Vector Computers and
GPUs

15-740 SPRING'18
NATHAN BECKMANN
BASED ON SLIDES BY DANIEL SANCHEZ, MIT

I E———




Today: Vector/GPUs

Focus on throughput, not latency

Programmer/compiler must expose parallel work directly

Works on regular, replicated codes (i.e., data parallel)




Background: Supercomputer Applications

Typical application areas
o Military research (nuclear weapons aka “computational fluid dynamics”, cryptography)

o Scientific research

o Weather forecasting

o Qil exploration

o Industrial design (car crash simulation)
o Bioinformatics

o Cryptography

All involve huge computations on large data sets

In 70s-80s, Supercomputer == Vector Machine



Vector Supercomputers
Epitomized by Cray-1, 1976:

Scalar Unit
o Load/Store Architecture

Vector Extension
o Vector Registers
o Vector Instructions

Implementation
o Hardwired Control

o Highly Pipelined Functional Units
° Interleaved Memory System

> No Data Caches

° No Virtual Memory




Cray-1 (1976)

Single Port
Memory

16 banks of

64-bit words
+

8-bit SECDED

80MW/sec
data
load/store

320MW/sec
instruction
buffer refill

memory bank
cycle 50 ns

o1 Vi V. Mask
64 Etement———2—1 ) V. Length
« V3 . Leng
c Vector Reaisters V4 Vi
VA "A A\ 4 | I\\aylu\-\al =4 V5
V6
<L | FP Add
= S, »| FP Mul
((Ap) +ikm) S1 : ;
= > S2 Sy FP Recip
; S3
A 64 —| o4 S,
—Bo) | T Regd Te s Int Add
) 26 > Int Logic
Int Shift
AQ
((A,) +ijkm) A1 Pop Cnt
¢ A > A2 A.
; A3 ] »
_(A) |64 B' o Iy, A. | Addr Add|
> . AS >
B Regq———& YR P Addr Mul
e A7
—27 . .
*/—|64-bitx16. "L_NIP "L_CIP
4 Instruction ” LIP

Buffers

processor cycle 12.5 ns (80MHz)



Vector Programming Model

/ Scalar Registers
ri5

ro

Vector Registers

\

v1l5

vO

[0]

[1]

[2]

[VLRMAX-1]

Vector Length Register

VLR /




Vector Programming Model

/ Scalar Registers
ri5

ro

Vector Registers

N

<
p

<

Vector Arithmetic
Instructions

ADDV v3, v1, v2

v1l5
vO
[0] [1] [2] [VLRMAX-1]
Vector Length Register  \/LR J
vl \
/ / / / / /
Y IR AEYEAREYAEYERY
[+ O+ I+ I+ I+ I+
v3| ¥ ¥ ¥ ¥ ¥
[0] [1] [VLR-1]
J




Vector Programming Model

/ Scalar Registers Vector Registers \

ri5 v15

r0 vO

[0] [1] [2] [VLRMAX-1]
k Vector Length Register| \/|LR J
f Vector Load and Vector RegiSter \
Store Instructions vi ., . P A
LV v1, r1, r2 i /
— — — /

t R Memor

\_ Base, r1 Stride, r2 -




Vector Code Example

# C code # Scalar Code # Vector Code
for (i=0; i<64; i++) LI R4, 64 LI VLR, 64
C[i] = A[i] + B[i]; loop: LI R4, 4
LD FO, O(R1) LV V1, R1, R4
LD F2, O(R2) LV V2, R2, R4
ADD F4, F2, FO ADDV V3, V1, V2
ST F4, O(R3) SV V3, R3,R4
ADD R1,R1, 8
ADD R2,R2, 8
ADD R3, R3, 8
SUBR4, R4, 1
BNEZ R4, loop

What if we want to execute larger loops than the vector registers?



Vector Stripmining

Problem: Vector registers are finite

Solution: Break loops into chunks that fit into registers, “stripmining”

for

a

= 14
: — A[1]4B[i]; MV VLR, Rl # Do remainder
loop:

‘\\ SUB N, N, Rl

SLL R2, R1, 3 # Multiply by 8

A B C
[]/,[J:R::}{]:}'Rernah1der LV V1, RA # Inner loop using vector
R ADD RA, RA, R2

LV V2, RB

"+ | 64 elements ADD RB, RB, R2
"l ADDV V3, V1, V2

SV V3, RC
ADD RC, RC, R2

\t:>* 64 el t LT R1, 64 # Reset full length
e > sleineie: MV VLR, R1

\\\ 4// BGTZ N, loop # Any more to do?
— E— _/

(1=0,; 1i<N; i++) AND R1, N, 63 # N mod 64
Cl1]

