
Static Scheduling & VLIW

15-740

Prof. Nathan Beckmann
(Original slides by Onur Mutlu, edited by Seth Goldstein)

Carnegie Mellon University

1

Reprise of dynamic scheduling



2

DO WE REALLY NEED ALL

THIS COMPLEX HARDWARE?

HOW FAR CAN WE GET

WITHOUT IT?

3

What would OOO do?

 4-wide superscalar

 LDs take 2 cycles,
fully pipelined

 Adds take 1 cycle

4

R1  0x1000

LOOP: R2  0(R1)

R3  R3 + R2

R1  R1 – 4

BNEZ R1, LOOP

0 R1  1000

1 R1’  R1 – 4 R2  (R1)

2 R1’’  R1’ – 4 R2’  (R1’) BNEZ R1’

3 R1’’’  R1’’– 4 R2’’  (R1’’) R3  R3+R2 BNEZ R1’’

4 R1’’’’  R1’’’– 4 R2’’’  (R1’’’) R3’  R3’+R2’ BNEZ R1’’’

5 R1’’’’’  R1’’’’– 4 R2’’’’  (R1’’’’) R3’’  R3’’+R2’’ BNEZ R1’’’’

6 R1’’’’’’  R1’’’’’– 4 R2’’’’’  (R1’’’’’) R3’’’  R3’’’+R2’’’ BNEZ R1’’’’’

… R1’’’’’’’  R1’’’’’’– 4 R2’’’’’’  (R1’’’’’’) R3’’’’  R3’’’’+R2’’’’ BNEZ R1’’’’’’

NOT

COMPLICATED!

Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, …

Q3. How do we increase the instruction fetch rate?

i.e., have the ability to fetch more instructions per cycle

5

Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, …

Q3. How do we increase the instruction fetch rate?

i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of
instructions that will be executed straight line (without branches
getting in the way) eases all of the above

6

Very long instruction word - VLIW

 Compiler does the scheduling statically

 Simple hardware with multiple function units

 Reduced hardware complexity

 Little or no scheduling done in hardware, e.g., in-order

 Hopefully, faster clock and less power

 Compiler required to group and schedule instructions
(compare to OoO superscalar)

 Predicated instructions to help with scheduling (trace, etc.)

 More registers (for software pipelining, etc.)

7

VLIW example – 2-cycle loads

 RISC code

MUL R1, R3, 3

LD R4, 0(R1)

ADD R2, R2, R4

SUB R3, R3, 1

BNEZ R3, -4

 VLIW code

MUL R1, R3, 3 SUB R3, R3, 1

LD R4, 0(R1) NOP

NOP NOP

ADD R2, R2, R4 BNEZ R3, -4

8

VLIW relies on compiler for ILP



10

Comparison between SS  VLIW

From Mark Smotherman, “Understanding EPIC Architectures and Implementations”

11

http://www.cs.clemson.edu/~mark/464/acmse_epic.pdf

Comparison: CISC, RISC, VLIW

VLIW is a natural extension of RISC ideas to superscalar
12

VLIW: Finding Independent Operations

 Within a basic block, there is limited instruction-level
parallelism

 To find multiple instructions to be executed in parallel, the
compiler needs to consider multiple basic blocks

 Problem: Moving an instruction above a branch is unsafe
because instruction is not guaranteed to be executed

 Idea: Enlarge blocks at compile time by finding the
frequently-executed paths

 Trace scheduling

 Superblock scheduling

 Hyperblock scheduling

 Software Pipelining

13

It’s all about the compiler

and how to schedule the

instructions to maximize

parallelism

List Scheduling: For 1 basic block

 Idea: Assign priority to each instruction

 Initialize ready list that holds all ready instructions

 Choose one ready instruction I from ready list with the
highest priority

 Insert I into schedule

 Ensuring resources are available (structural hazards)

 Add those instructions whose precedence constraints are
now satisfied into the ready list

14

Instruction Prioritization Heuristics

 Number of descendants in precedence graph

 Maximum latency from root node of precedence graph

 Length of operation latency

 Ranking of paths based on importance

 Some combination of above

16

VLIW List Scheduling

18

1

2 3 4 5 6

7 8 9

10 11 12

13

1

11

2

2 2

2

3

33 3 4

5

4-wide VLIW

VLIW List Scheduling

19

1

2 3 4 5 6

7 8 9

10 11 12

13

1

6 3 4 5

9 2 7 8

12 10 11

13

1

11

2

2 2

2

3

33 3 4

5

4-wide VLIW

VLIW List Scheduling+Structural Hazards

20

1

2 3 4 5 6

7 8 9

10 11 12

13

1

11

2

2 2

2

3

33 3 4

5

4-wide VLIW

VLIW List Scheduling+Structural Hazards

21

1

2 3 4 5 6

7 8 9

10 11 12

13

1

2 3 6 5

9 4

7 8 12

10 11 13

1

11

2

2 2

2

3

33 3 4

5

4-wide VLIW

WHAT ABOUT LOOPS?

