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Reprise of dynamic scheduling


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DO WE REALLY NEED ALL 

THIS COMPLEX HARDWARE?

HOW FAR CAN WE GET 

WITHOUT IT?
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What would OOO do?

 4-wide superscalar

 LDs take 2 cycles,
fully pipelined

 Adds take 1 cycle
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R1  0x1000

LOOP: R2  0(R1)

R3  R3 + R2

R1  R1 – 4 

BNEZ R1, LOOP

0 R1  1000

1 R1’  R1 – 4 R2  (R1)

2 R1’’  R1’ – 4 R2’  (R1’) BNEZ R1’

3 R1’’’  R1’’– 4 R2’’  (R1’’) R3  R3+R2 BNEZ R1’’

4 R1’’’’  R1’’’– 4 R2’’’  (R1’’’) R3’  R3’+R2’ BNEZ R1’’’

5 R1’’’’’  R1’’’’– 4 R2’’’’  (R1’’’’) R3’’  R3’’+R2’’ BNEZ R1’’’’

6 R1’’’’’’  R1’’’’’– 4 R2’’’’’  (R1’’’’’) R3’’’  R3’’’+R2’’’ BNEZ R1’’’’’

… R1’’’’’’’  R1’’’’’’– 4 R2’’’’’’  (R1’’’’’’) R3’’’’  R3’’’’+R2’’’’ BNEZ R1’’’’’’

NOT 

COMPLICATED!



Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, …

Q3. How do we increase the instruction fetch rate? 

i.e., have the ability to fetch more instructions per cycle
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Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, …

Q3. How do we increase the instruction fetch rate? 

i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of 
instructions that will be executed straight line (without branches 
getting in the way) eases all of the above
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Very long instruction word - VLIW

 Compiler does the scheduling statically

 Simple hardware with multiple function units

 Reduced hardware complexity

 Little or no scheduling done in hardware, e.g., in-order

 Hopefully, faster clock and less power

 Compiler required to group and schedule instructions
(compare to OoO superscalar)

 Predicated instructions to help with scheduling (trace, etc.)

 More registers (for software pipelining, etc.)
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VLIW example – 2-cycle loads

 RISC code

MUL R1, R3, 3

LD R4, 0(R1)

ADD R2, R2, R4

SUB R3, R3, 1

BNEZ R3, -4

 VLIW code

MUL R1, R3, 3 SUB R3, R3, 1

LD  R4, 0(R1) NOP

NOP NOP

ADD R2, R2, R4 BNEZ R3, -4
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VLIW relies on compiler for ILP


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Comparison between SS  VLIW

From Mark Smotherman, “Understanding EPIC Architectures and Implementations”
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http://www.cs.clemson.edu/~mark/464/acmse_epic.pdf


Comparison: CISC, RISC, VLIW

VLIW is a natural extension of RISC ideas to superscalar
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VLIW: Finding Independent Operations

 Within a basic block, there is limited instruction-level 
parallelism

 To find multiple instructions to be executed in parallel, the 
compiler needs to consider multiple basic blocks

 Problem: Moving an instruction above a branch is unsafe 
because instruction is not guaranteed to be executed

 Idea: Enlarge blocks at compile time by finding the 
frequently-executed paths

 Trace scheduling

 Superblock scheduling 

 Hyperblock scheduling

 Software Pipelining
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It’s all about the compiler 

and how to schedule the 

instructions to maximize 

parallelism



List Scheduling: For 1 basic block

 Idea: Assign priority to each instruction

 Initialize ready list that holds all ready instructions

 Choose one ready instruction I from ready list with the 
highest priority

 Insert I into schedule 

 Ensuring resources are available (structural hazards)

 Add those instructions whose precedence constraints are 
now satisfied into the ready list 
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Instruction Prioritization Heuristics

 Number of descendants in precedence graph

 Maximum latency from root node of precedence graph

 Length of operation latency

 Ranking of paths based on importance

 Some combination of above
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VLIW List Scheduling
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VLIW List Scheduling
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VLIW List Scheduling+Structural Hazards
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VLIW List Scheduling+Structural Hazards
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WHAT ABOUT LOOPS?
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The problem with loops

 Consider the following code:

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}
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The problem with loops 

 Consider the following code:

