I/O) exceptions
External exceptions occur as a result of events generated by devices external to the processor.

I/O interrupts
◦ hitting ^C at the keyboard

◦ arrival of a packet

◦ arrival of a disk sector

Hard reset interrupt
◦ hitting the reset button

Soft reset interrupt
◦ hitting ctl-alt-delete on a PC

Exception handling (hardware tasks)
Recognize event(s)

Associate one event with one instruction.
◦ external event: pick any instruction

◦ multiple internal events: typically choose the earliest instruction.

◦ multiple external events: prioritize

◦ multiple internal and external events: prioritize

Create Clean Break in Instruction Stream
◦ Complete all instructions before excepting instruction

◦ Abort excepting and all following instructions

◦ this clean break is called a “precise exception”

User Process

A

C

Exception handling (hardware tasks)
Set status registers

◦ Exception Address: the EXC_ADDR register

◦ external exception: address of instruction about to be executed

◦ internal exception: address of instruction causing the exception

◦ except for arithmetic exceptions, where it is the following instruction

◦ Cause of the Exception: the EXC_SUM and FPCR registers

◦ was the exception due to division by zero, integer overflow, etc.

◦ Others

◦ which ones get set depends on CPU and exception type

Disable interrupts and switch to kernel mode

Jump to common exception handler location

Exception handling (software tasks)
Deal with event

(Optionally) resume execution
◦ using special REI (return from exception or interrupt) instruction

◦ similar to a procedure return, but restores processor to user mode as a side effect.

Where to resume execution?
◦ usually re-execute the instruction causing exception

Precise vs. Imprecise Exceptions
In the Alpha architecture:

◦ arithmetic exceptions may be imprecise (similar to the CRAY-1)

◦ motivation: simplifies pipeline design, helping to increase performance

◦ all other exceptions are precise

Imprecise exceptions:
◦ all instructions before the excepting instruction complete

◦ the excepting instruction and instructions after it may or may not complete

What if precise exceptions are needed?
◦ insert a TRAPB (trap barrier) instruction immediately after

◦ stalls until certain that no earlier insts take exceptions
User Process

A

C ?
In the remainder of our discussion, assume for
the sake of simplicity that all Alpha exceptions
are precise.

Example: Integer Overflow

overflow

and $12, $2, $5

xor $13, $2, $6

addq $1, $2, $1

or $15, $6, $7

ldq $16, 50($7)

stq $26, 100($31)

...

user code

handler code

addq

or

ldq

stq

xor

and

IF EXID

IF ID

IF

IF EXID MEM

IF EXID MEM

IF

WB

flush these
instructions

start handler code

WB

nop

nop

nop

(This example illustrates a precise version of the exception.)

Overflow
detected here

the xor
instruction
completes

Multicycle instructions
Alpha 21264 Execution Times:

◦ Measured in clock cycles

Operation Integer FP-Single FP-Double

add / sub 1 4 4

multiply 8-16 4 4

divide N / A 10 23

H&P Dynamic Instruction Counts:

Integer FP Benchmarks
Operation Benchmarks Integer FP

add / sub 14% 11% 14%

multiply < 0.1% < 0.1% 13%

divide < 0.1% < 0.1% 1%

Pipeline Revisited

IF ID MEM WB

EX

EX1 EX2 EX4EX3

EX5 EX6 EX8EX7EX1 EX2 EX4EX3 EX9 EX10

Integer Add / Subtract

FP Add / Sub / Mult

EX5 EX6 EX8EX7EX1 EX2 EX4EX3

Integer Multiply

FP Single-Precision Divide

...

Multiply Timing Example

or $31, 3, $2

or $31, 7, $3

mulq $2, $3, $4

addq $2, $3, $3

bis $4, $31, $5

addq $2, $4, $2

(Not to scale)

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

EX M WB

ID EX M WB

Stall while Busy

IF ID

IF

• • •

• • •

Multicycle Instructions Discussion
Pipeline Characteristics for Multi-cycle Instructions

◦ In-order issue

◦ Instructions fetched and decoded in program order

◦ Out-of-order completion

◦ Slow instructions may complete after ones that are later in program order

◦ Reason for imprecise exceptions … but difficult to reason about

◦ …will revisit this in OOO / dynamic scheduling

Performance Opportunities
◦ Transformations such as loop unrolling & software pipelining to expose potential parallelism

◦ Schedule code to use multiple functional units

◦ Must understand idiosyncrasies of pipeline structure

◦ …will revisit this in VLIW

SUPERSCALAR

Register File

Add

Multiply

L1D

L1I

FP

FETCH DECODE EXECUTE (multistage) WB

Pipelines thus far

Increasing Performance

Time =
Instructions

Program
×

Cycles

Instruction
×

Seconds

Cycle

Increase clock frequency

Decrease CPI

How well does pipelining do?

Pipelining performance

Time =
Instructions

Program
×

Cycles

Instruction
×

Seconds

Cycle

Increase clock frequency

• N-stage can give ≈N× faster clock

Decrease CPI

• Pipelining increases CPI due to hazards & stalls
(but by less than N×)

Limitations of pipelining
Stages can’t be increased forever

• Pipeline overheads become significant

• Bypassing more expensive, less effective

• Flushes due to mis-predicted branches

Pipeline Depth over Time

Going beyond pipelining
Pipelines processors limited by CPI ≤ 1

(the “Flynn bottleneck”)

But we have >1 functional unit in execute stage

Why not issue multiple instructions per cycle?
 Superscalar processors

• Instruction-level parallelism (ILP)

• Today processors typically 2- or 4-wide issue

Typical Dual-Issue Pipeline (1/2)

Fetch an entire 16B or 32B cache block
◦ ≈ 4 to 8 instructions

◦ Predict a single branch per cycle

Parallel decode
◦ Check for conflicting instructions

◦ Other stalls as needed (eg, load-use delay)

I$ Reg File

D $

Typical Dual-Issue Pipeline (2/2)

Multi-ported register file
◦ Larger area, latency, power, cost & complexity – bad scaling too!