22

The problem with loops

 Consider the following code:

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}

23

The problem with loops

 Consider the following code:

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}

 RISC assembly (LD & MUL 2-cycles)

LOOP: LD R1, 0(R3)

MUL R2, R1, R1

ST R2, 0(R3)

ADD R3, R3, 4

BLT R3, R4, LOOP

24

Useful work

Loop overhead

 7 cycles

per iteration

The problem with loops

 Consider the following code:

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}

 VLIW assembly (1 ALU, 1 LD/ST; 2-cycles)

LOOP: NOP LD R1, 0(R3)

NOP NOP

MUL R2, R1, R1 NOP

ADD R,3 R,3 4 NOP

BLT R3, R4, LOOP ST R2, -4(R3)

25

Useful workLoop overhead

 5 cycles

per iteration

Amortize overheads by unrolling loops

 Key idea is to schedule the following code instead:

for (int i = 0; i < N; i+=4) {

b[i+0] = b[i+0] * b[i+0];

b[i+1] = b[i+1] * b[i+1];

b[i+2] = b[i+2] * b[i+2];

b[i+3] = b[i+3] * b[i+3];

}

Loop unrolling
 Larger scheduling block

 Better schedule

26

Amortize overheads by unrolling loops

 VLIW assembly

LOOP: NOP LD R1, 0(R9)

NOP LD R3, 4(R9)

MUL R2, R1, R1 LD R5, 8(R9)

MUL R4, R3, R3 LD R7, 12(R9)

MUL R6, R5, R5 ST R2, 0(R9)

MUL R8, R7, R7 ST R4, 4(R9)

ADD R9, R9, 16 ST R6, 8(R9)

BLT R9, R10 LOOP ST R8, -4(R9)

27

Useful workLoop overhead

 2 cycles

per iteration

Correctness of loop unrolling

 Is this transformation legal?

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}

for (int i = 0; i < N; i+=4) {

b[i+0] = b[i+0] * b[i+0];

b[i+1] = b[i+1] * b[i+1];

b[i+2] = b[i+2] * b[i+2];

b[i+3] = b[i+3] * b[i+3];

}

28

Correctness of loop unrolling

 Instead, schedule the following code:

int i;

for (i = 0; i+3 < N; i+=4) {

b[i+0] = b[i+0] * b[i+0];

b[i+1] = b[i+1] * b[i+1];

b[i+2] = b[i+2] * b[i+2];

b[i+3] = b[i+3] * b[i+3];

}

for (; i < N; i++) {

b[i] = b[i] * b[i];

}

29

Loop unrolling summary

 Advantages

 Reduces loop overhead

 Improves code schedule within loop

 (eg, hiding MUL latency in example)

 Disadvantages

 Increases code size

 Less effective on loops with internal branches

 Can use predication … more on this later

30

Can we do better?

 VLIW assembly (ALU + LD/ST)

LOOP: NOP LD R1, 0(R9)

NOP LD R3, 4(R9)

MUL R2, R1, R1 LD R5, 8(R9)

MUL R4, R3, R3 LD R7, 12(R9)

MUL R6, R5, R5 ST R2, 0(R9)

MUL R8, R7, R7 ST R4, 4(R9)

ADD R9, R9, 16 ST R6, 8(R9)

BLT R9, R10 LOOP ST R8, -4(R9)

32

Useful workLoop overhead

 2 cycles

per iteration

Not in this case – LD/ST unit is at 100% utilization

Can we do better?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R9) NOP

NOP LD R3, 4(R9) NOP

MUL R2, R1, R1 LD R5, 8(R9) NOP

MUL R4, R3, R3 LD R7, 12(R9) ST R2, 0(R9)

MUL R6, R5, R5 NOP ST R4, 4(R9)

MUL R8, R7, R7 ADD R9, R9, 16 ST R6, 8(R9)

