INtro to
Microarchitecture:
Basic Pipelining

15-740 SPRING'18
NATHAN BECKMANN

Objective

Design Processor for Alpha Subset
° Interesting but not overwhelming quantity

o Using high-level functional blocks

Initial Design
° One instruction at a time
o Single cycle per instruction

Refined Design
o 5-stage pipeline
o Similar to early RISC processors
o Goal: Approach 1 cycle-per-instruction, but with shorter cycle time

ALPHA Instruction Set

ALPHA Arithmetic Instructions

RR-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct rb
Op ra rb 000 | O funct rc
31-26 25-21 20-16 15-13 12 11-5 4-0

RI-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct ib

Op ra ib 1| funct rc
31-26 25-21 20-13 12 11-5 4-0
Encoding
° ib is 8-bit unsigned literal
Operation Op field funct field
addg 0x10 0x20
subqg 0x10 0x29
or/bis Ox11 0x20
XOr O0x11 0x40
cmoveq Ox11 O0x24 (32b conditional move)
cmplt Ox11 0x4D (compare less-than)

ALPHA Load/Store Instructions

Load: Ra <-- Mem[Rb +offset]
Store: Mem[Rb + offset] <-- Ra

Op ra rb offset
31-26 25-21 20-16 15-0
Encoding
o offset is 16-bit signed offset
Operation Op field
1ldg 0x29
stqg 0x2D

ALPHA Branch Instructions
Cond. Branch: PC <-- Cond(Ra) ? Pisp*4 : P

Op ra disp
31-26 25-21 20-0
Encoding Why PC + 4?
o disp is 21-bit signed displacement Is ALPHA designed
Operation Op field Cond for compilers or
beq 0x39 Ra == assembly
bne 0x3D Ra != 0 programmers? (RISC
vs CISC)
Branch [Subroutine]: Ra <-- PC + 4; PC <-- Pisp*4
Op ra disp
31-26 25-21 20-0
Operation Op field Convention: Ra = 26
br 0x30
bsr 0x34

ALPHA Control Transfers

jmp, jsr, ret: Ra <-- PC+4; PC<-- Rb

Ox1A ra rb Hint
31-26 25-21 20-16 15-0

Encoding
o High order 2 bits of Hint encode jump type

o Remaining bits give information about predicted destination

o Hint does not affect functionality

Jump Type Hint 15:14
jmp 00
jsr 01
ret 10
Instruction Ra Rb
By convention: jmp 31
jsr - 26
ret 31 26

ALPHA Instruction Encoding

Ox0: 40220403 addg rl1, r2, r3
Ox4: 4487£f805 =xor rd, 0x3f, r5
0x8: adc70abc 1ldg r6, 2748 (r7)
Oxc: b5090123 stqg r8, 291 (r9)
0x10: e47ffffb beq r3, 0

Ox14: d35ffffa bsr r26, 0(r31l)
0x18: 6bfa8001 ret r31l, (r26), 1

Object Code
o |nstructions encoded in 32-bit words

° Program behavior determined by bit encodings
o Disassembler simply converts these words to readable instructions

Decoding Examples

0xO0: 40220403 addq ri1,r2,r3 0x8: a4c70abc Idg ré, 2748(r7)

4 0 2 2 0 4 0 3 a 4 C 7 0 a b C
0100]0000|0010{0010]|0000|0100|0000|0011 1010(10100}1100|0111|0000(1010]1011]1100

10 01 02 20 03 29 06 07 Oabc
=2748,,
0x10: e47fftfb beq 13,0 0x18: 6bfa8001 ret r31, (r26), 1
e 4 7 f f f f b 6 b f a 8 0 0 1
1110§0100j0111§11111111 1111121121011 01101011}1111}1010(1000|0000|0000|0001

39 03 1ffffb 1a 1f 1a 2
=-319 =31,, =264,
Target = 16 # Current PC
+ 4 # Increment
+ 4*-5 #Disp
= 0

Single-Cycle ALPHA
Implementation

Datapath

Block diagram for a computer processor, excluding control signals

Zero
Test
|nStI‘ daﬂn
15:0 Data
[] Mem
Xtnd << 2 '
A . datOut J
re
g datA aUA addr
regB Reg.
Array
datw ALU
regW datB aluB

() W dest
)

IncrPC

W data
Y A

Multiplexers

Datapath

IF ID EX MEM WB
instruction instruction decode/ execute/ memory write
fetch register fetch address calculation access back

Datapath

IF ID EX MEM WB
instruction instruction decode/ execute/ memory write
fetch register fetch address calculation access back
Zero
Test
|nStI‘ daﬂn
15:0
oo Lxind — o
Xtnd << 2 S [\
e 9 datA aUA addr
: regB
Instr. Reg.

Arra
2013 regW datB aluB
4:0 ’j
25:21 J
IncrPC

—l
C)

W data

ardware Units

Storage
° |nstruction Memory
o Fetch 32-bit instructions

o Data Memory
o Load / store 64-bit data
o Register Array
o Storage for 32 integer registers
o Two read ports: can read two registers at once

o Single write port

Functional Units

° +4 PC incrementer

o Xtnd Sign extender

o ALU Arithmetic and logical instructions (the big one!)
o Zero Test Detect whether operand ==

Register-register Instructions

IF: Instruction fetch RR-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct rb
° IR <-- IMemory[PC] Op ra rb 000 | O funct rc
° PC<--PC+4 31-26 25-21 20-16 15-13 12 11-5 4-0

ID: Instruction decode/register fetch
o A <-- Register[IR[25:21]]
o B <-- Register[IR[20:16]]

Ex: Execute
o ALUOutput<--Aop B

MEM: Memory
° nop

WB: Write back
o Register[IR[4:0]] <-- ALUOutput

Active Datapath for Reg-Reg Instructions

Instr datin
Data
Mem. ™\
. datOut
25:21
regA datA addr
20:16
regB
Instr. Eeg.
Mem. datwy MIrey
20:13 regW datB