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}

 RISC assembly (LD & MUL 2-cycles)

LOOP: LD R1, 0(R3)

MUL R2, R1, R1

ST R2, 0(R3)

ADD R3, R3, 4

BLT R3, R4, LOOP

24

Useful work

Loop overhead

 7 cycles 

per iteration



The problem with loops 

 Consider the following code:

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}

 VLIW assembly (1 ALU, 1 LD/ST; 2-cycles)

LOOP: NOP LD R1, 0(R3)

NOP NOP

MUL R2, R1, R1 NOP

ADD R,3 R,3 4 NOP

BLT R3, R4, LOOP ST R2, -4(R3)

25

Useful workLoop overhead

 5 cycles 

per iteration



Amortize overheads by unrolling loops

 Key idea is to schedule the following code instead:

for (int i = 0; i < N; i+=4) {

b[i+0] = b[i+0] * b[i+0];

b[i+1] = b[i+1] * b[i+1];

b[i+2] = b[i+2] * b[i+2];

b[i+3] = b[i+3] * b[i+3];

}

Loop unrolling
 Larger scheduling block

 Better schedule
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Amortize overheads by unrolling loops

 VLIW assembly

LOOP: NOP LD R1, 0(R9)

NOP LD R3, 4(R9)

MUL R2, R1, R1 LD R5, 8(R9)

MUL R4, R3, R3 LD R7, 12(R9)

MUL R6, R5, R5 ST R2, 0(R9)

MUL R8, R7, R7 ST R4, 4(R9)

ADD R9, R9, 16 ST R6, 8(R9)

BLT R9, R10 LOOP ST R8, -4(R9)
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Useful workLoop overhead

 2 cycles 

per iteration



Correctness of loop unrolling

 Is this transformation legal?

for (int i = 0; i < N; i++) {

b[i] = b[i] * b[i];

}

for (int i = 0; i < N; i+=4) {

b[i+0] = b[i+0] * b[i+0];

b[i+1] = b[i+1] * b[i+1];

b[i+2] = b[i+2] * b[i+2];

b[i+3] = b[i+3] * b[i+3];

}
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Correctness of loop unrolling

 Instead, schedule the following code:

int i;

for (i = 0; i+3 < N; i+=4) {

b[i+0] = b[i+0] * b[i+0];

b[i+1] = b[i+1] * b[i+1];

b[i+2] = b[i+2] * b[i+2];

b[i+3] = b[i+3] * b[i+3];

}

for (; i < N; i++) {

b[i] = b[i] * b[i];

}
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Loop unrolling summary

 Advantages

 Reduces loop overhead

 Improves code schedule within loop

 (eg, hiding MUL latency in example)

 Disadvantages

 Increases code size

 Less effective on loops with internal branches

 Can use predication … more on this later
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Can we do better?

 VLIW assembly (ALU + LD/ST)

LOOP: NOP LD R1, 0(R9)

NOP LD R3, 4(R9)

MUL R2, R1, R1 LD R5, 8(R9)

MUL R4, R3, R3 LD R7, 12(R9)

MUL R6, R5, R5 ST R2, 0(R9)

MUL R8, R7, R7 ST R4, 4(R9)

ADD R9, R9, 16 ST R6, 8(R9)

BLT R9, R10 LOOP ST R8, -4(R9)

32

Useful workLoop overhead

 2 cycles 

per iteration

Not in this case – LD/ST unit is at 100% utilization



Can we do better?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R9) NOP

NOP LD R3, 4(R9) NOP

MUL R2, R1, R1 LD R5, 8(R9) NOP

MUL R4, R3, R3 LD R7, 12(R9) ST R2, 0(R9)

MUL R6, R5, R5 NOP ST R4, 4(R9)

MUL R8, R7, R7 ADD R9, R9, 16 ST R6, 8(R9)

NOP BLT R9, R10, LOOP ST R8, 12(R9)

33

Useful workLoop overhead

 7/4 cycles 

per iteration



Can we do better?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R31) NOP

NOP LD R3, 4(R31) NOP

MUL R2, R1, R1 LD R5, 8(R31) NOP

MUL R4, R3, R3 LD R7, 12(R31) ST R2, 0(R31)

MUL R6, R3, R3 LD R9, 12(R31) ST R4, 4(R31)