NOP BLT R9, R10, LOOP ST R8, 12(R9)

33

Useful workLoop overhead

 7/4 cycles

per iteration

Can we do better?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R31) NOP

NOP LD R3, 4(R31) NOP

MUL R2, R1, R1 LD R5, 8(R31) NOP

MUL R4, R3, R3 LD R7, 12(R31) ST R2, 0(R31)

MUL R6, R3, R3 LD R9, 12(R31) ST R4, 4(R31)

MUL R8, R3, R3 LD R11, 12(R31) ST R6, 8(R31)

MUL R10, R3, R3 LD R13, 12(R31) ST R8, 12(R31)

MUL R12, R3, R3 LD R15, 12(R31) ST R10, 16(R31)

MUL R14, R5, R5 NOP ST R12, 20(R31)

MUL R16, R7, R7 ADD R31, R31, 32 ST R14, 24(R31)

NOP BLT R31, R10, LOOP ST R16, -4(R31)

34

Useful workLoop overhead

 11/8 cycles

per iteration

…but code &

register bloat

Can we do better than unrolling?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R31) NOP

NOP LD R3, 4(R31) NOP

MUL R2, R1, R1 LD R5, 8(R31) NOP

MUL R4, R3, R3 LD R7, 12(R31) ST R2, 0(R31)

MUL R6, R3, R3 LD R9, 12(R31) ST R4, 4(R31)

MUL R8, R3, R3 LD R11, 12(R31) ST R6, 8(R31)

MUL R10, R3, R3 LD R13, 12(R31) ST R8, 12(R31)

MUL R12, R3, R3 LD R15, 12(R31) ST R10, 16(R31)

MUL R14, R5, R5 NOP ST R12, 20(R31)

MUL R16, R7, R7 ADD R31, R31, 32 ST R14, 24(R31)

NOP BLT R31, R10, LOOP ST R16, -4(R31)

35

Useful workLoop overhead

Ramp-up &

ramp-down

overhead

Can we do better than unrolling?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R31) NOP

NOP LD R3, 4(R31) NOP

MUL R2, R1, R1 LD R5, 8(R31) NOP

MUL R4, R3, R3 LD R7, 12(R31) ST R2, 0(R31)

MUL R6, R3, R3 LD R9, 12(R31) ST R4, 4(R31)

MUL R8, R3, R3 LD R11, 12(R31) ST R6, 8(R31)

MUL R10, R3, R3 LD R13, 12(R31) ST R8, 12(R31)

MUL R12, R3, R3 LD R15, 12(R31) ST R10, 16(R31)

MUL R14, R5, R5 NOP ST R12, 20(R31)

MUL R16, R7, R7 ADD R31, R31, 32 ST R14, 24(R31)

NOP BLT R31, R10, LOOP ST R16, -4(R31)

36

Useful workLoop overhead

Ramp-up &

ramp-down

overhead

Perfect

efficiency

Goal: Maintain peak efficiency, w/out ramp-up/down

37

Software Pipelining

 Idea: Move instructions across iterations of the loop

 Very large improvements in running time are possible

 E.g., 5-wide VLIW
LD R1, 0(R9) NOP ADD R9, R9, 4

NOP NOP NOP

LD R1, 4(R9) MUL R2, R1, R1 ADD R9, R9, 4

NOP SUB R10, R10, 4 BGE R9, R10, END

LOOP: { LD R1, 0(R9)

MUL R2, R1, R1

ST R2, -8(R9)

ADD R9, R9, 4

BLT R9, R10, LOOP }

END: NOP NOP NOP

NOP MUL R2, R1, R1 ST R2, -4(R9)

NOP NOP NOP

NOP NOP ST R2, 0(R9)

Current iteration

One iteration ago

Two iterations ago

38

Software Pipelining

 Idea: Move instructions across iterations of the loop

 Very large improvements in running time are possible

 E.g., 5-wide VLIW
LD R1, 0(R9) NOP ADD R9, R9, 4

NOP NOP NOP

LD R1, 4(R9) MUL R2, R1, R1 ADD R9, R9, 4

NOP SUB R10, R10, 4 BGE R9, R10, END

LOOP: { LD R1, 0(R9)

MUL R2, R1, R1

ST R2, -8(R9)

ADD R9, R9, 4

BLT R9, R10, LOOP }

END: NOP NOP NOP

NOP MUL R2, R1, R1 ST R2, -4(R9)

NOP NOP NOP

NOP NOP ST R2, 0(R9)

Perfect

efficiency

 1 cycle

per iteration

39

Goal of SP

 Increase distance between dependent operations by
moving destination operation to a later iteration

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d  d + 4

Assume all have latency of 2

A B C D

40

Can we decrease the latency?