N

IncrPC

Wdata

ALU Operation set per op type

Writeback to Rc

Register-Immediate Instructions

IF: Instruction fetch RI-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct ib
° IR <-- IMemory[PC] Op ra ib 1| funct rc
° PC<--PC+4 31-26 25-21 20-13 12 11-5 4-0

ID: Instruction decode/register fetch
o A <-- Register[IR[25:21]]
o B <-- IR[20:13]

Ex: Execute
o ALUOutput<--Aop B

MEM: Memory
° nop

WB: Write back
o Register[IR[4:0]] <-- ALUOutput

Active Datapath for Reg-Imm Instructions

Instr datin
Data
Mem. N\
: datOut
25:21
regA datA |— addr
20:16
regB
Instr. Eeg-
Mem. datw Mray
20:13 regW datB
4:0 <D Wdest
IncrPC
-/

Wdata

ALU Operation set per op type

Writeback to Rc

Load Instruction

IF: Instruction fetch Load: Ra <-- Mem[Rb +offset]
° IR <-- IMemory[PC] Op ra rb offset
° PC<-PC+4 31-26 25-21 20-16 15-0

ID: Instruction decode/register fetch
o B <-- Register[IR[20:16]]

Ex: Execute
o ALUOutput <-- B + SignExtend(IR[15:0])

MEM: Memory
o Mem-Data <-- DMemory[ALUOutput]

WB: Write back
o Register[IR[25:21]] <-- Mem-Data

Active Datapath for Load

Instr

regA datA
regB

addr

Reg.

datw Array

regWw datB

U

Wdata
ALU used to compute address Memory Operation

o Ainput set to extended IR[15:0] > Read
o ALU function set to add

Write Back
o To Ra

Store Instruction

IF: Instruction fetch Store: Mem[Rb +offset] <-- Ra
° |IR <-- IMemory[PC] Op ra rb offset
° PC<--PC+4 31-26 25-21 20-16 15-0

ID: Instruction decode/register fetch
o A <-- Register[IR[25:21]]
o B <-- Register[IR[20:16]]

Ex: Execute
o ALUOutput <-- B + SignExtend(IR[15:0])

MEM: Memory
o DMemory[ALUOutput] <-- A

WB: Write back
° nop

Active Datapath for Store

ALU used to compute address Memory Operation
o Ainput set to extended IR[15:0] o Write

o ALU function set to add Write Back

o None

Conditional Branch Instruction

IF: Instruction fetch beq: PC<--Ra==07? PC+4+disp*4:PC+4

° |R <-- IMemory[PC] 0x39 ra disp
o incrPC<--PC+4

31-26 25-21 20-0
ID: Instruction decode/register fetch
o A <-- Register[IR[25:21]]

Ex: Execute
o Target <-- incrPC + SignExtend(IR[20:0]) << 2
o Z<--(A==0)

MEM: Memory
o PC<--Z7? Target : incrPC

WB: Write back
° nop

Active Datapath for Cond. Branch

Instr

Xtnd << 2

IncrPC

Wdata

ALU computes target PC Selection

o A =shifted, extended IR[20:0] > Target for taken branch

° B= In_chC > IncrPC for not taken
o Function set to add
Joro Tost Write Back

> Branch condition depends on if Reg[Ra] == > None

Branch to Subroutine

IF: Instruction fetch Branch Subroutine (bsr): Ra <-- PC + 4; PC <-- PC + 4 + disp*4
° IR <-- IMemory[PC]

° incrPC<--PC+4

0x34 ra disp
31-26 25-21 20-0

ID: Instruction decode/register fetch
° nop

Ex: Execute
o Target <-- incrPC + SignExtend(IR[20:0]) << 2

MEM: Memory
o PC<-- Target

WB: Write back
o Register[IR[25:21]] <-- incrPC

Active Datapath for Branch to Subroutine

Instr

Q.0 @_)
regA datA aluA
B
Instr. 9% Reg.
Mem. datw Array ALU
regW datB aluB
@ Wdest
25:21
IncrPC
|
Wdata
ALU computes target PC Selection
o A = shifted, extended IR[20:0] o Always target
o B=IncrPC .
Write Back

o Function set to add

o Incremented PC as data

Jump Instruction

IF: Instruction fetch jmp, jsr, ret: Ra <-- PC+4; PC <-- Rb
° IR <-- IMemory[PC]

° incrPC<--PC+4

Ox1A ra rb Hint

31-26 25-21 20-16 15-0
ID: Instruction decode/register fetch

o B <-- Register[IR[20:16]]

Ex: Execute
o Target<--B

MEM: Memory
o PC<-- target

WB: Write back
o Register[IR[25:21]] <-- incrPC

Active Datapath for Jumps

Instr
-
2016 regh datA aluA
: regB
Instr. Eeg-
Mem. datw T&Y ALU
regW datB aluB
B Wdest
25:21
IncrPC
| |
Wdata
ALU used to compute target Write Back
° Binput set to Rb ° To Ra
o ALU function set to select B ° IncrPC as data

Complete Datapath

IF ID EX MEM WB
instruction instruction decode/ execute/ memory write
fetch register fetch address calculation access back
Zero
Test
|nStI‘ daﬂn
15:0
oo Lxind — o
Xtnd << 2 S [\
e 9 datA aUA addr
: regB
Instr. Reg.

Arra
2013 regW datB aluB
4:0 ’j
25:21 J
IncrPC

—l
C)

W data

What about control?

Implicitly defined already when we looked at each instruction type

Define control signals as function of instruction op code etc
o 111”’ IIOI)’ ((don)t Care”

o =» Many ways to get simple combinational circuit

Control is more complex with multi-cycle implementations
° E.g., microprogramming

Pipelining

Pipelined Datapath

ID/EX

IF/ID
Instr

15:0

0.0 Xtnd

25:21

datA
20:16
regB

Instr. Eeg.
Mem. datw rray

20:13 regw datB

Xtnd << 2 Mp—
regA I :‘
|

EX/IMEM
Zero

Test

Adata

()

MEM/WB

datin

Data
Mem.
datOut
addr

ALUout

FI

J

ALU !
' aluB

Wdata

Same datapath, =5X higher peak throughput!