MUL R8, R3, R3 LD R11, 12(R31) ST R6, 8(R31)

MUL R10, R3, R3 LD R13, 12(R31) ST R8, 12(R31)

MUL R12, R3, R3 LD R15, 12(R31) ST R10, 16(R31)

MUL R14, R5, R5 NOP ST R12, 20(R31)

MUL R16, R7, R7 ADD R31, R31, 32 ST R14, 24(R31)

NOP BLT R31, R10, LOOP ST R16, -4(R31)
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Useful workLoop overhead

 11/8 cycles 

per iteration

…but code & 

register bloat



Can we do better than unrolling?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R31) NOP

NOP LD R3, 4(R31) NOP

MUL R2, R1, R1 LD R5, 8(R31) NOP

MUL R4, R3, R3 LD R7, 12(R31) ST R2, 0(R31)

MUL R6, R3, R3 LD R9, 12(R31) ST R4, 4(R31)

MUL R8, R3, R3 LD R11, 12(R31) ST R6, 8(R31)

MUL R10, R3, R3 LD R13, 12(R31) ST R8, 12(R31)

MUL R12, R3, R3 LD R15, 12(R31) ST R10, 16(R31)

MUL R14, R5, R5 NOP ST R12, 20(R31)

MUL R16, R7, R7 ADD R31, R31, 32 ST R14, 24(R31)

NOP BLT R31, R10, LOOP ST R16, -4(R31)

35

Useful workLoop overhead

Ramp-up & 

ramp-down 

overhead



Can we do better than unrolling?

 VLIW assembly (3-wide)

LOOP: NOP LD R1, 0(R31) NOP

NOP LD R3, 4(R31) NOP

MUL R2, R1, R1 LD R5, 8(R31) NOP

MUL R4, R3, R3 LD R7, 12(R31) ST R2, 0(R31)

MUL R6, R3, R3 LD R9, 12(R31) ST R4, 4(R31)

MUL R8, R3, R3 LD R11, 12(R31) ST R6, 8(R31)

MUL R10, R3, R3 LD R13, 12(R31) ST R8, 12(R31)

MUL R12, R3, R3 LD R15, 12(R31) ST R10, 16(R31)

MUL R14, R5, R5 NOP ST R12, 20(R31)

MUL R16, R7, R7 ADD R31, R31, 32 ST R14, 24(R31)

NOP BLT R31, R10, LOOP ST R16, -4(R31)

36

Useful workLoop overhead

Ramp-up & 

ramp-down 

overhead

Perfect 

efficiency

Goal: Maintain peak efficiency, w/out ramp-up/down
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Software Pipelining

 Idea: Move instructions across iterations of the loop

 Very large improvements in running time are possible

 E.g., 5-wide VLIW
LD R1, 0(R9) NOP ADD R9, R9, 4

NOP NOP NOP

LD R1, 4(R9) MUL R2, R1, R1 ADD R9, R9, 4

NOP SUB R10, R10, 4 BGE R9, R10, END

LOOP: { LD R1, 0(R9)

MUL R2, R1, R1

ST R2, -8(R9)

ADD R9, R9, 4

BLT R9, R10, LOOP }

END: NOP NOP NOP

NOP MUL R2, R1, R1 ST R2, -4(R9)

NOP NOP NOP

NOP NOP ST R2, 0(R9)

Current iteration

One iteration ago

Two iterations ago
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Software Pipelining

 Idea: Move instructions across iterations of the loop

 Very large improvements in running time are possible

 E.g., 5-wide VLIW
LD R1, 0(R9) NOP ADD R9, R9, 4

NOP NOP NOP

LD R1, 4(R9) MUL R2, R1, R1 ADD R9, R9, 4

NOP SUB R10, R10, 4 BGE R9, R10, END

LOOP: { LD R1, 0(R9)

MUL R2, R1, R1

ST R2, -8(R9)

ADD R9, R9, 4

BLT R9, R10, LOOP }

END: NOP NOP NOP

NOP MUL R2, R1, R1 ST R2, -4(R9)

NOP NOP NOP

NOP NOP ST R2, 0(R9)

Perfect 

efficiency

 1 cycle 

per iteration
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Goal of SP

 Increase distance between dependent operations by 
moving destination operation to a later iteration

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d  d + 4

Assume all have latency of 2

A B C D
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Can we decrease the latency?