<
= B | -1




Vector Instruction Set Advantages

Compact
o one short instruction encodes N operations

Expressive, tells hardware that these N operations:
o are independent

(o]

use the same functional unit

(o]

access disjoint registers

(o]

access registers in same pattern as previous instructions

o access a contiguous block of memory
(unit-stride load/store)

o access memory in a known pattern
(strided load/store)

Scalable & (somewhat) portable
o can run same code on more parallel pipelines (/anes)



Vector Arithmetic Execution

Use deep pipeline to execute element operations

o Deep pipeline =» Fast clock!
V.V |V
Much simpler pipeline control! 1 121 3
o QOperations are independent = no pipeline hazards
oy
Vector maximizes advantages of pipelining and avoids its downsides \ V L
Six stage multiply pipeline | \\ /¢
V3 <-V1 *V2



Vector Instruction Execution

Vector machine can microarchitecturally vary the number of “lanes”

Execution using Execution using

one pipelined ADDV C,A,B four pipelined
functional unit functional units
A[6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
Voo Voo Voo Voo Voo
| ] | ] ] ] ]
\ C[2] / \ C[8] / \ C[9] / \C[lO] / \C[ll] /
C[O] C[0] C[1] C[2] C[3]



Vector Unit Structure

Gl (e e R e R J——
nl\ | / \¢ | / \¢ | / \¢ | / \¢
\ ! | [ | [ | [ | v,
Vector Y | — | — | —
Registe/i Elements Elements Elements Elements
™ 0, 4,8, .. 1,5,9, .. 2,6,10, .. 3,7, 11, ..

Memory Subsystem




Vector Memory System

Challenge is bandwidth = aggressive banking

Cray-1: 16 banks, 4 cycle bank busy time, 12 cycle latency
o> More on this in GPUs...

] Base Stride
Vector Registers

.
Address v |
Generator +

<«

0/1/{2|3/4/5/6/7/8/9/A/B|C|DE|F

Memory Banks



Vector Chaining

Vector analog of bypassing

LV vl
MULV v3,v1,v2
ADDV v5, v3, v4

N <

w<

Load
Unit

Memory

NP

<




Vector Chaining Advantage

e Without chaining, must wait for last element of result to be
written before starting dependent instruction

e With chaining, can start dependent instruction as soon as first
result appears

Load
Mul

Add



Vector Instruction-Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes

l Load Unit Multiply Unit Add Unit

oo o000

I I ALY yererurepy
time 00000000|asisasldlY e amnnnnnn
0000000 AAAAAAAANEE EEEEE
OlOJO[O[O]===NA AlAAAAA AR E EE N N E®E
OOOOO(L—”-;EIIAAAAAq--‘- EEEEEEER
olojlooloooblaalaalaledd a a e EEEE
olojolololojo/ola/AlAlAlAAlAAlEEE EEEER
AAAAAAA AN EEEEEEE
Instruction EEEEEEEE

issue

Complete 24 operations/cycle while issuing <1 short instruction/cycle



Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
o for (1=0,; 1<N; 1++)
1if (A[1]>0)
Ali] = B[i];

Solution: Add vector mask (or flag) registers
o vector version of predicate registers, 1 bit per element

...and maskable vector instructions
o vector operation becomes NOP at elements where mask bit is clear

Code example:

° CVM # Turn on all elements
LV VA, rA # Load entire A vector
SGTV vA, FO # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask
SV VA, rA # Store A back to memory under mask



Masked Vector Instructions

Simple Implementation Efficient Implementation
— execute all N operations, turn off result — scan mask vector and only execute
writeback according to mask elements with non-zero masks
M[7]=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] MIEI=0 A[7] 8[7]
M[5]=1 A[5] B[5] M[5]= 1\ l
M[4]=1 A[4] B[4] M[4]=1 ¢
M[3]=0 A[3] B[3] M[3]= o\ C[5]
I M[2]=0 | Cl4] /¢

|

| | -
M[2]=0 \ C[2] L EE;}=; \
M[1]=1 | C[1] | i

\ <l-

Write data port
M[0]=0 —l ‘ C[O]

Write Enable  Write data port




Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (1=0; 1<N; 1i++)
Al[1] = B[1] + C[D[1]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector

ADDV vA, vB, vC # Do add

SV vA, rA # Store result



Vector Scatter/Gather

Scatter example:
for (1i=0; 1i<N; 1++)
A[B[1]]++;

Is following a correct translation?
LV vB, rB # Load indices in B wvector
LVI vA, rA, vB # Gather initial A wvalues
ADDV vA, vA, 1 # Increment
SVI vA, rA, vB # Scatter incremented values



Multimedia Extensions

Short vectors added to existing general-purpose ISAs

Initially, 64-bit registers split into 2x32b or 4x16b or 8x8b

Limited instruction set:
> No vector length control

> No strided load/store or scatter/gather
o Unit-stride loads must be aligned to 64-bit boundary

Limitation: Short vector registers
o Requires superscalar dispatch to keep multiply/add/load units busy
o Loop unrolling to hide latencies increases register pressure

Trend towards fuller vector support in microprocessors
> e.g. x86: MMX - SSEx (128 bits) = AVX (256 bits) > AVX-512 (512 bits)



Intel Larrabee Motivation

Design experiment: not a real 10-core chip!

# CPU cores 2 out of order 10 in-order
Instructions per issue 4 per clock 2 per clock
VPU lanes per core 4-wide SSE 16-wide

L2 cache size 4 MB 4 MB
Single-stream 4 per clock 2 per clock

Vector throughput

8 per clock

160 per clock

20 times the multiply-add operations per clock

Data in chart taken from Seiler, L., Carmean, D., et al. 2008. Larrabee: A many-core x86 architecture for visual computing.




Larrabee/Xeon Phi: x86 with vectors

Core/Trteger Pipeline

64 cores w/ short, in-order pipeline

o Pentium core + vectors

Vector Pipeline

4 “hyper”-threads / core
K- [=]

o 288 threads total

o Time-multiplexed, skipping stalled threads H Unified Dsta a0 -
"
o Cannot issue from same thread consecutively  PPF Torced ke I—"h — o o i
Prefetch Bulter Prafatchar

| PF Thread Picker

Separate scalar and vector units and register sets
o Vector unit: 16 x 32-bit ops/clock

|ﬁl‘|-“\l'\l.r‘|!—ﬁﬂ-

Fast access to L1 cache
L1 connects to core’s portion of the L2 cache

Latest Xeon Phi have 72 “wimpy” out-of-order cores



Larrabee/Xeon Phi Vector ISA

Data types: 32-bit integer, 32- and 64-bit floating point

Vector operations
> Two input/one output operations
° Full complement of arithmetic and media operations
o Fused multiply-add (three input arguments)
o Mask registers select lanes to write

o Swizzle the vector elements on register read

Memory access
> Vector load/store including scatter/gather
o Data replication on read from memory

> Numeric type conversion on memory read



Graphics Processing
Units (GPUs)




Why Study GPUs?

GPUs combine two useful strategies to increase efficiency
o Massive parallelism: hide latency with other independent work

o Specialization: optimize architecture for particular workload

All to avoid architectural overheads & scaling limits of 000
=>» More resources available for useful computation

Most successful commodity accelerator
o Tension between performance and programmability

Culmination of many design techniques
o Multicore, vector, superscalar, VLIW, etc



Graphics Processors Timeline
Till mid-90s

> VGA controllers used to accelerate some display functions

Mid-90s to mid-2000s
o Fixed-function accelerators for the OpenGL and DirectX APlIs
o 3D graphics: triangle setup & rasterization, texture mapping & shading

Modern GPUs

o Programmable multiprocessors optimized for data-parallelism

o OpenGL/DirectX and general purpose languages (CUDA, OpenCL, ...)
o Still some fixed-function hardware for graphics (texture, raster ops, ...)
o Converging to vector processors



GPUs in Modern Systems

Discrete GPUs
o PCle-based accelerator

o Separate GPU memory

Integrated GPUs
o CPU and GPU on same die

o Shared main memory and
last-level cache

Pros/cons?

Intel Ivy Bridge, 22nm 160mm? Apple A7, 28nm TSMC, 102mm?