Pipelining Basics

1.2ns 0.1ns
Unpipelined > Combinational — _%
System Logic b3
Delay =1.3 ns
Throughput = 0.77 GHz
Clock
Op 1 Op 2 Op 3

3-Stage Pipeline

0.4ns 0.1ns 0.4ns 0.1ns 0.4ns 0.1ns

— CorT\b. _»j%_» Comb. _»j%_» Comb. _»E Delay = 1.5 ns
Logic 3 Logic) Logic 8 Throughput = 2.0 GHz
o o (a'sl
Clock
1
O_p» o Space operations 0.5ns apart
Op 2 o 3 operations occur
-_— simultaneously

Limitation: Non-Uniform Pipelining

0.2ns 0.1ns 0.6ns 0.1ns 0.4ns 0.1ns
Com E Comb E Comb E Delay=0.7*3=2.1ns
Log. & Logic oL Logic oL Throughput = 1.43 GHz
o o o
Clock

o Throughput limited by slowest stage
o Delay determined by clock period (= max stage latency) X number of stages

o =% Must balance stages to maximize performance

Limitation: Deep Pipelines

0.2ns 0.1ns 0.2ns 0.1ns 0.2ns 0.1ns 0.2ns 0.1ns 0.2ns 0.1ns 0.2ns 0.1ns

GLJ S | - | - | - | -
—p CO Fhp| CO j%_» Co S| Comy |2 | Comy |2 | Comy 2
Log.) Log.] Log. o Log. o Log. o Log. s
o o o o o o
Clock Delay = 1.8ns

Throughput = 3.33GHz

o Diminishing returns as add more pipeline stages
o Register delays become limiting factor

° Increased latency
o Small throughput gains
o (Other architectural problems in practice that flush pipeline)

Limitation: Sequential Dependences

g g g
%) %) %)
Logic) Logic) Logic &
— o o o
—lf il il
Clock
Op1l
—
Op 2
—— o Op4 gets result from Op3!
Op 3 o Pipeline Hazard = Extra delay

Pipelined Datapath

IF/ID ID/EX EX/MEM MEM/WB
Adata
Instr datin
15:0
_ Xtnd Data
20:0 Xtnd << 2 I N Mem.
25:21 I . datout
e regA datA aluA addr
: regB
Instr. Al?r?g)'/
Mem. datw ALU ALUout
2013 regW datB aluB

B
J

Fl
()

W data

Pipe Registers
° Inserted between stages

o Labeled by preceding & following stage

Pipeline Structure

Branch Flag & Target

Next PC Write Back Reg. & Data

Notes
o Each stage consists of logic connecting pipe registers
o WB logic merged into ID
o Additional paths required for forwarding

Pipe Register

Next Current

Operation State State

o Current State stays constant while Next State being updated
o Update involves transferring Next State to Current

Pipeline Stage

Computes next state based on current
> From/to one or more pipe registers

May have internal memory elements (e.g., Reg File)

o Low level timing signals control their operation during
clock cycle

o Writes based on current pipe register state
o Reads supply values for Next State

Current Next
State State

Data Hazards in ALPHA Pipeline

Problem
o Registers read in ID, and written in WB

o Must resolve conflict between instructions competing for registers
o Assume reads get a value written in same stage

o But what about intervening instructions?

Sequential execution

S3| 63 addq $2, 0, S3
$4| 63 addq $2, 0, S4
iz 22 addq $2, 0, S5

addq $2, 0, S6

Data Hazards in ALPHA Pipeline

Problem
o Registers read in ID, and written in WB

o Must resolve conflict between instructions competing for registers
o Assume reads get a value written in same stage

o But what about intervening instructions?

$2 | 63 addqg S2, 63, S2
$3| 2 addq $2, 0, $3 IF ID EX M WB
4| 7 addq $2, 0,54 |addq $2, 63582
22 z addq S2, 0, S5
addq S2, 0, S6

Data Hazards in ALPHA Pipeline

Problem
o Registers read in ID, and written in WB

o Must resolve conflict between instructions competing for registers

o Assume reads get a value written in same stage

o But what about intervening instructions? S2 read

== Time =>///
Sz 63 addq $2, 63, SZ IF || ID .//EX IV B
S3| ? addq $2, 0, S3 IF ID / EX || W
24 ? addq $2, 0, $4 IF D ¢ || M WB

5| ?
S6| ? addq 52, 0, 55 IF I EX M WB
addq $2, 0, $6 | D & | Ex M WB
S2 written

Control Hazards in ALPHA Pipeline

Problem
o Instruction fetched in IF, branch condition set in MEM
o When does branch take effect?
o E.g.: assume initially that all registers =0

$2 beq S0, target IF |ID | EX WB
S3 mov 63, $2 IF | ID X |m |ws
$4 mov 63, S3 IF D [Ex |[mM |wB
22 mov 63, $4 F [|ex |[m [ws
mov 63, S5 F | D |Eex |m |ws
PC Updated

target: mov 63, S6

Conclusions

RISC design simplifies implementation
o Small number of instruction formats

o Simple instruction processing

RISC leads naturally to pipelined implementation
o Partition activities into stages
o Each stage simple computation

We’re not done yet!
o Need to deal with data & control hazards

Advanced Pipelining

andling Hazards by Stalling

Idea
o Delay instruction until hazard eliminated

Transfer
Stall
Bubble

> Put “bubble” into pipeline
o Dynamically generated NOP

Pipe Register Operation
o “Transfer” (normal operation) indicates should transfer next state to current
o “Stall” indicates that current state should not be changed

> “Bubble” indicates that current state should be set to NOP
o E.g., stage logic designed so that O is like NOP

Next Current
State State

Detecting Dependencies

IF/ID ID/EX EX/MEM MEM/WB
Read Sources

Instr datin

Data
Mem.

datOut

addr

Instr.

Mem. ALUout

IncrPC
+4 H

Write Dests.