Multiple execution units
◦ Simple adders are easy, but bypass paths are expensive

Memory unit
◦ Single load per cycle is probably OK for dual-issue

◦ Alternative: Add read port to D$

I$ Reg File

D $

Superscalar Example
ADDQ $1, $2, $3

ADDQ $4, $5, $6

ADDQ $7, $8, $9

ADDQ $10, $11, $12

ADDQ $13, $14, $15

ADDQ $16, $17, $18

What checks are required for 2-wide issue?

What does the execution look like? How many cycles?

Superscalar Example
ADDQ $1, $2, $3

ADDQ $4, $5, $6

ADDQ $7, $8, $9

ADDQ $10, $11, $12

ADDQ $13, $14, $15

ADDQ $16, $17, $18

What checks are required for 3-wide issue?

What does the execution look like? How many cycles?

Superscalar Example
ADDQ $1, $2, $3

ADDQ $4, $5, $6

ADDQ $7, $8, $9

ADDQ $10, $11, $12

ADDQ $13, $14, $15

ADDQ $16, $17, $18

What checks are required for 4-wide issue?

What does the execution look like? How many cycles?

Superscalar Example
ADDQ $1, $2, $3

ADDQ $4, $5, $6

ADDQ $7, $3, $9

ADDQ $9, $11, $12

ADDQ $13, $9, $15

ADDQ $16, $17, $18

What checks are required for 3-wide issue?

What does the execution look like? How many cycles?

Superscalar Implementation – F&D
Fetch

• Modest: Just fetch multiple instructions per cycle

• Aggressive: Buffer instructions / predict multiple branches

Decode

• Replicate decoders for each instruction

Superscalar Implementation - Issue
Instruction issue

• Determine which instructions can execute

• 𝑶 𝑵𝟐 checks required for N-wide machine

• Other limitations based on execution units

Register read

• Add read & write ports to register file

• Affects latency & area roughly 𝑶 𝒑𝒐𝒓𝒕𝒔𝟐

Superscalar Implementation - EX
Replicate functional units?

• Yes for simpler ones like adders

• No for expensive, rarely-used like divide

• Somewhat for expensive, often-used like cache ports

Bypass paths

• 𝑶(𝑷𝑵𝟐) paths required for full bypass (𝑷 – pipeline depth)

• N-way muxes at each stage add latency to critical path

• Can add pipeline stages for bypassing but this isn’t free

Superscalar Challenges
Quadratic scaling factors

• Dependence checks

• Register file size

• Bypass paths

Speedup limited by ILP

• Rely on compiler

• Still face heavily diminishing returns

 Superscalar is a good idea, but limited scaling

Not all 𝑵𝟐 are created equal
Stall logic vs bypass network vs register file – which is the bigger problem?

Bypass network by far

• 64-bit values vs 5-bit register names

• Bypass between stages 𝑶 𝑵𝟐 vs 𝑶 𝑷𝑵𝟐

• Must fit within clock + ALU

Register file also expensive

Dependency checks are a distant 3rd

Idea: Clustering
Stall logic does full 𝑶 𝑵𝟐 dependence checks

• No real choice, must execute correctly

Cluster execution units and register file

• Full bypass within a cluster (with smaller N)

• Limited bypassing between clusters – takes 1 or 2 cycles

Idea: Clustering
Cluster execution units and register file

Dependent instructions steered towards appropriate cluster

Register file banked (split) across clusters

• Or replicated – fewer read ports, multiple writes

Other challenges: Superscalar Fetch
What does it mean to fetch multiple insns per cycle?

Same cache block no problem

If last instruction in block single issue this cycle?

What about taken branches?

• 20% branches x 50% taken ~10 instructions between taken branches

Other challenges: Superscalar Fetch
What is the ILP of this program on a 4-wide issue?

START: ADDQ $1, $1, 1

ADDQ $2, $2, 1

ADDQ $3, $3, 1

ADDQ $4, $4, 1

BEZ $1, START # assume taken

Other challenges: Superscalar Fetch

Over-fetch and buffer

• Add a queue between fetch and decode (18 entries on Core 2)

• Compensates for cycles that fetch less than maximum issue

• Decouples front-end and back-end
• (see also Decoupled Access Execute [Smith,‘82] for a different application of same idea)

Or put entire loops in icache

• Any mispredicted branch falls back to normal fetch

• Macro-ops (eg Core 2) vs micro-ops (Core i7) vs trace cache (P4)

Other challenges: Superscalar Commit
Which instructions write registers in a 4-wide issue?

ADDQ $1, $2, $3

ADDQ $2, $6, $1

ADDQ $5, $8, $3

ADDQ $4, $3, $1

Need to add dependence checks in writeback

D
estin

atio
n

s

Doesn’t execute

Trends in Superscalar Width

High-performance (eg,
servers)

Power-
efficient (eg,
mobile)

Conclusion: Superscalar
Multiple issue

• Exploits ILP beyond pipelining

• Improves IPC at the cost of clock & energy & area

• 4- to 6-wide issue is about peak justifiable width

Problem spots

• Bypass & register file scale 𝑶 𝑵𝟐

• Clustering one solution

• Fetch and decode complicated
• Buffering, loop streaming, trace cache

• Dependence checks also scales 𝑶 𝑵𝟐

• VLIW tries to fix this (next time)