 Lets unroll

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d  d + 4
A1: a  ld [d]
B1: b  a * a
C1: st [d], b
D1: d  d + 4

A B C D A1 B1 C1 D1
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Rename variables

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d  d1 + 4

A B C D A1 B1 C1 D1
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Schedule

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d  d1 + 4

A

B

C

D

A1

B1

C1

D1

A B C D1

D A1 B1 C1
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Unroll Some More

A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d2  d1 + 4
A2: a2  ld [d2]
B2: b2  a2 * a2
C2: st [d2], b2
D2: d  d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D2

A B C D2

D A1 B1 C1

D1 A2 B2 C2
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Unroll Some More
A: a  ld [d]
B: b  a * a
C: st [d], b
D: d1  d + 4
A1: a1  ld [d1]
B1: b1  a1 * a1
C1: st [d1], b1
D1: d2  d1 + 4
A2: a2  ld [d2]
B2: b2  a2 * a2
C2: st [d2], b2
D2: d  d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D2

A3

B3

C3
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One More Time

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3
A B C

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D3 A4 B4 C4

D2

A3

B3

C3

A4

B4

C4
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Can Rearrange

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3
A B C

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D3 A4 B4 C4

D2

A3

B3

C3

A4

B4

C4
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Rearrange

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D2

A3

B3

C3
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Rearrange

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3

D A1 B1 C1

D1 A2 B2 C2

D2 A3 B3 C3

D2

A3

B3

C3
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SP Loop
A: a  ld [d]
B: b  a * a
D: d1  d + 4
A1: a1  ld [d1]
D1: d2  d1 + 4

C: st [d], b
B1: b1  a1 * a1
A2: a2  ld [d2]
D2: d  d2 + 4

B2: b2  a2 * a2
C1: st [d1], b1
D3: d2  d1 + 4
C2: st [d2], b2

A B C C C D3

D A1 B1 B1 B1 C1

D1 A2 A2 A2 B2 C2

D2 D2 D2

Prolog

Body

Epilog
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Goal of Software Pipelining

 Increase distance between dependent operations by 
moving destination operation to a later iteration

A

B

C

dependencies in 
initial loop

A

B

C

iteration i i+1 i+2

after SP
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Goal of Software Pipelining

 Increase distance between dependent operations by 
moving destination operation to a later iteration

A

B

C

dependencies in 
initial loop

A

B

C

iteration i i+1 i+2

after SP
B’’

C’ C’’

A’ A’’

B’
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Goal of Software Pipelining

 Discover ILP across iterations!

A0

A1 B0

A2 B1 C0

A3 B2 C1

B3 C2

C3

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci
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Example

Assume operating on a infinite wide machine

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

Prolog

epilog

loop body
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Loop Unrolling vs. Software Pipelining

For SuperScalar or VLIW

 Loop Unrolling reduces loop overhead

 Software Pipelining reduces fill/drain

 Best is if you combine them 

Software Pipelining

Time

Loop Unrolling



More complicated SP example

 Functional units

 1x LD – 2 cycles

 1x FP – add 1 cycle, multiply 2 cycles

 2x Integer – ALU 1 cycle, branch 1 cycle

 Code:
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double sum_array(int N, double *A){

int sum = 0;

for(int i=0; i<N; i++){

sum += A[i];

}

}



More complicated SP example

 Functional units

 1x LD – 2 cycles

 1x FP – add 1 cycle, multiply 2 cycles

 2x Integer – ALU 1 cycle, branch 1 cycle

 Software pipelined:

57

INT1 INT2 FP MEM

LD F1  0(R1)

LD F2  8(R1)

R1  R1+16 R0  R0 - 2 F0  F0 + F1 LD F1  16(R1)

BNEQ LOOP F0  F0 + F2 LD F2  8(R1)

F0  F0 + F1

F0  F0 + F2

LOOP:



Software Pipelining Approaches

 The first serious approach to software pipelining was 
presented by Aiken & Nicolau.

 Aiken’s 1988 Ph.D. thesis.

 Impractical as it ignores resource hazards (focusing only 
on data-dependence constraints).

