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Today: Vector/GPUs
Focus on throughput, not latency

Programmer/compiler must expose parallel work directly

Works on regular, replicated codes (i.e., data parallel)
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Background: Supercomputer Applications
Typical application areas
◦ Military research (nuclear weapons aka “computational fluid dynamics”, cryptography)

◦ Scientific research

◦ Weather forecasting

◦ Oil exploration

◦ Industrial design (car crash simulation)

◦ Bioinformatics

◦ Cryptography

All involve huge computations on large data sets

In 70s-80s, Supercomputer == Vector Machine
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Vector Supercomputers
Epitomized by Cray-1, 1976:

Scalar Unit
◦ Load/Store Architecture

Vector Extension
◦ Vector Registers

◦ Vector Instructions

Implementation
◦ Hardwired Control

◦ Highly Pipelined Functional Units

◦ Interleaved Memory System

◦ No Data Caches

◦ No Virtual Memory
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Cray-1 (1976)
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Scalar Registers
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+ + + + + +
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Scalar Registers
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# Scalar Code

LI R4, 64

loop:

LD F0, 0(R1)

LD F2, 0(R2)

ADD F4, F2, F0

ST F4, 0(R3)

ADD R1, R1, 8

ADD R2, R2, 8

ADD R3, R3, 8

SUB R4, R4, 1

BNEZ R4, loop

# Vector Code

LI VLR, 64

LI R4, 4 

LV V1, R1, R4

LV V2, R2, R4

ADDV V3, V1, V2

SV V3, R3, R4

# C code

for (i=0; i<64; i++)

C[i] = A[i] + B[i];
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Vector Code Example

What if we want to execute larger loops than the vector registers?



Problem: Vector registers are finite

Solution: Break loops into chunks that fit into registers, “stripmining”

Vector Stripmining
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AND R1, N, 63 # N mod 64

MV VLR, R1       # Do remainder

loop:

SUB N, N, R1

SLL R2, R1, 3 # Multiply by 8      

LV V1, RA        # Inner loop using vector

ADD RA, RA, R2

LV V2, RB

ADD RB, RB, R2 

ADDV V3, V1, V2

SV V3, RC

ADD RC, RC, R2

LI R1, 64        # Reset full length

MV VLR, R1

BGTZ N, loop   # Any more to do?

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

64 elements



Vector Instruction Set Advantages
Compact

◦ one short instruction encodes N operations

Expressive, tells hardware that these N operations:

◦ are independent

◦ use the same functional unit

◦ access disjoint registers

◦ access registers in same pattern as previous instructions

◦ access a contiguous block of memory
(unit-stride load/store)

◦ access memory in a known pattern 
(strided load/store) 

Scalable & (somewhat) portable

◦ can run same code on more parallel pipelines (lanes)
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Use deep pipeline to execute element operations
◦ Deep pipeline  Fast clock!

Much simpler pipeline control!
◦ Operations are independent no pipeline hazards

Vector maximizes advantages of pipelining and avoids its downsides

V3 <- V1 * V2

Six stage multiply pipeline

Vector Arithmetic Execution
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Vector Instruction Execution
Vector machine can microarchitecturally vary the number of “lanes”
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Challenge is bandwidth aggressive banking

Cray-1: 16 banks, 4 cycle bank busy time, 12 cycle latency
◦ More on this in GPUs…

Vector Memory System
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Vector Chaining
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Vector Chaining Advantage
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• With chaining, can start dependent instruction as soon as first 
result appears
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Mul

AddTime

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction



Vector Instruction-Level Parallelism
Can overlap execution of multiple vector instructions

◦ Example machine has 32 elements per vector register and 8 lanes
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Vector Conditional Execution
Problem: Want to vectorize loops with conditional code:

◦ for (i=0; i<N; i++)
if (A[i]>0)

A[i] = B[i];

Solution: Add vector mask (or flag) registers
◦ vector version of predicate registers, 1 bit per element

…and maskable vector instructions
◦ vector operation becomes NOP at elements where mask bit is clear

Code example:
◦ CVM             # Turn on all elements 

LV vA, rA # Load entire A vector

SGTV vA, F0  # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask
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Masked Vector Instructions
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Efficient Implementation
– scan mask vector and only execute 

elements with non-zero masks

C[1]
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A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off result 

writeback according to mask



Vector Scatter/Gather

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV vA, vB, vC # Do add

SV vA, rA # Store result

23



Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)

A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector

LVI vA, rA, vB # Gather initial A values

ADDV vA, vA, 1  # Increment

SVI vA, rA, vB # Scatter incremented values
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Multimedia Extensions
Short vectors added to existing general-purpose ISAs