Wdata
Pending Register Reads Pending Register Writes
° By instructionin ID o EX_in.WDst: Destination register of instruction in EX
o |ID_in.IR[25:21]: Operand A o MEM_in.WDst: Destination register of instruction in MEM

° ID_in.IR[20:16]: Operand B (only for RR)

Implementing Stalls

Bubble Transfer Transfer

y

Stall Control Logic
o Determines which stages to stall, bubble, or transfer on next update

Rule:
o Stall in ID if either pending read matches either pending write (eg, EX_in.Wdst == ID_in.IR[25:21])
o Must also stall IF & bubble EX

Effect
° Instructions with pending writes allowed to complete before instruction allowed out of ID

Stalling for Data Hazards

Operation
° First instruction progresses unimpeded
o Second waits in ID until first hits WB
o Third waits in IF until second allowed to progress

IF [D [ex|m | ws addq $31, 63, S2
2; F [0 [0 [Io [ex]m [ws addq $2,0, $3
$4 F [F [JF o [ex[m [ws addq $2, 0, $4
$5 F [ID [ex] M [ws addq $2,0, S5
56 IF [D Jex]m [we] addg$2,0,56

S2 written
= Time =——>»

Observations on Stalling

Good ©

o Relatively simple hardware

° Only penalizes performance when hazard exists

Bad ®
o As if placed NOPs in code

o (Except that does not waste instruction memory)

Reality
o Some problems can only be dealt with by stalling

° Instruction cache miss
o Data cache miss
o Otherwise, want technique with better performance

Q: Do we really need to stall?

Forwarding (Bypassing)

Observation: The data we want is available, but not in the right place!
o ALU data generated at end of EX

o ALU data consumed at beginning of EX

=» We shouldn’t need to stall at all!

Idea
o Expedite passing of previous instruction result to ALU
o By adding extra data pathways and control

Forwarding for ALU instructions

Operand Destinations
o ALU input A
o Register EX_in.ASrc
° ALU input B
o Register EX_in.BSrc

EM/WB
Adata
datln
Data
Mem. \
datOut
regA datA Fl aluA addr
regB
Instr. :ﬁgy
AL datw ALU ALUout
regW datB i aluB
5| L
Src
'_] w I Wdest | W w
J Dst Dst Dst
A
’ IncrPC
+4 Src L)
Wdata

Operand Sources
o MEM_in.ALUout
o Pending write to MEM_in.WDst
o WB_in.ALUout
o Pending write to WB_in.WDst

Bypassing Possibilities

EX/MEM MEM/WB
Adata
datln
Data
Mem. \
datOut
regA addr
regB
Instr.
Mem. datw ALU ALUout
regW
'_] Wdest | W w
J Dst Dst
IncrPC
:|+4 I —/

o From instruction that just finished EX
MEM-EX

MEM-EX
o From instruction that finished EX two cycles earlier

Bypassing Data Hazards

Operation
o First instruction progresses down pipeline

> When in MEM, forward result to second instruction (in EX)
o EX-EX forwarding

o When in WB, forward result to third instruction (in EX)
o MEM-EX forwarding

F [D [ex|m [ws addq $31, 63, S2
$2 F [| ex | m [we addq $2, 0, $3 # EX-EX
S3 v
$4 IF [iD [ex[m [ws addq $2, 0, $4 # MEM-EX
S5 IF [IID [ex|[™ [ws addq $2, 0, S5
56 IF |0 | ex | m | wa|] addqg $2, 0, $6
S2 written

Load & Store Instructions

ID: Instruction decode/register fetch

o Store: A <-- Register[IR[25:21]] Load: Ra <-- Mem[Rb +offset]
° Both: B <-- Regi IR[20:1
ot egister[IR[20:16]] Op ra rb offset
31-26 25-21 20-16 15-0
MEM: Memory Store: Mem[Rb +offset] <-- Ra
° Load: Mem-Data <-- DMemory[ALUOutput] Op o b offset
o Store: DMemory[ALUOutput] <-- A
31-26 25-21 20-16 15-0

WB: Write back
o Load: Register[IR[25:21]] <-- Mem-Data

Analysis of Data Transfers

Data Sources
o Available after EX

o ALU Result Reg-Reg Result
o Available after MEM
° Read Data Load result
o ALU Data Reg-Reg Result passing through MEM stage

Data Destinations

o ALU Ainput Needin EX
o Reg-Reg or Reg-Immediate Operand

o ALUB input Needin EX
o Reg-Reg Operand
o Load/Store Base
o Write Data Need in MEM

o Store Data

Some Hazards with Loads & Stores

Data Generated by Load

Data Generated by Store

Load-Store Data
1ldg $1, 8($2)
stq $1, 16($2)

Store-Load Data
stg $1, 8($2)
ldg $3, 8($2)

Load-ALU
ldg $1, 8($2)
addg $2, $1, $2

Data Generated by ALU

ALU-Store (or Load) Addr
addg $1, $3, $2
stq $3, 8(52)

Load-Store (or Load) Addr.
1dg $1, 8($2)

stq $2, 16(S1)

ALU-Store Data
addg $2, $3, $1
st 1, 16(S2

Not a
concern
for us

MEM-MEM Forwarding

Condition

o Data generated by load instruction
o Register WB_in.WDst

o Used by immediately following store
o Register MEM _in.ASrc

Load-Store Data
ldg $1, 8($2)
stg $1, 16($2)

IF [ID|EX|M | wWB Idqg S1, 8(52)

IF | D [exYm | wa| stqS1,16(52)

Complete Bypassing for ALU + L/S

MEM-MEM

regA datA
regB

Reg.

Arra
datw y

datB

regWw

B
_J

Some Hazards with Loads & Stores

Data Generated by Load Data Generated by Store
Load-Store Data MEM-MEM | Store-Load Data
Not a
1dg $1, 8($2) stqg $1, 8($2) concern
stq $1, 16(52) 1dq $3, 8(52) for us
Load-ALU Data Generated by ALU
1dg $1, 8($2) ALU-Store (or Load) Addr EX-EX
addg $2, $1, $2 addg $1, $3, $2
stqg $3, 8(52)
- Load) Addr. -
Load-Store (or Load) r ALU-Store Data EX-EX
1 1 2
dg $1, 8($2) addq $2, $3, §1
1
stq 32, 16(31) stg $1, 16 (82

Impact of Forwarding

Single Remaining Unsolved Hazard Class

o Load followed by ALU operation / address calculation Just Forward?