 “Iterative Modulo Scheduling” Rau MICRO’94

 Addresses resource constraints

 Iterate over different loop lengths until one schedules 
successfully

 Compute loop lower/upper bounds from required & available 
resources
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TRACE SCHEDULING

59



Extending the scheduling domain

 Basic block is too small to get any real parallelism

 Recall: 88% of OOO benefit from speculation 

larger scheduling window [MTZ’13]

 How to extend the basic block?

 Why do we have basic blocks in the first place?

 Loops

 Loop unrolling

 Software pipelining

 Non-loops

 Will almost always involve some speculation

 Thus profiling may be very important
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Safety and Legality in Code Motion

 Two characteristics of speculative code motion:

 Safety: whether or not spurious exceptions may occur

 Legality: whether or not result will be always correct

 Four possible types of code motion:

61

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3



Code Movement Constraints

 Downward

 When moving an operation from a BB to one of its dest BB’s,

 all the other dest basic blocks should still be able to use the result 
of the operation

 the other source BB’s of the dest BB should not be disturbed

 Upward

 When moving an operation from a BB to its source BB’s

 register values required by the other dest BB’s must not be 
destroyed

 the movement must not cause new exceptions
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Trace Scheduling

 Trace: A frequently executed path in the control-flow graph 
(has multiple side entrances and multiple side exits)

 Idea: Find independent operations within a trace to pack 
into VLIW instructions. 

 Traces determined via profiling

 Compiler adds fix-up code for correctness (if a side entrance 
or side exit of a trace is exercised at runtime, corresponding 
fix-up code is executed)
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Trace Scheduling Idea
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Trace Scheduling (II)

 There may be conditional branches from the middle of the 
trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances).

 These control-flow transitions are ignored during trace 
scheduling.

 After scheduling, fix-up/bookkeeping code is inserted to 
ensure the correct execution of off-trace code.

 Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981. 
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Trace Scheduling (III)
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Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

What bookkeeping is required when Instr 1

is moved below the side entrance in the trace?



Trace Scheduling (IV)
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Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

Instr 3

Instr 4



Trace Scheduling (V)
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Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

What bookkeeping is required when Instr 5

moves above the side entrance in the trace?



Trace Scheduling (VI)
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Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

Instr 5



Trace Scheduling Fixup Code Issues

 Sometimes need to copy instructions more than once to 
ensure correctness on all paths (see C below)
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A

B

C

D

E

X

Y

D

B

E

A

C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB

C

D Y

Correctness

C’’’



Trace Scheduling Overview

 Trace Selection

 select seed block (the highest frequency basic block)

 extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)

backward (predecessor of the first block of the trace)

 don’t cross loop back edge

 bound max_trace_length heuristically

 Trace Scheduling

 build data precedence graph for a whole trace

 perform list scheduling and allocate registers

 add compensation code to maintain semantic correctness

 Speculative Code Motion (upward)

 move an instruction above a branch if safe
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Trace Scheduling Example (I)
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beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6
fsub  f2, f3, f7

st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out



Trace Scheduling Example (I)
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fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (II)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (III)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code



Trace Scheduling Example (IV)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions



Trace Scheduling Example (V)
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fdiv  f1,  f2,  f3

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5

ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6



Trace Scheduling Tradeoffs

 Advantages

+ Enables the finding of more independent instructions  fewer 

NOPs in a VLIW instruction

 Disadvantages

-- Profile dependent 

-- What if dynamic path deviates from trace  lots of NOPs in the 

VLIW instructions

-- Code bloat and additional fix-up code executed

-- Due to side entrances and side exits

-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches

-- Unbiased branches  smaller traces  less opportunity for 

finding independent instructions
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Superblock Scheduling

 Trace: multiple entry, multiple exit block

 Superblock: single-entry, multiple exit block

 A trace with side entrances are eliminated

 Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces

+ Eliminates “difficult” bookkeeping due to side entrances

79
Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.



