
Branch Prediction
15-740 SPRING’18

NATHAN BECKMANN

BASED ON SLIDES BY JOEL EMER, MIT

1

Commit: Instruction irrevocably updates
architectural state (aka “graduation” or
“completion”).

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Result
Buffer

PC

2

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

Control Flow Penalty

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline width

Loose loop

Branch
executed

Next fetch
started

3

Average Run-Length between Branches
Average dynamic instruction mix from SPEC92:

SPECint92 SPECfp92

ALU 39 % 13 %

FPU Add 20 %

FPU Mult 13 %

load 26 % 23 %

store 9 % 9 %

branch 16 % 8 %

other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc , li

SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches

4

Each instruction fetch depends on one or two pieces of information from the
preceding instruction:

Instruction Taken known? Target known?

J

JR

BEQZ/BNEZ

MIPS Branches and Jumps

5

After Reg. Fetch* After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

*Assuming zero detect on register read

1) Is the preceding instruction a taken branch?

2) If so, what is the target address?

Realistic Branch Penalties

6

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

Reducing Control Flow Penalty

7

Software solutions

• Eliminate branches - loop unrolling

Increases the run length
• Reduce resolution time - instruction scheduling

Compute the branch condition as early
as possible (of limited value – why?)

Hardware solutions

• Find something else to do architecturally

• delay slots - replace pipeline bubbles with useful
work (requires software cooperation)

• Speculate - branch prediction
Speculative execution of instructions beyond the
branch
Useful in both in- and out-of-order processors

Branch Prediction

8

Motivation:

Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:

Prediction structures:
• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to state following branch

Static Branch Prediction

9

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64

typically reported as ~80% accurate

JZ

JZ
backward

90%
forward

50%

Is Static Prediction Enough?
UltraSPARC-III

◦ Mispredicted branches have penalty of 6 cycles

◦ 4-wide issue

Wasted work per branch @ 80% accuracy:

20% misprediction rate
× 6 stages
× 4-way issue
= 4.8 wasted instructions / branch

Branches are 15-20% of instructions!

10

Dynamic Branch Prediction
learning based on past behavior

Spatial correlation
Several branches may resolve in a highly correlated manner (a
preferred path of execution)

Temporal correlation
The way a branch resolves may be a good predictor of the way
it will resolve at the next execution

Echoes of temporal/spatial locality in caches…

11

Dynamic Prediction

Input

Truth/Feedback

Prediction
Predictor

Operations

• Predict

Prediction as a feedback control process • Update

12

Predictor Primitive
Emer & Gloy, 1997

Indexed table holding values

Operations
◦ Predict

◦ Update

Algebraic notation

Prediction = P[Width, Depth](Index; Update)

Index

Prediction

Update

Depth

Width

P

UI

13

One-bit Predictor

PC

Taken

Prediction

A21064(PC; T) = P[1, 2K](PC; T)

P

U

I

1 bit

What happens on loop branches?

At best, mispredicts twice for every use of loop.

Simple temporal prediction

14

Branch Prediction Bits

15

• Assume 2 BP bits per instruction
• Use saturating counter

O
n
 ¬

ta
k
e
n

O

n
 ta

k
e
n

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly ¬taken

0 0 Strongly ¬taken

Two-bit Predictor
Smith, 1981

PC

+/- Adder

Taken
Prediction

Counter[W,D](I; T) = P[W, D](I; if T then P+1 else P-1)

A21164(PC; T) = MSB(Counter[2, 2K](PC; T))

P

U

I

2 bits

16

Branch History Table

17

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Exploiting Spatial Correlation
Yeh and Patt, 1992

18

History register, H, records the direction of the last N branches
executed by the processor

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

History Register

PC

Concatenate

Taken
History

History(PC, T) = P(PC; P || T)

P

U

I

19

Global History

GHist(;T) = MSB(Counter(History(0, T); T))

Ind-Ghist(PC;T) = MSB(Counter(PC || Hist(GHist(;T);T)))

Taken

Concat

Global History

+/-

Prediction

Can we take advantage of a pattern at a particular PC?

20

Local History

PC

Concat

Local History

+/-

Prediction

Taken

LHist(PC, T) = MSB(Counter(History(PC; T); T))

Can we take advantage of the global pattern at a particular PC?

21

Two-level Predictor

Concat

Global
History

+/-

Prediction

Taken

2Level(PC, T) = MSB(Counter(History(0; T)||PC; T))

Concat

PC

22

Two-Level Branch Predictor

23

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

kFetch PC

Shift in
Taken/¬Taken
results of each
branch

2-bit global branch
history shift register

Taken/¬Taken?