Our Focus

GPUs as programmable multicores
o Vastly different design point than CPUs
o Software model
o Hardware architecture

Good high-level mental model
o GPU = Multicore chip with highly-threaded vector cores

> Not 100% accurate, but helpful as a SW developer

Will use Nvidia programming model (CUDA) and terminology (like Hennessy &
Patterson)



CUDA GPU Thread Mode|

Single-program multiple data (SPMD) model

Thread

Each thread has local memory per-Threa d Lo cal M emory |

Parallel threads packed in blocks

o Access to per-block shared memory Thread Block

o Can synchronize with barrier Ber Block
Sha red Me mory

Grids include independent blocks

Grid0 Seq uence

Vector analog: Program a single lane;
HW dynamically schedules

A
Y

— — — Inter-Grid Synchronization — — — Globa | Me mory
Grid 1

A
Y




Code Example: DAXPY

C Code CUDA Code
/{ Invoke DAXPY /l Invoke DAXPY with 256 threads per block
daxpy(n, 2.0, x, y): __host__
[ DAXPY in C int nblocks = (n+ 255) / 256;
void daxpy(int n, double a, double *x, double *y) daxpy<<<nblocks, 256>>>(n, 2.0, X, y);
{ // DAXPY in CUDA
for (inti=0;1i < n; ++i) —device__
yli] = a*x[i] + y[il; void daxpy(int n. double a, double *x, double *y)
} {

int 1 = blockldx x*blockDim.x + threadldx .x;
if (i < n) y[i] = a*x[i] + y[i];
}

CUDA code launches 256 threads per block

CUDA vs vector terminology:
o Thread =1 iteration of scalar loop (1 element in vector loop)
> Block = Body of vectorized loop (with VL=256 in this example)
o Grid = Vectorizable loop



GPU Terminology

In classical terms,

GPUs are superscalar, vector, multithreaded, multiprocessors

but GPUs have developed their own (confusing) nomenclature...



Vector vs GPU Terminology

Grid

LD.V
MUL.V
ADD.V
STV

LD.V
MUL.V
ADD.V
STV




Vector vs GPU Terminology

GPU/Device

et

LD.V
MUL.V
ADD.V
STV




Vector vs GPU

erminology

Processor, unavailable to other SIMD Processors.

SIMD Lane

Vector Lane

Thread Processor

More descrip- Closestold term  Official CUDA/
Type tive name outsideof GPUs  NVIDIAGPU term  Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
@ Loop up of one or more Thread Blocks (bodies of
5 vectorized loop) that can execute in parallel.
S Body of Body of a Thread Block A vectorized loop executed on & multithreaded
5 Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
2 Vectorized Loop of SIMD instructions. They can communicate via
E Local Memory.
E Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
g SIMD Lane a Scalar Loop corresponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

t“ A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD
§ SIMD Instructions instructions that arc executed on a multithreaded

Instructions SIMD Processor. Results stored depending on a

g _per-cl 1t mask.
§ SIMD Vector Instruction  PTX Instruction A single SIMD instruction executed across SIMD
= Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor ~ Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.

g Thread Block Scalar Processor  Giga Thread Assigns multiple Thread Blocks (bodies of

-5 Scheduler Engine vectorized loop) to multithreaded SIMD

= Processors.

2 SIMD Thread Thread scheduler  Warp Scheduler Hardware unit that schedules and issues threads
@ Scheduler in a Multithreaded of SIMD instructions when they are ready to

B CPU execute; includes a scoreboard to track SIMD
g Thread exccution.

SIMD Lane Vector Lance Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory  Main Memory Global Memory DRAM memory accessible by all multithreaded

v SIMD Processors in a GPU.

2 Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD
.g Memory Local Storage (OS) Lane.

% Local Memory  Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

Registers

Registers

Registers

Registers in a single SIMD Lane allocated across
a full thread block (body of vectorized loop).

[H&P5, Fig 4.25]




Vector vs GPU

erminology

Programming

Compute

Memory

A

A

1

|

Vector term GPU term
Vectorizable loop Grid

Body of (strip-mined) loop Thread block
Scalar loop iteration Thread
Thread of vector instructions Warp

Vector lane

Vector processor (multithreaded)
Scalar processor

Thread scheduler (hw)

Main memory

Private memory

Local memory

Vector lane registers

Core/Thread processor
Streaming processor
Giga thread engine
Warp scheduler

Global memory

Local memory

Shared memory

Thread registers




GPU ISA and Compilation

GPU microarchitecture and instruction set change very frequently

To achieve compatibility:
o Compiler produces intermediate pseudo-assembler language (e.g., Nvidia PTX)

o GPU driver JITs kernel, tailoring it to specific microarchitecture

In practice, little performance portability
o Code is often tuned to specific GPU architecture

o E.g., “Driver updates” for newly released games



GPU Architecture Overview

A highly multithreaded multicore chip

Example: Nvidia Kepler GK110

e 15 cores or streaming
multiprocessors (SMX)

e 1.5MB Shared L2 cache
e 6 memory channels

e Fixed-function logic for
graphics (texture units, raster
ops, ...)