 Lets unroll

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d  d + 4
A1: a  ld [d]
B1: b  a * a
C1: st [d], b
D1: d  d + 4

A B C D A1 B1 C1 D1

41

Rename variables

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d  d1 + 4

A B C D A1 B1 C1 D1

42

Schedule

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d  d1 + 4

A

B

C

D

A1

B1

C1

D1

A B C D1

D A1 B1 C1

43

Unroll Some More

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d2  d1 + 4
A2: a2  ld [d2]
B2: b2  a2 * a2
C2: st [d2], b2
D2: d  d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D2

A B C D2

D A1 B1 C1

D1 A2 B2 C2

44

Unroll Some More
A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d2  d1 + 4
A2: a2  ld [d2]
B2: b2  a2 * a2
C2: st [d2], b2
D2: d  d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D2

A3

B3

C3

45

One More Time

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3
A B C

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D3 A4 B4 C4

D2

A3

B3

C3

A4

B4

C4

46

Can Rearrange

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3
A B C

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D3 A4 B4 C4

D2

A3

B3

C3

A4

B4

C4

47

Rearrange

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D2

A3

B3

C3

48

Rearrange

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D2

A3

B3

C3

49

SP Loop
A: a  ld [d]
B: b  a * a
D: d1  d + 4
A1: a1  ld [d1]
D1: d2  d1 + 4

C: st [d], b
B1: b1  a1 * a1
A2: a2  ld [d2]
D2: d  d2 + 4

B2: b2  a2 * a2
C1: st [d1], b1
D3: d2  d1 + 4
C2: st [d2], b2

A B C C C D3

D A1 B1 B1 B1 C1

D1 A2 A2 A2 B2 C2

D2 D2 D2

Prolog

Body

Epilog

50

Goal of Software Pipelining

 Increase distance between dependent operations by
moving destination operation to a later iteration

A

B

C

dependencies in
initial loop

A

B

C

iteration i i+1 i+2

after SP

51

Goal of Software Pipelining

 Increase distance between dependent operations by
moving destination operation to a later iteration

A

B

C

dependencies in
initial loop

A

B

C

iteration i i+1 i+2

after SP
B’’

C’ C’’

A’ A’’

B’

52

Goal of Software Pipelining

 Discover ILP across iterations!

A0

A1 B0

A2 B1 C0

A3 B2 C1

B3 C2

C3

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

53

Example

Assume operating on a infinite wide machine

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

Prolog

epilog

loop body

55

Loop Unrolling vs. Software Pipelining

For SuperScalar or VLIW

 Loop Unrolling reduces loop overhead

 Software Pipelining reduces fill/drain

 Best is if you combine them

Software Pipelining

Time

Loop Unrolling

More complicated SP example

 Functional units

 1x LD – 2 cycles

 1x FP – add 1 cycle, multiply 2 cycles

 2x Integer – ALU 1 cycle, branch 1 cycle

 Code:

56

double sum_array(int N, double *A){

int sum = 0;

for(int i=0; i<N; i++){

sum += A[i];

}

}

More complicated SP example

 Functional units

 1x LD – 2 cycles

 1x FP – add 1 cycle, multiply 2 cycles

 2x Integer – ALU 1 cycle, branch 1 cycle

 Software pipelined:

57

INT1 INT2 FP MEM

LD F1  0(R1)

LD F2  8(R1)

R1  R1+16 R0  R0 - 2 F0  F0 + F1 LD F1  16(R1)

BNEQ LOOP F0  F0 + F2 LD F2  8(R1)

F0  F0 + F1

F0  F0 + F2

LOOP:

Software Pipelining Approaches

 The first serious approach to software pipelining was
presented by Aiken & Nicolau.

 Aiken’s 1988 Ph.D. thesis.

 Impractical as it ignores resource hazards (focusing only
on data-dependence constraints).

 “Iterative Modulo Scheduling” Rau MICRO’94

 Addresses resource constraints

 Iterate over different loop lengths until one schedules
successfully

 Compute loop lower/upper bounds from required & available
resources

58

TRACE SCHEDULING

59

Extending the scheduling domain

 Basic block is too small to get any real parallelism

 Recall: 88% of OOO benefit from speculation 

larger scheduling window [MTZ’13]

 How to extend the basic block?