Superblock example
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opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common 

Subexpression Elimination

opC’: mul r3,r2,3



Superblock Scheduling Shortcomings

-- Still profile-dependent

-- No single frequently executed path if there is an unbiased 
branch

-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed

-- Due to side exits
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Hyperblock Scheduling

 Idea: Use predication support to eliminate unbiased branches 
and increase the size of superblocks

 Hyperblock: A single-entry, multiple-exit block with internal 
control flow eliminated using predication (if-conversion)

 Advantages

+ Reduces the effect of unbiased branches on scheduled block size

 Disadvantages

-- Requires predicated execution support

-- All disadvantages of predicated execution 
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Hyperblock Formation (I)
 Hyperblock formation

1. Block selection

2. Tail duplication

3. If-conversion

 Block selection

 Select subset of BBs for inclusion in HB

 Difficult problem

 Weighted cost/benefit function

 Height overhead

 Resource overhead

 Dependency overhead

 Branch elimination benefit

 Weighted by frequency

 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 
Hyperblock,” MICRO 1992.
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10



Hyperblock Formation (II)
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation



Hyperblock Formation (III)

85

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches



WHAT ABOUT MEMORY?
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Non-Faulting Loads and Exception Propagation

 ld.s fetches speculatively from memory

i.e. any exception due to ld.s is suppressed

 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 
branch is taken (to execute some compensation code)
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inst 1

inst 2

….

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1

inst 2

….

br

chk.s r1

use=r1

…. ld r1=[a]

br



Non-Faulting Loads and Exception Propagation in IA-64

 Load data can be speculatively consumed prior to check

 “speculation” status is propagated with speculated data

 Any instruction that uses a speculative result also becomes speculative 
itself (i.e. suppressed exceptions)

 chk.s checks the entire dataflow sequence for exceptions

88

inst 1

inst 2

….

br

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1 

inst 2

use=r1

….

br

chk.s use…. ld r1=[a]

use=r1

br



Aggressive ST-LD Reordering in IA-64

 ld.a starts the monitoring of any store to the same address as the 
advanced load

 If no aliasing has occurred since ld.a, ld.c is a NOP

 If aliasing has occurred, ld.c re-loads from memory
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inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

….

st [?]

….

ld.c r1=[x]

use=r1

st[?]



Aggressive ST-LD Reordering in IA-64
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inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

use=r1

….

st [?]

….

chk.a X

….

st[?]

ld r1=[a]

use=r1



Summary and Questions

 Trace, superblock, hyperblock, block-structured ISA

 How many entries, how many exits does each of them have?

 What are the corresponding benefits and downsides?

 What are the common benefits?

 Enable and enlarge the scope of code optimizations

 Reduce fetch breaks; increase fetch rate

 What are the common downsides?

 Code bloat (code size increase)

 Wasted work if control flow deviates from enlarged block’s path
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VLIW Summary

 Heavy reliance on compiler (push RISC to the extreme)

 Compiler algorithms (e.g., software pipelining) have lasting 
impact outside of VLIW

 Is there enough statically knowable parallelism?

 E.g., memory aliasing and branch bias

 What about wasted FUs?  Code bloat?

 Code size is already a big problem with x86 apps!

 Architecture joke: “VLIW is the architecture of the future, 
and always will be.”

 Yet many DSPs are VLIW.  Why?

98



SYSTOLIC ARRAYS
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Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory

 Similar to an assembly line

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Special purpose accelerators/architectures need

 Simple, regular designs (keep # unique parts small and 
regular)

 High concurrency  high performance

 Balanced computation and I/O (memory access)
100



Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

101

Memory: heart

PEs: cells

Memory pulses 

data through 

cells



Systolic Architectures

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear 
and multi-dimensional 

 PE connections can be multidirectional
(and different speed)

 PEs can have local memory and execute kernels (rather 
than a piece of the instruction)
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Systolic Computation Example


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Systolic Computation Example: Convolution
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Systolic Computation: Convolution

y1

w3 w2 w1

x2 x1
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Systolic Computation: Convolution

107

y1

w3 w2 w1

x3 x2 x1



Systolic Computation: Convolution
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y1 y2

w3 w2 w1

x3 x2



Systolic Computation: Convolution
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y1 y2

w3 w2 w1

x4 x3 x2



Systolic Computation: Convolution

110

y1 y2 y3

w3 w2 w1

x4 x3



Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/multiply executions
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TODO: Example relating SP to systolic 

architecture for some computation (maybe 

the convolution)
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 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory  to store partial/temporary results, 

constants

 Leads to stream processing, pipeline parallelism
 More generally, staged execution

113

More Programmability



Pipeline Parallelism

114



File Compression Example
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Why pipeline parallelism in software?