Which predictor is best?
Many different predictors were proposed

Each handles particular patterns well

Common principles: temporal / spatial correlation, saturating counters, etc

But none is universal

What to do?

24

Choosing Predictors

LHist

GHist

Chooser

Chooser = MSB(P(PC; P + (A==T) - (B==T))
or

Chooser = MSB(P(GHist(PC; T); P + (A==T) - (B==T))

Prediction

25

Tournament Branch Predictor
(Alpha 21264)

Choice predictor learns whether best to use local or global branch history in predicting next
branch

Global history is speculatively updated but restored on mispredict

Claim 90-100% success on range of applications

26

Local history
table

(1,024x10b)

PC

Local
prediction

(1,024x3b)

Global Prediction
(4,096x2b)

Choice Prediction
(4,096x2b)

Global History (12b)Prediction

Sophisticated Designs
Neural-network-based, “perceptron” branch predictors

◦ [Vintan, IJCNN ‘99][Jiminez, HPCA ‘01]

◦ High prediction accuracy, but more computation

◦ Actually implemented in AMD Piledriver, AMD Ryzen

TAGE predictor
◦ TAgged GEometric predictor [Seznac, JILP ‘06]

◦ Keep multiple predictions with different history lengths

◦ Partially tag predictions to avoid false matches

◦ Only provide prediction on tag match

◦ Rumored to be what Intel uses

27

TAGE predictor
Seznec & Michaud, 2006

TAGE_TREE[L1, L2, L3](PC; T) =
TAGE[L3](PC,

TAGE[L2](PC,
TAGE[L1](PC, Bimodal(PC;T)

;T) ;T ;T)

TAGE[L3]

Final
Prediction

TAGE[L2]TAGE[L1]BiModal

PC

Use
me?

My
Guess

28

TAGE component

Counter

Prediction

Useful

Tag

Use
me?

My
Guess

PC

Next
Predictor

GHist

29

Useful bit is updated when predictor was correct and
its alternative was wrong; used for replacement.

TAGE predictor component
TAGE[L](PC, NEXT; T) =

idx = hash(PC, GHIST[L](;T))
tag = hash(PC, GHIST[L](;T))

TAGE.U = SA(idx, tag; ((TAGE == T) && (NEXT != T))?1:SA)
TAGE.Counter = SA(idx, tag; T?SA+1:SA-1)

use_me = TAGE.U && isStrong(TAGE.Counter)
TAGE = use_me?MSB(TAGE.Counter):NEXT

Notes:
SA is a ‘set associative’ structure
SA allocation occurs on mispredict (not shown)
TAGE.U cleared on global counter saturation

30

Limitations of branch predictors

31

Only predicts branch direction. Therefore, cannot redirect
fetch stream until after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly

predicted

taken branch
penalty

Jump Register
penalty

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

Branch Target Buffer (untagged)

32

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction

and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(BTB)
(2k entries)k

BPbpredicted

target BP

target

Address Collisions

33

What will be fetched after the instruction at 1028?
BTB prediction =
Correct target =

Assume a
128-entry
BTB

BPbtarget

take236

1028 Add

132 Jump 100

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these bubbles?

BTB is only for Control Instructions

34

BTB contains useful information for branch and

jump instructions only

 Do not update it for other instructions

For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the instruction?

Branch Target Buffer (tagged)

35

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

Consulting BTB Before Decoding

36

1028 Add

132 Jump 100

BPbtarget

take236

entry PC

132

• The match for PC=1028 fails and 1028+4 is fetched
 eliminates false predictions after ALU instructions

• BTB contains entries only for control transfer instructions
 more room to store branch targets

Combining BTB and BHT

37

BTB entries are considerably more expensive than BHT, but can redirect
fetches at earlier stage in pipeline and can accelerate indirect branches (JR)

BHT can hold many more entries and is more accurate

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

BTB

BHTBHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch

BTB/BHT only updated after branch resolves in E stage

Uses of Jump Register (JR)
Switch statements (jump to address of matching case)

Dynamic function call (jump to run-time function address)

Subroutine returns (jump to return address)

39

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

BTB works well if usually return to the same place

 Often one function called from many distinct call sites!

Subroutine Return Stack
Small structure to accelerate JR for subroutine returns, typically much more accurate than BTBs.

40

&fb()

&fc()

Push call address when
function call executed

Pop return address
when subroutine
return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd()
k entries
(typically k=8-16)

Overview of branch prediction

P
C

Need next PC
immediately

Decode
Reg
Read

Execute

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

BTB

BP,
JMP,
Ret

Loose loop Loose loop Loose loopTight loop

Must speculation check always be correct? No…

Best predictors
reflect program

behavior

41