Load-ALU IF | 1D | EX ‘M/| WB Idg 51, 8(52)
1dg $1, 8($2) IF [D | ex [m [ws| addqg $2, 51,82
addq $2/ $1/ $2 = Time =——»

Load-Store (or Load) Addr. Value not available soon enough!
ldg $1, 8($2)

With 1 Cycle Stall
stq $2, 16(51) e

IF D JEX|M | we Idg $1, 8(52)

IF JiD |/ Jex | ™M | we] addq $2, $1, $2

Then can use MEM-EX forwarding

New Data Hazards

Branch Uses Register Data

o Generated by ALU instruction ALU-Branch
o Read from register in ID addg $2, $3, $1
Handling beq $1, targ
o Same as other instructions with register data source
o Bypass DiStant ALU'BranCh
° EX-EX addg $2, $3, $1
© MEM-EX

or $31, $31, $31
beq $1, targ

Load-Branch

1w $1, 8($2)

beq $1, targ

Still More Data Hazards

Jump Uses Register Data

o Generated by ALU instruction ALU-Jump
o Read from register in ID addq $2, $3, s1
Handling jsr $26 ($1), 1
o Same as other instructions with register data source
o Bypass Distant ALU-Jump
o EX-EX

addg $2, $3, $1
bis $31, $31, $31
jmp $31 ($1), 1

° MEM-EX

But fetch stalls

IF | ID |EX| M | WB Load-Jump
1w 526, 8($sp)
ret $31 ($26), 1

IF | IF rIF ID | EX| M | WB

Pipelined Datapath

IF ID EX MEM WB

instruction instruction decode/ execute/ memory write

fetch register fetch address calc access back
IF/ID ID/EX EX/MEM MEM/WB

Zero
Test

Instr

datin
Data

Xtnd
Xtnd << 2 - Mem.
datOut

regA datA addr

regB
Instr. Eﬁg-
Mem. datw y

regWw datB

25:21

IncrPC | J

hl
s,
__' W data

Branch Flag .
What happens with a branch?

Conditional Branch Instruction Handling

beq: PC<--Ra==0 ? PC+4 +disp*4:PC+4

Op ra disp
31-26 25-21 20-0
IF/ID ID/EX EX/MEM
Zero
‘ Test "\\

Xtnd << 2

ALUout

IncrPC
+4 _‘

o o o i — i — — — — — — — — —— — — — — ————— ————— —————————————————

Branch Flag

Branch Example

Desired Behavior
o Take branch at 0x00 Displacement

o Execute target Ox18
° PC+4 +disp<<2
> PC=0x00

o disp=5 Branch Code (demo(lg.a’)/

0x0: e7e00005 beq r31, 0x18 # Take

Ox4: 43e7f401 addg r31, 0x3f, rl # (Skip)
0x8: 43e7f402 addg r31, 0x3f, r2 # (Skip)
Oxc: 43e7f403 addg r31, 0x3f, r3 # (Skip)
0x10: 43e7f404 addg r31, 0x3f, r4 # (Skip)

Ox14: 47ff041f bis r31, r31l, r31l

0x18: 43e7£405 addg r31, 0x3f, r5 # (Target)
Ox1lc: 47ff041f bis r31, r31l, r31l

0x20: 00000000 call pal halt

Branch

azard Example

o With BEQ in Mem stage

0x18

0x0: beq r31, 0x18 # Take
Ox4: addg r31, O0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, O0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4d # Xtrad
0x18: addg r31, O0x3f, r5 # Target
IF/ID ID/EX - EX/MEM
Test [™,
Instr
)
Oxc
- Instr. . 6% Reg, ~
Mem. gy P ALUout
regW datB B
Xtra3 Xtra2 0x18

+4

IncrPC

0x10

Branch Hazard Example

0x0: beq r31, 0x18 # Take
Ox4: addg r31, 0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, 0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4d # Xtrad
> One cycle later 0x18: addg r31, O0x3f, r5 # Target

Zero

o Problem: Will execute 3 extra IF/ID ID/EX EX/MEM

instructions!

0x18 '

regA datA
regB

Xtral

Reg.

Arra
datw y

Oxlc ALUout

regW datB

Xtra3

IncrPC

+4
Oxlc

Branch Hazard Pipeline Diagram

Problem
o Instruction fetched in IF, branch condition set in MEM

IF [iD Jex[m [ws beq S$S31, target
IF [ID E)I(M | ws addq S31, 63, S1
IF |[! EX[m [ws addq S31, 63, S2
TEI D [ex|m[ws addq S31, 63, S3

addq S31, 63, S4

F | D JeEx [m | ws| target:addq S$31, 63, S5
PC Updated

Stall Until Resolved Branch

o Detect when branch in stages ID or EX

o Stop fetching until resolve
o Stall IF. Inject bubble into ID

Stall Bubble Transfer Transfer Transfer

A/

)

Perform when branch in either stage

Stalling Branch Example

0x0: beqg r31, 0x18 # Take
Ox4: addg r31, O0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtraz
Oxc: addqg r31, 0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4 # Xtrad
> With BEQ in Mem stage 0x18: addg r31, 0x3f, r5 # Target
o Will have stalled twice IF/ID ID/EX = EX/MEM
° Injects two bubbles fest [
Instr —
0x4
_— - Instr. . 6% Reg, ~
0x18 Mem. datw Array AlLUout
regW datB B
Xtral Bubble2 0x18
IncrPC Bubble1