e Scalability = change
number of cores and
memory channels

e Scheduling mostly controlled
by hardware




Zoom In: Kepler Streaming Multiprocessor

SMX

Warp Scheduler
Dispatch Dispatch
+ 3

-

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Dispatch
E 3

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Warp Scheduler

Dispatch
e 2

Dispatch
. 2

Warp Scheduler

Register File (65,536 x 32-bit)

4 4 3 3

Core

Cor

Core

Core

Core

Core

Core

Core

Core

Core

Cor

Core

Core

Core

Core

Core

4+ 3 3+ 3 3

LoistT SFU [Core Core

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

k.

-

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Tex

Tex

Tex

Tex

Dispatch
E 8

Warp Scheduler
Dispatch Dispatch
. 3

-

Execution units

o 192 simple FUs (int and single-
precision FP)

° 64 double-precision FUs
o 32 load-store FUs

o 32 special-function FUs (e.g., sqrt,
sin, cos, ...)

Memory structures
o 64K 32-bit registers

o 64KB data memory, split between
shared memory (scratchpad) and L1

o 48KB read-only data/texture cache

45



Streaming Multiprocessor Execution Overview

Each SM supports 10s of warps (e.g.,

Warp scheduler Scoreboard .
_ Warp No. | Address | SIMD instructions | Operands? 64 in Kepler)
instruction 1 42 Id.global.f64 Ready ) .
e 1 | 4 | mufed | No ° l.e., HW multithreading
3 95 shl.s32 Ready
3 9% add.s32 No
8 11 Id.global.f64 Ready
8 112 ld,glollaal.f64 Ready
- ]
]
[] Instruction register I]
o s e s e IO O O R T O i v e | Multith dine is a GPU’ .
S4ipe % Sdpgdipe I L L [ [ (31| SIMD Lanes ultithreadingis a S main
PRy esy  Multithreadingisa GPU's
R | R | g | ey | R [ g [ ey | g [ g [ g | g | g [ g | e | g [ g atency- 1aing mecnanism
Kx32 | 1Kx32 32 [ 1Kx32 * 32 [1Kx32 | 1K %32 | 1Kx32 | 1K x 32 2] 1K 32 [ 1Kx32 | 1K= 32 1 1Kx32 | 1Kx32 xR
Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Loa Load | Loa
ool ool el Rl ol Rl Bl el el ool el Ryl Rl R Bl e
TR LR L L LY [ R L E T TR LT T E LY LT T
l Address coalescing unit ] [ Interconnection network ]
I }
‘ | ”
o Global
S Memory




Thread Scheduling & Parallelism

In theory, all threads can be independent

For efficiency, 32 threads packed in warps
o Warp: set of parallel threads that execute the same instruction

Photo: Judy Schoonmaker

o Warp = a thread of vector instructions

SIMT multithreaded
instruction scheduler o Warps introduce data parallelism

ime L 1‘, 1T o 1 warp instruction keeps cores busy for multiple cycles
warp 8 instruction 11 | (like vector instructions we saw earlier)

YY Y YV VY YYYyyyyyvy

W Individual threads may be inactive

[ I I I |

warp 3 instruction 95 | o Because they branched differently
R EEEEEEE R

o Equivalent of conditional execution (but implicit)

1 S I I

warp 8 instruction 12 | o Loss of efficiency if not data parallel
YYY YV Y Y YYYYYYY Y Yy
[ I S I I I I B |
warp 3 instruction 96
R Dy, | Software thread blocks mapped to warps

o When HW resources are available

| T




Context Size vs Number of Contexts

SMs support a variable number of thread contexts based on required registers and shared
memory
o Few large contexts = Fewer register spills

o Many small contexts = More latency tolerance
o Choice left to the compiler
o Constraint: All warps of a thread block must be scheduled on same SM

Example: Kepler SMX supports up to 64 warps
o Max: 64 warps @ <= 32 registers/thread
o Min: 8 warps @ 255 registers/thread



Kepler Warp Scheduler & Instruction Dispatch

Scheduling

o 4 schedulers select 1 warp/cycle

o 2 independent instructions issued per warp
o Total throughput =4 * 2 * 32 = 256 ops per cycle

Register scoreboarding
o To track ready instructions

v
E

o Simplified using static latencies from compiler
(ala VLIW)