 Why do we have basic blocks in the first place?

 Loops

 Loop unrolling

 Software pipelining

 Non-loops

 Will almost always involve some speculation

 Thus profiling may be very important

60

Safety and Legality in Code Motion

 Two characteristics of speculative code motion:

 Safety: whether or not spurious exceptions may occur

 Legality: whether or not result will be always correct

 Four possible types of code motion:

61

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3

Code Movement Constraints

 Downward

 When moving an operation from a BB to one of its dest BB’s,

 all the other dest basic blocks should still be able to use the result
of the operation

 the other source BB’s of the dest BB should not be disturbed

 Upward

 When moving an operation from a BB to its source BB’s

 register values required by the other dest BB’s must not be
destroyed

 the movement must not cause new exceptions

62

Trace Scheduling

 Trace: A frequently executed path in the control-flow graph
(has multiple side entrances and multiple side exits)

 Idea: Find independent operations within a trace to pack
into VLIW instructions.

 Traces determined via profiling

 Compiler adds fix-up code for correctness (if a side entrance
or side exit of a trace is exercised at runtime, corresponding
fix-up code is executed)

63

Trace Scheduling Idea

64

Trace Scheduling (II)

 There may be conditional branches from the middle of the
trace (side exits) and transitions from other traces into the
middle of the trace (side entrances).

 These control-flow transitions are ignored during trace
scheduling.

 After scheduling, fix-up/bookkeeping code is inserted to
ensure the correct execution of off-trace code.

 Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE TC 1981.

65

Trace Scheduling (III)

66

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

What bookkeeping is required when Instr 1

is moved below the side entrance in the trace?

Trace Scheduling (IV)

67

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

Instr 3

Instr 4

Trace Scheduling (V)

68

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

What bookkeeping is required when Instr 5

moves above the side entrance in the trace?

Trace Scheduling (VI)

69

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

Instr 5

Trace Scheduling Fixup Code Issues

 Sometimes need to copy instructions more than once to
ensure correctness on all paths (see C below)

70

A

B

C

D

E

X

Y

D

B

E

A

C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB

C

D Y

Correctness

C’’’

Trace Scheduling Overview

 Trace Selection

 select seed block (the highest frequency basic block)

 extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)

backward (predecessor of the first block of the trace)

 don’t cross loop back edge

 bound max_trace_length heuristically

 Trace Scheduling

 build data precedence graph for a whole trace

 perform list scheduling and allocate registers

 add compensation code to maintain semantic correctness

 Speculative Code Motion (upward)

 move an instruction above a branch if safe

71

Trace Scheduling Example (I)

72

beq r1, $0

fdiv f1, f2, f3
fadd f4, f1, f5

ld r2, 0(r3)

add r2, r2, 4

ld r2, 4(r3)

add r3, r3, 4

beq r2, $0

fsub f2, f2, f6
fsub f2, f3, f7

st.d f2, 0(r8)

add r8, r8, 4

990

990

800

800

10

10

200

200

fdiv f1, f2, f3
fadd f4, f1, f5
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live

live out

out

Trace Scheduling Example (I)

73

fdiv f1, f2, f3
fadd f4, f1, f5
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live

live out

out

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code

Trace Scheduling Example (II)

74

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code

Trace Scheduling Example (III)

75

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3 B6

fadd f4, f1, f5

Split

add r3, r3, 4
add r8, r8, 4

Join comp. code

fadd f4, f1, f5

comp. code

Trace Scheduling Example (IV)

76

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3
fadd f4, f1, f5

fadd f4, f1, f5

Split

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B6

add r3, r3, 4
add r8, r8, 4

Join comp. code

Copied

comp. code

split
instructions

Trace Scheduling Example (V)

77

fdiv f1, f2, f3

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

fadd f4, f1, f5

add r3, r3, 4
add r8, r8, 4

fadd f4, f1, f5

ld r2, 4(r3)

fadd f4, f1, f5

fsub f2, f3, f7

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

add r3, r3, 4
add r8, r8, 4

B3

B6

Trace Scheduling Tradeoffs

 Advantages

+ Enables the finding of more independent instructions  fewer

NOPs in a VLIW instruction

 Disadvantages

-- Profile dependent

-- What if dynamic path deviates from trace  lots of NOPs in the

VLIW instructions

-- Code bloat and additional fix-up code executed

-- Due to side entrances and side exits

-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches

-- Unbiased branches  smaller traces  less opportunity for

finding independent instructions

78

Superblock Scheduling

 Trace: multiple entry, multiple exit block

 Superblock: single-entry, multiple exit block

 A trace with side entrances are eliminated

 Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces

+ Eliminates “difficult” bookkeeping due to side entrances

79
Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.