 Pipeline parallelism vs data parallelism

 Why split pipeline stages across PEs?

 No cycle-time benefit like we got in hardware

 Data movement patterns differ

 Pipeline parallelism: move input data between PEs

 Data parallelism: move task code/data between PEs

 Tight feedback loops within single stage

 E.g., compression or encryption

 Appropriate design depends on application
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Systolic Array Summary

 Advantages

 Makes multiple uses of each data item  reduce data fetches

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose  need software, programmer 

support to be a general purpose model
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The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable 
processor

 Attached to a general purpose host machine

 High-level language and optimizing compiler to program the 
systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986. 

 Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987. 
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The WARP Computer 
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Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

s

s
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Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

s

s

resources must 
be within
constraints
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Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

resources must 
be within
constraints

s

s



149

Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

resources must 
be within
constraints

s

s
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Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

s

resources must 
be within
constraints

s

s
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Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

resources must 
be within
constraints

U
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Software Pipelining Goal

 Find the same schedule for each iteration.

 Stagger by iteration initiation interval, s

 Goal: minimize s.

resources must 
be within
constraints

s

modulo resource table



153

Precedence Constraints

 Review: for acyclic scheduling, constraint is just the 
required delay between two ops u, v:
<d(u,v)>

 For an edge, uv, we must have

(v)-(u)  d(u,v)
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Precedence Constraints

 Cyclic: constraint becomes a tuple: <p,d>

 p is the minimum iteration delay
(or the loop carried dependence distance)

 d is the delay

 For an edge, uv, we must have

(v)-(u)  d(u,v)-s*p(u,v)

 p  0

 If data dependence is  

 within an iteration, p=0

 loop-carried across p iter boundaries,  p>0
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Iterative Approach

 Finding minimum S that satisfies the constraints is NP-
Complete.

 Heuristic:

 Find lower and upper bounds for S

 foreach s from lower to upper bound?

 Schedule graph.

 If succeed, done

 Otherwise try again (with next higher s)

 Thus: “Iterative Modulo Scheduling” Rau MICRO’94
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Iterative Approach

 Heuristic:

 Find lower and upper bounds for S

 foreach s from lower to upper bound

 Schedule graph.

 If succeed, done

 Otherwise try again (with next higher s)

 So the key difference:

 AN88 does not assume S when scheduling

 IMS must assume an S for each scheduling attempt to 
understand resource conflicts
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Lower Bounds

 Resource Constraints: SR 

maximum over all resources of # of uses divided by # 
available…

 Precedence Constraints: SE 

max delay over all cycles in dataflow graph

In practice, one is easy, other is hard.

Tim’s secret approach: just use SR as lower bound, then do 
binary search for best S
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Lower Bound on s

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

a

b

c

d

e

f

g
h

j

• Assume 1 ALU and 1 MU
• Assume latency Op or load is 1 cycle

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

Resources => 5 cycles
Dependencies => 3 cycles
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Scheduling data structures

To schedule for initiation interval s:

 Create a resource table with s rows and R columns

 Create a vector, , of length N for n instructions in the 
loop

 [n] = the time at which n is scheduled,
or NONE

 Prioritize instructions by some heuristic

 critical path (or cycle)

 resource critical
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Scheduling algorithm

 Pick an instruction, n

 Calculate earliest time due to dependence constraints
For all x=pred(n), 

earliest = max(earliest, (x)+d(x,n)-s.p(x,n))

 try and schedule n from earliest to (earliest+s-1) 
s.t. resource constraints are obeyed.

 possible twist: deschedule a conflicting node to make 
way for n, maybe randomly, like sim anneal

 If we fail, then this schedule is faulty
(i.e. give up on this s)
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Scheduling algorithm – cont.

 We now schedule n at earliest, I.e., (n) = earliest

 Fix up schedule

 Successors, x, of n must be scheduled s.t.

(x) >= (n)+d(n,x)-s
.
p(n,x), otherwise they are removed 

(descheduled) and put back on worklist.

 repeat this some number of times until either

 succeed, then register allocate

 fail, then increase s
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Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b

<1,1>
<1,1>

<0,1> <0,1>
c

What is IIres?
What is IIrec?