Conditional Execution & Branch Divergence

Similar to vector masking, but masks are handled internally
o Per-warp stack stores PCs and masks of non-taken paths

On a conditional branch
o Push the current mask onto the stack

o Push the mask and PC for the non-taken path
o Set the mask for the taken path

At the end of the taken path
° Pop mask and PC for the non-taken path and execute

At the end of the non-taken path
o Pop the original mask before the branch instruction

If a mask is all zeros, skip the block



Example: Branch Divergence

if (m !'= 0) { Assume 4 threads/warp,
if (a > b) | initial mask 1111
y = a - b;
} else {
vy = b - a; M=11, 1,0, 0]
} A=[5,4,2,6]
} else {

B=(3,7,3,1]

How efficient is this execution?



Memory Access Divergence

All loads are gathers, all stores are scatters

SM address coalescing unit detects sequential and strided patterns, coalesces memory requests
o Optimizes for memory bandwidth, not latency

Warps stall until all operands ready
o Must limit memory divergence to keep cores busy

o =» Good GPU code requires regular access patterns, even though programming model allows arbitrary
patterns!



Memory System

Within a single SM:

o |nstruction and constant data caches

o Multi-banked shared memory (scratchpad, not cache)
> No inter-SM coherence (unlike, say, Xeon Phi)

GPUs now include a small, shared L2 cache
o Reduce energy, amplify bandwidth
o Faster atomic operations

Bandwidth-optimized main memory
° Interleaved addresses
o Aggressive access scheduling & re-ordering
o Lossless and lossy compression (e.g., for textures)



Example: Kepler Memory Hierarchy

Each SM has 64KB of memory
o Split between shared mem and L1 cache

o 16/48, 32/32, 48/16
o 256B per access

48KB read-only data cache (texture memory)

Lt ) e | (D
Liz J 1.5MB shared L2

S2ehe ° Supports synchronization operations (atomicCAS,
atomicADD, ...)

> How many bytes/thread?

GDDR5 main memory

o 384-bit interface (6x 64-bit channels) @ 1.75 GHz (x4
T/cycle)

> 336 GB/s peak bandwidth




Synchronization

Barrier synchronization within a thread block (__syncthreads())
o Tracking simplified by grouping threads into warps

o Counter tracks number of warps that have arrived to barrier

Atomic operations to global memory
o Read-modify-write operations (add, exchange, compare-and-swap, ...)

o Performed at the memory controller or at the L2

Limited inter-block synchronization!
o Can’t wait for other blocks to finish



GPU Kernel Execution

G Transfer input data from CPU to GPU
memory

a Launch kernel (grid)

Wait for kernel to finish
(if synchronous)

a Transfer results to CPU memory

e Data transfers can dominate execution

— Pipeline: Overlap next transfer & current execution
— Integrated GPUs with unified address space = no copies



ardware Scheduling

Stream Queues
Ordered queues of grids

CUDA-Created
Work

Y

Grid Management Unit
Pending & suspended grids

v

1000's of pending grids

A
Two-way link allows
pausing dispatch
y

Work Distributor
Actively dispatching grids

32 Active Grids

HW unit schedules grids on SMX
° Priority-based scheduling

32 active grids
> More queued/paused

Grids can be launched by CPU or
GPU

o Work from multiple CPU threads and
processes




System-Level [ssues

Memory management
° First GPUs had no virtual memory

o Recent support for basic virtual memory (protection among grids, no paging)
o Host-to-device copies with separate memories (discrete GPUs)

Scheduling
o Each kernel is non-preemptive (but can be aborted)

o Resource management and scheduling left to GPU driver, opaque to OS




GPU Programmability

GPUs are historically accelerators, with general-purpose programming added after-the-fact
o QOriginal GPGPU codes hijacked fixed-function graphics pipeline

o CUDA gives C++ interface, but many legacy limitations are still prominent

o E.g., incoherent memory between SMs, costly synchronization, graphics-optimized primitives like
texture memory & FUs

Irregular programs with divergent branches or loads perform badly by design
o GPUs choose not to pay overheads of running these well

Rapid development of better programming features
o Open question: what’s a good consistency model?
o Xeon Phi’s big marketing advantage



Vector/GPU Summary

Force programmers to write (implicitly or explicitly) parallel code

Simple hardware can find lots of work to execute in parallel = more compute per
area/energy/cost

Solves memory latency problem by overlapping it with useful work
o Must architect for memory bandwidth instead of latency

o Less focus on caches, more on banking etc

GPUs are modern incarnation of this old idea