Superblock example

80

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common

Subexpression Elimination

opC’: mul r3,r2,3

Superblock Scheduling Shortcomings

-- Still profile-dependent

-- No single frequently executed path if there is an unbiased
branch

-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed

-- Due to side exits

81

Hyperblock Scheduling

 Idea: Use predication support to eliminate unbiased branches
and increase the size of superblocks

 Hyperblock: A single-entry, multiple-exit block with internal
control flow eliminated using predication (if-conversion)

 Advantages

+ Reduces the effect of unbiased branches on scheduled block size

 Disadvantages

-- Requires predicated execution support

-- All disadvantages of predicated execution

82

Hyperblock Formation (I)
 Hyperblock formation

1. Block selection

2. Tail duplication

3. If-conversion

 Block selection

 Select subset of BBs for inclusion in HB

 Difficult problem

 Weighted cost/benefit function

 Height overhead

 Resource overhead

 Dependency overhead

 Branch elimination benefit

 Weighted by frequency

 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the
Hyperblock,” MICRO 1992.

83

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

Hyperblock Formation (II)

84

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation

Hyperblock Formation (III)

85

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches

WHAT ABOUT MEMORY?

86

Non-Faulting Loads and Exception Propagation

 ld.s fetches speculatively from memory

i.e. any exception due to ld.s is suppressed

 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a
branch is taken (to execute some compensation code)

87

inst 1

inst 2

….

ld r1=[a]

use=r1

unsafe

code

motion

….

ld.s r1=[a]

inst 1

inst 2

….

br

chk.s r1

use=r1

…. ld r1=[a]

br

Non-Faulting Loads and Exception Propagation in IA-64

 Load data can be speculatively consumed prior to check

 “speculation” status is propagated with speculated data

 Any instruction that uses a speculative result also becomes speculative
itself (i.e. suppressed exceptions)

 chk.s checks the entire dataflow sequence for exceptions

88

inst 1

inst 2

….

br

ld r1=[a]

use=r1

unsafe

code

motion

….

ld.s r1=[a]

inst 1

inst 2

use=r1

….

br

chk.s use…. ld r1=[a]

use=r1

br

Aggressive ST-LD Reordering in IA-64

 ld.a starts the monitoring of any store to the same address as the
advanced load

 If no aliasing has occurred since ld.a, ld.c is a NOP

 If aliasing has occurred, ld.c re-loads from memory

89

inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

….

st [?]

….

ld.c r1=[x]

use=r1

st[?]

Aggressive ST-LD Reordering in IA-64

90

inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

use=r1

….

st [?]

….

chk.a X

….

st[?]

ld r1=[a]

use=r1

Summary and Questions

 Trace, superblock, hyperblock, block-structured ISA

 How many entries, how many exits does each of them have?

 What are the corresponding benefits and downsides?

 What are the common benefits?

 Enable and enlarge the scope of code optimizations

 Reduce fetch breaks; increase fetch rate

 What are the common downsides?

 Code bloat (code size increase)

 Wasted work if control flow deviates from enlarged block’s path

97

VLIW Summary

 Heavy reliance on compiler (push RISC to the extreme)

 Compiler algorithms (e.g., software pipelining) have lasting
impact outside of VLIW

 Is there enough statically knowable parallelism?

 E.g., memory aliasing and branch bias

 What about wasted FUs? Code bloat?

 Code size is already a big problem with x86 apps!

 Architecture joke: “VLIW is the architecture of the future,
and always will be.”

 Yet many DSPs are VLIW. Why?