+4

0x8

Taken Branch Resolution

o When branch taken, still have instruction Xtral in pipe

o Need to flush it when detect taken branch in Mem
o Convert it to bubble

Transfer Transfer Transfer Transfer

A/

Perform when detect taken branch

Taken Branch Resolution Example

0x0: beq r31, 0x18 # Take
Ox4: addqg r31, O0x3f, rl # Xtral
0x8: addqg r31, O0x3f, r2 # Xtra2
Oxc: addqg r31, O0x3f, r3 # Xtra3
0x10: addqg r31, O0x3f, r4d # Xtraid
> When branch taken 0x18: addqg r31, O0x3f, r5 # Target
o Generate 3rd bubble IF/ID ID/EX = EX/MEM
. . Test [™,
o Begin fetching at target e —
0x18 '
o Bubble1
— - Instr. . “6® Reg. ~
Oxlc Mem. darw ATV ALUout

regW datB

Target Bubble3

IncrPC

+4

Oxlc

Taken Branch Pipeline Diagram

Behavior
o Instruction Xtral held in IF for two extra cycles

o Then turn into bubble as enters ID

IF [ID [EX| M | wB beq $31, target
TR addq $31,63, $1 #Xtral

FTio Tex Tmv Twe target: addq S$31, 63, S5 # Target

PC Updated

Not Taken Branch Resolution

o [Stall two cycles with not-taken branches as well]
> When branch not taken, already have instruction Xtral in pipe
o Let it proceed as usual

Transfer Transfer Transfer Transfer A Transfer

" \
/ﬁ HHHEHH

ID

Reg.
File
—

Not Taken Branch Resolution Example

demo09.0 ,

O0x0: bne r31, 0x18 # Don t Take
Ox4: addg r31, O0x3f, rl # Xtral
0x8: addg r31, O0x3f, r2 # Xtraz
Oxc: addqg r31, 0x3f, r3 # Xtra3
0x10: addqg r31, 0x3f, r4 # Xtrad

> Branch not taken

o Allow instructions to proceed IF/ID ID/EX EX/MEM

0x8 :
25:21 regA
datA
S0t o Bubblel
_— = Instr. :rerg'
Oxc Mem. datw b ALUout
regW datB
Xtra2 Xtral

IncrPC
+4

Oxc

Not Taken Branch Pipeline Diagram

Behavior
o Instruction Xtral held in IF for two extra cycles

o Then allowed to proceed

IF [iD Jex[m [ws beqg S$S31, target
IF |iF ||EI D [ex|[m [ws addq S31, 63, S1 # Xtral
F D [ex[wm [ws addq S31, 63, S2 # Xtra2
F D [ex[wm[ws addq S31, 63, S3 # Xtra3
F [0 [ex[m [ws] addq S31, 63, S4 # Xtrad

PC Not Updated

Analysis of Stalling

Branch Instruction Timing
o 1 instruction cycle
o 3 extra cycles when taken
o 2 extra cycles when not taken

Performance Impact
o Branches ~20% of instructions

o =67% branches are taken
o Adds 0.2 * (0.67 * 3+ 0.33 * 2) = 0.54 increase to CPI
o Serious performance impact!

Fetch & Cancel When Taken

Instruction does not cause any updates until MEM or WB stages

Instruction can be “cancelled” from pipe up through EX stage
o Replace with bubble

Strategy
o Continue fetching under assumption that branch not taken =» Speculate!
o |f decide to take branch, cancel undesired ones

Transfer

Y y \ y

)

O)

ID EX MEM
Reg. Data
File Mem.

Perform when detect taken branch

Fetch & Cancel Example

0x0: beq r31, 0x18 # Take
Ox4: addqg r31, O0x3f, rl # Xtral
0x8: addg r31, O0x3f, r2 # Xtra2
Oxc: addqg r31, O0x3f, r3 # Xtra3
0x10: addqg r31, O0x3f, r4d # Xtrad
o With BEQ in Mem stage
- Will have fetched 3 extra 0x18: addqg r31, O0x3f, r5 # Target

Zero

instructions IF/ID ID/EX EX/MEM

> But no register or memory updates

Oxc :
25:21 regA
datA B EQ
20:16 regB
_— =| Instr. :rerg'
0x18 Mem. datw M/ ALUout
regW datB
Xtra3 Xtra2 0x18

IncrPC

+4

0x10

Cancelling Branch Resolution Example

o When branch taken
o Generate 3 bubbles
o Begin fetching at target

Oxlc

0x0: beq r31, 0x18 # Take
Ox4: addqg r31, O0x3f, rl # Xtral
0x8: addqg r31, O0x3f, r2 # Xtra2
Oxc: addqg r31, O0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4 # Xtrad
0x18: addg r31, O0x3f, r5 # Target
IF/ID ID/EX Zero EX/MEM
Test [™,
Instr
)
0x18
o Bubble1
- Instr. . 6% Reg. ~
Mem. gy P ALUout
regW datB B
Target Bubble3
IncrPC Bubble2

+4

Oxlc

Cancelling Branch Pipeline Diagram

Operation
o Process instructions assuming branch will not be taken

o When is taken, cancel 3 following instructions

IF [iD Jex[m [ws beq S$S31, target
IF [ID E)I(_ addq S31, 63, S1
IF IDI: addq S31, 63, S2
TEE addq S31, 63, S3

addq S31, 63, S4

F | D JeEx [m | ws| target:addq S$31, 63, S5
PC Updated

Non-cancelling Branch Pipeline Diagram

Operation
o Process instructions assuming branch will not be taken

o |f really isn’ t taken, then instructions flow unimpeded

IF [iD Jex[m [ws bne S$S31, target
IF [ID E)I(M | ws addq S31, 63, S1
IF |[! EX[m [ws addq S31, 63, S2
TEI D [ex|m[ws addq S31, 63, S3
F [0 [ex]m [ws] addg $31,63, $4

target: addq $31, 63, S5
PC Not Updated

Fetch & Cancel Analysis

We have implemented a “static not taken” branch predictor
o But 67% of branches are taken

o Impacton CPI: 0.2*0.67 *3.0 = 0.4
o Still not very good

Alternative Schemes
o Predict taken

o Would be hard to squeeze into our pipeline
o Can’t compute target until ID =» one bubble
o MIPS branch delay slot exposes this bubble in ISA
o Backwards taken, forwards not taken
o Predict based on sign of displacement
o Exploits fact that loops usually closed with backward branches
o Branch target buffer (BTB) speculates on branch destination in IF

o What’s done in practice

Exceptions ana
Multi-Cycle Instructions

Exceptions

An exception is a transfer of control to the OS in response to some event (i.e. change in
processor state)

User Process Operating System
event | exception ‘
exception processing
by exception handler
exception
return (optional)

Issues with Exceptions

Al: What kinds of events can cause an

exception?
User Process Operating System A2: When does the exception occur?
A l _ B1: How does the handler determine the
exception . .
xR > . location and cause of the exception?
exception
C ‘\l handler - e
_ B2: Are exceptions allowed within
exception . 5
return (optional) B exception handlers
! C1: Can the user process restart?