1 1Resources:
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Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b c

Try II = 2

1

Modulo Resource Table:

0

1

0

1
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Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b c

Try II = 2

1

Modulo Resource Table:

1

0

1

0

1



166

Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b

c
Try II = 2

1 1

Modulo Resource Table:

1

0

1

0

1

2
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Simplest Example

for () {

a = b+c

b = a*a

c = a*194

}

a

b

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

earliest a: sigma(c) + delay(c) - 2
= 2+1-2 = 1
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Simplest Example

for () {

a = b+c

b = a*a

c = a*194

} ab

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

earliest b?
scheduled b?
what next?
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Simplest Example

for () {

a = b+c

b = a*a

c = a*194

} a

b

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

3

Lesson: lower bound 
may not be achievable
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Example

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: ?

a

b

c

d

e

f

g
h

j

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>
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Example

for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: c,d,e,a,b,f,j,g,h

a

b

c

d

e

f

g
h

j

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: c,d,e,a,b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

instr 

a

b

c

d

e

f

g

h

j
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: a,b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

instr 

a

b

c 0

d 1

e 2

f

g

h

j
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

a

instr 

a 3

b

c 0

d 1

e 2

f

g

h

j
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

a

b

instr 

a 3

b 4

c 0

d 1

e 2

f

g

h

j
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: e,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

a

b

instr 

a 3

b 4

c 0

d 1

e

f

g

h

j

b causes b->e edge violation
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: e,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c

d

e

a

b

instr 

a 3

b 4

c 0

d 1

e 7

f

g

h

j

e causes e->c edge violation
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c f

d

e

a

b

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g

h

j
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities:j,g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c f

d j

e

a

b

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g

h

j 1
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for i:=1 to N do

a := j  b

b := a  f

c := e  j

d := f  c

e := b  d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities:g,h

a

b

c

d

e

f

g

h

j

s=5

ALU MU

c f

d j

e g

a h

b

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g 7

h 8

j 1
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Creating the Loop

 Create the body from the schedule.

 Determine which iteration an instruction 
falls into

 Mark its sources and dest as belonging 
to that iteration.

 Add Moves to update registers

 Prolog fills in gaps at  beginning

 For each move we will have an 
instruction in prolog, and we fill in 
dependent instructions

 Epilog fills in gaps at end

instr 

a 3

b 4

c 5

d 6

e 7

f 0

g 7

h 8

j 1
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f0 = U[0];

j0 = X[0];

FOR i = 0 to N

f1 := U[i+1]

j1 := X[i+1]

nop

a := j0 ? b

b := a ? f0

c := e ? j0

d := f0 ? c

e := b ? d g: V[i] := b

h: W[i] := d

f0 = f1

j0 = j1
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Conditionals

 What about internal control structure, I.e., conditionals

 Three approaches

 Schedule both sides and use conditional moves

 Schedule each side, then make the body of the conditional a 
macro op with appropriate resource vector

 Trace schedule the loop
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What to take away

 Architecture includes compiler!

 Dependence analysis is very important
(including alias analysis)

 Software pipelining crucial for statically scheduled, but also 
very useful for dynamically scheduled



Multiflow:

An early VLIW 

architecture 

(1987)
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EPIC – Intel IA-64 Architecture

 Gets rid of lock-step execution of instructions within a VLIW 
instruction

 Idea: More ISA support for static scheduling and parallelization

 Specify dependencies within and between VLIW instructions 
(explicitly parallel)

+ No lock-step execution

+ Static reordering of stores and loads + dynamic checking

-- Hardware needs to perform dependency checking (albeit aided by 
software)

-- Other disadvantages of VLIW still exist

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 
2000.
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IA-64 Instructions

 IA-64 “Bundle” (~EPIC Instruction)

 Total of 128 bits

 Contains three IA-64 instructions

 Template bits in each bundle specify dependencies within a 
bundle

\

 IA-64 Instruction

 Fixed-length 41 bits long

 Contains three 7-bit register specifiers

 Contains a 6-bit field for specifying one of the 64 one-bit 
predicate registers
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IA-64 Instruction Bundles and Groups

 Groups of instructions can be 
executed safely in parallel

 Marked by “stop bits”

 Bundles are for packaging

 Groups can span multiple bundles

 Alleviates recompilation need 
somewhat 
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