98

SYSTOLIC ARRAYS

99

Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

 Similar to an assembly line

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Special purpose accelerators/architectures need

 Simple, regular designs (keep # unique parts small and
regular)

 High concurrency  high performance

 Balanced computation and I/O (memory access)
100

Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

101

Memory: heart

PEs: cells

Memory pulses

data through

cells

Systolic Architectures

 Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
 achieve high throughput w/o increasing memory

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear
and multi-dimensional

 PE connections can be multidirectional
(and different speed)

 PEs can have local memory and execute kernels (rather
than a piece of the instruction)

102

Systolic Computation Example



103

Systolic Computation Example: Convolution

104

Systolic Computation: Convolution

y1

w3 w2 w1

x2 x1

106

Systolic Computation: Convolution

107

y1

w3 w2 w1

x3 x2 x1

Systolic Computation: Convolution

108

y1 y2

w3 w2 w1

x3 x2

Systolic Computation: Convolution

109

y1 y2

w3 w2 w1

x4 x3 x2

Systolic Computation: Convolution

110

y1 y2 y3

w3 w2 w1

x4 x3

Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately
to allow overlapping of add/multiply executions

111

TODO: Example relating SP to systolic

architecture for some computation (maybe

the convolution)

112

 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory  to store partial/temporary results,

constants

 Leads to stream processing, pipeline parallelism
 More generally, staged execution

113

More Programmability

Pipeline Parallelism

114

File Compression Example

115

Why pipeline parallelism in software?

 Pipeline parallelism vs data parallelism

 Why split pipeline stages across PEs?

 No cycle-time benefit like we got in hardware

 Data movement patterns differ

 Pipeline parallelism: move input data between PEs

 Data parallelism: move task code/data between PEs

 Tight feedback loops within single stage

 E.g., compression or encryption

 Appropriate design depends on application

116

Systolic Array Summary

 Advantages

 Makes multiple uses of each data item  reduce data fetches

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose  need software, programmer

support to be a general purpose model

117

The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable
processor

 Attached to a general purpose host machine

 High-level language and optimizing compiler to program the
systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

 Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

118

The WARP Computer

119

146

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

s

s

147

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

s

s

resources must
be within
constraints

148

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

resources must
be within
constraints

s

s

149

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

resources must
be within
constraints

s

s

150

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

resources must
be within
constraints

s

s

151

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

resources must
be within
constraints

U

152

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

resources must
be within
constraints

s

modulo resource table

153

Precedence Constraints

 Review: for acyclic scheduling, constraint is just the
required delay between two ops u, v:
<d(u,v)>

 For an edge, uv, we must have

(v)-(u)  d(u,v)

154

Precedence Constraints

 Cyclic: constraint becomes a tuple: <p,d>

 p is the minimum iteration delay
(or the loop carried dependence distance)

 d is the delay

 For an edge, uv, we must have

(v)-(u)  d(u,v)-s*p(u,v)

 p  0

 If data dependence is

 within an iteration, p=0

 loop-carried across p iter boundaries, p>0

155

Iterative Approach

 Finding minimum S that satisfies the constraints is NP-
Complete.

 Heuristic:

 Find lower and upper bounds for S

 foreach s from lower to upper bound?

 Schedule graph.

 If succeed, done

 Otherwise try again (with next higher s)

 Thus: “Iterative Modulo Scheduling” Rau MICRO’94

156

Iterative Approach

 Heuristic:

 Find lower and upper bounds for S

 foreach s from lower to upper bound

 Schedule graph.

 If succeed, done

 Otherwise try again (with next higher s)

 So the key difference:

 AN88 does not assume S when scheduling

 IMS must assume an S for each scheduling attempt to
understand resource conflicts

157

Lower Bounds

 Resource Constraints: SR

maximum over all resources of # of uses divided by #
available…

 Precedence Constraints: SE

max delay over all cycles in dataflow graph

In practice, one is easy, other is hard.

Tim’s secret approach: just use SR as lower bound, then do
binary search for best S

159

Lower Bound on s

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

a

b

c

d

e

f

g
h

j

• Assume 1 ALU and 1 MU
• Assume latency Op or load is 1 cycle

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

Resources => 5 cycles
Dependencies => 3 cycles

160

Scheduling data structures

To schedule for initiation interval s:

 Create a resource table with s rows and R columns

 Create a vector, , of length N for n instructions in the
loop

 [n] = the time at which n is scheduled,
or NONE

 Prioritize instructions by some heuristic

 critical path (or cycle)

 resource critical

161

Scheduling algorithm

 Pick an instruction, n

 Calculate earliest time due to dependence constraints
For all x=pred(n),

earliest = max(earliest, (x)+d(x,n)-s.p(x,n))

 try and schedule n from earliest to (earliest+s-1)
s.t. resource constraints are obeyed.

 possible twist: deschedule a conflicting node to make
way for n, maybe randomly, like sim anneal

 If we fail, then this schedule is faulty
(i.e. give up on this s)

162

Scheduling algorithm – cont.