C2: If so, where?

Internal (CPU) Exceptions

Internal exceptions occur as a result of events generated by executing instructions.

Execution of a CALL_PAL instruction.
o allows a program to transfer control to the OS (ie, syscall)

Errors during instruction execution
o arithmetic overflow, address error, parity error, undefined instruction

Events that require OS intervention
o virtual memory page fault

External (I/O) exceptions

External exceptions occur as a result of events generated by devices external to the processor.

|/O interrupts
o hitting AC at the keyboard

o arrival of a packet
o arrival of a disk sector

Hard reset interrupt
° hitting the reset button

Soft reset interrupt
o hitting ctl-alt-delete on a PC

Exception handling (hardware tasks)

Recognize event(s)

Associate one event with one instruction.
o external event: pick any instruction

o multiple internal events: typically choose the earliest instruction.
o multiple external events: prioritize
o multiple internal and external events: prioritize User Process

Create Clean Break in Instruction Stream

: : . : A

o Complete all instructions before excepting instruction

o Abort excepting and all following instructions M
o this clean break is called a “precise exception ” C

Exception handling (hardware tasks)

Set status registers
o Exception Address: the EXC_ADDR register

o external exception: address of instruction about to be executed

o internal exception: address of instruction causing the exception
o except for arithmetic exceptions, where it is the following instruction
o Cause of the Exception: the EXC_SUM and FPCR registers
o was the exception due to division by zero, integer overflow, etc.
o Others

o which ones get set depends on CPU and exception type

Disable interrupts and switch to kernel mode

Jump to common exception handler location

Exception handling (software tasks)

Deal with event

(Optionally) resume execution
o using special REIl (return from exception or interrupt) instruction

o similar to a procedure return, but restores processor to user mode as a side effect.

Where to resume execution?
o usually re-execute the instruction causing exception

Precise vs. Imprecise Exceptions

In the Alpha architecture:
o arithmetic exceptions may be imprecise (similar to the CRAY-1)

o motivation: simplifies pipeline design, helping to increase performance

o all other exceptions are precise

Imprecise exceptions:
o all instructions before the excepting instruction complete

o the excepting instruction and instructions after it may or may not complete

What if precise exceptions are needed?

o insert a TRAPB (trap barrier) instruction immediately after

. . . . User Process
o stalls until certain that no earlier insts take exceptions

A
In the remainder of our discussion, assume for (: —
the sake of simplicity that all Alpha exceptions
are precise.

Example: Integer Overtlow

(This example illustrates a precise version of the exception.)

user code

and $12,
xor $13,
addg $1,
or §$15,
1ldg $16,

$2I
$2I
$2I
$61

$5
$6
S1 <

over

flow

$7

50 ($7)

handler code

stq $26, 100 ($31)

the xor

Overflow instruction
detected here completes

and IF ID EX MER?r\ WB

xor IF ID EX \QE‘M WB

addd IF ID EX nop

or flush these IF ID nop

ldg instructions IF nop

stq IF

start handler code

Multicycle instructions

Alpha 21264 Execution Times:
o Measured in clock cycles

Operation Integer FP-Single FP-Double
add / sub 1 4 4
multiply 8-16 4 4
divide N/A 10 23

H&P Dynamic Instruction Counts:

Integer FP Benchmarks
Operation Benchmarks Integer FP
add / sub 14% 11% 14%
multiply <0.1% <0.1% 13%
divide <0.1% <0.1% 1%

Pipeline Revisited

Integer Add / Subtract

EX

FP Add / Sub / Mult
EX, |EX, |EX; |EX,

IF ID

MEIV‘ WB

Integer Multiply

EX; |EX, |EX; |EX,

FP Single-Precision Divide

EX, |EX, |EX; [EX, |EX; |EX; |EX, |EX, |EX, |EX,

Multiply Timing Example

or $31, 3, $2 IF |[ID [EX M [wB
or $31, 7, $3
? ? IF_|ID EX ,‘M wB (Not to scale)
mulg $2, $3, $4 IF | ID [EX M | WB
_‘ ‘.
addg $2, $3, $3 IF [ID [EX|M | WB

F |ID| °*°* |EpX|m |wB

bis $4, $31, $5

addg $2, $4, $2 IF ©eoeo ID |EX|M | WB

Multicycle Instructions Discussion

Pipeline Characteristics for Multi-cycle Instructions
° In-order issue

° Instructions fetched and decoded in program order
o Qut-of-order completion
o Slow instructions may complete after ones that are later in program order
o Reason for imprecise exceptions ... but difficult to reason about
o ...will revisit this in 000 / dynamic scheduling

Performance Opportunities
o Transformations such as loop unrolling & software pipelining to expose potential parallelism
o Schedule code to use multiple functional units
o Must understand idiosyncrasies of pipeline structure
o ...will revisit this in VLIW

SUPERSCALAR

Pipelines thus far

FETCH DECODE EXECUTE (multistage) WB

Increasing Performance

Instructions Cycles Seconds

Time = :
Program Instruction Cycle

Increase clock frequency

Decrease CPI

How well does pipelining do?