 We now schedule n at earliest, I.e., (n) = earliest

 Fix up schedule

 Successors, x, of n must be scheduled s.t.

(x) >= (n)+d(n,x)-s
.
p(n,x), otherwise they are removed

(descheduled) and put back on worklist.

 repeat this some number of times until either

 succeed, then register allocate

 fail, then increase s

163

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b

<1,1>
<1,1>

<0,1> <0,1>
c

What is IIres?
What is IIrec?

1 1Resources:

164

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b c

Try II = 2

1

Modulo Resource Table:

0

1

0

1

165

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b c

Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

166

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b

c
Try II = 2

1 1

Modulo Resource Table:

1

0

1

0

1

2

167

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

earliest a: sigma(c) + delay(c) - 2
= 2+1-2 = 1

168

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

} ab

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

earliest b?
scheduled b?
what next?

169

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

} a

b

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

3

Lesson: lower bound
may not be achievable

170

Example

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: ?

a

b

c

d

e

f

g
h

j

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

171

Example

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: c,d,e,a,b,f,j,g,h

a

b

c

d

e

f

g
h

j

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

172

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: c,d,e,a,b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

instr 

a

b

c

d

e

f

g

h

j

173

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: a,b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

instr 

a

b

c 0

d 1

e 2

f

g

h

j

174

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

a

instr 

a 3

b

c 0

d 1

e 2

f

g

h

j

175

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

a

b

instr 

a 3

b 4

c 0

d 1

e 2

f

g

h

j

176

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: e,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

a

b

instr 

a 3

b 4

c 0

d 1

e

f

g

h

j

b causes b->e edge violation

177

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: e,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

a

b

instr 

a 3

b 4

c 0

d 1

e 7

f

g

h

j

e causes e->c edge violation

178

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c f

d

e

a

b

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g

h

j

179

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities:j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c f

d j

e

a

b

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g

h

j 1

180

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities:g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c f

d j

e g

a h

b

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g 7

h 8

j 1

181

Creating the Loop

 Create the body from the schedule.

 Determine which iteration an instruction
falls into

 Mark its sources and dest as belonging
to that iteration.

 Add Moves to update registers

 Prolog fills in gaps at beginning

 For each move we will have an
instruction in prolog, and we fill in
dependent instructions

 Epilog fills in gaps at end

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g 7

h 8

j 1

182

f0 = U[0];

j0 = X[0];

FOR i = 0 to N

f1 := U[i+1]

j1 := X[i+1]

nop

a := j0 ? b

b := a ? f0

c := e ? j0

d := f0 ? c

e := b ? d g: V[i] := b

h: W[i] := d

f0 = f1

j0 = j1

183

Conditionals

 What about internal control structure, I.e., conditionals

 Three approaches

 Schedule both sides and use conditional moves

 Schedule each side, then make the body of the conditional a
macro op with appropriate resource vector

 Trace schedule the loop

184

What to take away

 Architecture includes compiler!

 Dependence analysis is very important
(including alias analysis)

 Software pipelining crucial for statically scheduled, but also
very useful for dynamically scheduled

Multiflow:

An early VLIW

architecture

(1987)

185

186

EPIC – Intel IA-64 Architecture

 Gets rid of lock-step execution of instructions within a VLIW
instruction

 Idea: More ISA support for static scheduling and parallelization

 Specify dependencies within and between VLIW instructions
(explicitly parallel)

+ No lock-step execution

+ Static reordering of stores and loads + dynamic checking

-- Hardware needs to perform dependency checking (albeit aided by
software)

-- Other disadvantages of VLIW still exist

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct
2000.

187

IA-64 Instructions

 IA-64 “Bundle” (~EPIC Instruction)

 Total of 128 bits

 Contains three IA-64 instructions

 Template bits in each bundle specify dependencies within a
bundle

\

 IA-64 Instruction

 Fixed-length 41 bits long

 Contains three 7-bit register specifiers

 Contains a 6-bit field for specifying one of the 64 one-bit
predicate registers

188

IA-64 Instruction Bundles and Groups

 Groups of instructions can be
executed safely in parallel

 Marked by “stop bits”

 Bundles are for packaging

 Groups can span multiple bundles

 Alleviates recompilation need
somewhat

189