Pipelining performance

Instructions Cycles Seconds

Time = :
Program Instruction Cycle

Increase clock frequency
* N-stage can give *NX faster clock
Decrease CPI

* Pipelining increases CPI due to hazards & stalls
(but by less than NX)

Limitations of pipelining

Stages can’t be increased forever

* Pipeline overheads become significant

* Bypassing more expensive, less effective

* Flushes due to mis-predicted branches

Pipeline Depth over Time

pipeline depth

35
integer pipeline
A A
30
25
floating point pipeline
20 &
o
o O
o
15 O
A A A A A
A A A4
O
10 O O & O—&
o 0 0 o] o 0
& O o O
& A 9] O 0O &4 0 o
(o] OO0 O0O0O0DO0D &
2 & S—O—&—bh
O & aa a
o
0
1985 1995 2000 2005 2010

Going beyond pipelining

Pipelines processors limited by CPI < 1
(the “Flynn bottleneck”)

But we have >1 functional unit in execute stage

Why not issue multiple instructions per cycle?
=>» Superscalar processors

* Instruction-level parallelism (ILP)

* Today processors typically 2- or 4-wide issue

Typical Dual-Issue Pipeline (1/2)

os -

Reg File

W

Fetch an entire 16B or 32B cache block
o =~ 4 to 8 instructions
o Predict a single branch per cycle

Parallel decode
o Check for conflicting instructions

o Other stalls as needed (eg, load-use delay)

Typical Dual-Issue Pipeline (2/2)

S . D I | os -
I ST |
—

Multi-ported register file
o Larger area, latency, power, cost & complexity — bad scaling too!

Multiple execution units
o Simple adders are easy, but bypass paths are expensive

Memory unit
o Single load per cycle is probably OK for dual-issue
o Alternative: Add read port to DS

Superscalar Example

ADDQ S$1, $2, S3

ADDQ 54, $%, S$6
ADDQ $7, $8, S9
ADDQ $10, S$17T, s12
ADDQ $13, $14,%15
ADDQ $16, $17, $18

What checks are required for 2-wide issue?

What does the execution look like? How many cycles?

Superscalar Example

ADDQ

ADDQ
ADDQ
ADDQ

ADDQ

ADDQ

What checks are required for 3-wide issue?

What does the execution look like? How many cycles?

Superscalar Example

ADDQ $1, 3

ADDQ $

ADDQ $

ADDQ $10, $11, $12
ADDQ $13, $14, $15

ADDQ $16, $17, $18

What checks are required for 4-wide issue?

What does the execution look like? How many cycles?

Superscalar Example

ADDQ

ADDQ
ADDQ
ADDQ

ADDQ

ADDQ $1%, $17, $18

What checks are required for 3-wide issue?

What does the execution look like? How many cycles?

Superscalar Implementation — F&D

Fetch

* Modest: Just fetch multiple instructions per cycle

* Aggressive: Buffer instructions / predict multiple branches

Decode

* Replicate decoders for each instruction

Superscalar Implementation - Issue

Instruction issue

e Determine which instructions can execute
» O(N?) checks required for N-wide machine

e Other limitations based on execution units

Register read

* Addread & write ports to register file

* Affects latency & area roughly O(portsz)

Superscalar Implementation - EX

Replicate functional units?
Yes for simpler ones like adders
No for expensive, rarely-used like divide

Somewhat for expensive, often-used like cache ports

Bypass paths
O(PN?) paths required for full bypass (P — pipeline depth)
N-way muxes at each stage add latency to critical path

Can add pipeline stages for bypassing but this isn’t free

=12

Versus

1
1

Superscalar Challenges

Quadratic scaling factors

 Dependence checks
* Register file size

e Bypass paths
Speedup limited by ILP
* Rely on compiler

 Still face heavily diminishing returns

=» Superscalar is a good idea, but limited scaling

Not all N% are created equal

Stall logic vs bypass network vs register file — which is the bigger problem?

Bypass network by far

* 64-bit values vs 5-bit register names
- Bypass between stages O(N?) vs O(PN?)
e Must fit within clock + ALU

Register file also expensive

Dependency checks are a distant 3™

|dea: Clustering

Stall logic does full O(NZ) dependence checks

No real choice, must execute correctly

cluster O

cluster 1

Cluster execution units and register file
* Full bypass within a cluster (with smaller N)

* Limited bypassing between clusters —takes 1 or 2 cycles

|dea: Clustering

Cluster execution units and register file

cluster O

cluster 1

Dependent instructions steered towards appropriate cluster

Register file banked (split) across clusters

* Orreplicated — fewer read ports, multiple writes

Other challenges: Superscalar Fetch

What does it mean to fetch multiple insns per cycle?

Same cache block =2 no problem

If last instruction in block = single issue this cycle?

What about taken branches?

e 20% branches x 50% taken =» ~10 instructions between taken branches

Other challenges: Superscalar Fetch

What is the ILP of this program on a 4-wide issue?

START: ADDQ $1, S1,
ADDQ 82, $2,
ADDQ $3, $3,

N = S S S

ADDQ $4, $4,

BEZ $1, START # assume taken

Other challenges: Superscalar Fetch

=

Over-fetch and buffer
* Add a queue between fetch and decode (18 entries on Core 2)
 Compensates for cycles that fetch less than maximum issue

* Decouples front-end and back-end
* (see also Decoupled Access Execute [Smith,'82] for a different application of same idea)

Or put entire loops in icache

* Any mispredicted branch falls back to normal fetch

* Macro-ops (eg Core 2) vs micro-ops (Core i7) vs trace cache (P4)

Other challenges: Superscalar Commit

Which instructions write registers in a 4-wide issue?

ADDO $1, $2,[83
ADDQ $2, S
ADDQ $5, $8,

ﬁB‘B‘H‘—Ax e, =
r N2 Y+

Doesn’t execute

(@)
lsuoieunsa

Need to add dependence checks in writeback

Trends in Superscalar Width

8
+ ifu
O lIsfu
max_inst_decoded
6 : .
High-performance (eg,
servers)
£
T 4
=
++ O++8/Ng HO
2 BHEE+HE SHO0 | 00H0O0O
B 6B SH+EEd O O O

0 O

1970 1980 1990 2000 201C

Conclusion: Superscalar

Multiple issue

* Exploits ILP beyond pipelining
* Improves IPC at the cost of clock & energy & area

* 4-to 6-wide issue is about peak justifiable width

Problem spots

» Bypass & register file scale O(N?)
e Clustering one solution

* Fetch and decode complicated
e Buffering, loop streaming, trace cache

 Dependence checks also scales O(NZ)
* VLIW tries to fix this (next time)