Initially, 64-bit registers split into 2x32b or 4x16b or 8x8b

Limited instruction set:
◦ No vector length control

◦ No strided load/store or scatter/gather

◦ Unit-stride loads must be aligned to 64-bit boundary

Limitation: Short vector registers
◦ Requires superscalar dispatch to keep multiply/add/load units busy

◦ Loop unrolling to hide latencies increases register pressure

Trend towards fuller vector support in microprocessors
◦ e.g. x86: MMX  SSEx (128 bits)  AVX (256 bits)  AVX-512 (512 bits)
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Intel Larrabee Motivation

Data in chart taken from Seiler, L., Carmean, D., et al. 2008. Larrabee: A many-core x86 architecture for visual computing.
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# CPU cores 2 out of order 10 in-order

Instructions per issue 4 per clock 2 per clock

VPU lanes per core 4-wide SSE 16-wide

L2 cache size 4 MB 4 MB

Single-stream 4 per clock 2 per clock

Vector throughput 8 per clock 160 per clock

Design experiment: not a real 10-core chip!

20 times the multiply-add operations per clock



Larrabee/Xeon Phi: x86 with vectors
64 cores w/ short, in-order pipeline

◦ Pentium core + vectors

4 “hyper”-threads / core
◦ 288 threads total

◦ Time-multiplexed, skipping stalled threads

◦ Cannot issue from same thread consecutively

Separate scalar and vector units and register sets
◦ Vector unit: 16 x 32-bit ops/clock

Fast access to L1 cache

L1 connects to core’s portion of the L2 cache

Latest Xeon Phi have 72 “wimpy” out-of-order cores
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Larrabee/Xeon Phi Vector ISA
Data types: 32-bit integer, 32- and 64-bit floating point

Vector operations
◦ Two input/one output operations

◦ Full complement of arithmetic and media operations

◦ Fused multiply-add (three input arguments)

◦ Mask registers select lanes to write

◦ Swizzle the vector elements on register read

Memory access
◦ Vector load/store including scatter/gather

◦ Data replication on read from memory

◦ Numeric type conversion on memory read
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Graphics Processing 
Units (GPUs)



Why Study GPUs?
GPUs combine two useful strategies to increase efficiency

◦ Massive parallelism: hide latency with other independent work

◦ Specialization: optimize architecture for particular workload

All to avoid architectural overheads & scaling limits of OoO
More resources available for useful computation

Most successful commodity accelerator
◦ Tension between performance and programmability

Culmination of many design techniques
◦ Multicore, vector, superscalar, VLIW, etc
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Graphics Processors Timeline
Till mid-90s
◦ VGA controllers used to accelerate some display functions

Mid-90s to mid-2000s
◦ Fixed-function accelerators for the OpenGL and DirectX APIs

◦ 3D graphics: triangle setup & rasterization, texture mapping & shading

Modern GPUs
◦ Programmable multiprocessors optimized for data-parallelism

◦ OpenGL/DirectX and general purpose languages (CUDA, OpenCL, …)

◦ Still some fixed-function hardware for graphics (texture, raster ops, …)

◦ Converging to vector processors
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GPUs in Modern Systems
Discrete GPUs

◦ PCIe-based accelerator

◦ Separate GPU memory

Integrated GPUs
◦ CPU and GPU on same die

◦ Shared main memory and
last-level cache

Pros/cons?
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Apple A7, 28nm TSMC, 102mm2Intel Ivy Bridge, 22nm 160mm2

GPU

Nvidia Kepler



Our Focus
GPUs as programmable multicores
◦ Vastly different design point than CPUs

◦ Software model

◦ Hardware architecture

Good high-level mental model
◦ GPU = Multicore chip with highly-threaded vector cores

◦ Not 100% accurate, but helpful as a SW developer

Will use Nvidia programming model (CUDA) and terminology (like Hennessy & 
Patterson)
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CUDA GPU Thread Model
Single-program multiple data (SPMD) model 

Each thread has local memory

Parallel threads packed in blocks
◦ Access to per-block shared memory

◦ Can synchronize with barrier

Grids include independent blocks

Vector analog: Program a single lane;
HW dynamically schedules
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Code Example: DAXPY

CUDA code launches 256 threads per block

CUDA vs vector terminology:

◦ Thread = 1 iteration of scalar loop (1 element in vector loop)

◦ Block = Body of vectorized loop (with VL=256 in this example)

◦ Grid = Vectorizable loop

C Code CUDA Code
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GPU Terminology

In classical terms,

GPUs are superscalar, vector, multithreaded, multiprocessors

but GPUs have developed their own (confusing) nomenclature…
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Grid

Block

Vector vs GPU Terminology
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GPU/Device

SM

Vector vs GPU Terminology
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Vector vs GPU Terminology

[H&P5, Fig 4.25]
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Vector vs GPU Terminology
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Vector term GPU term

Vectorizable loop Grid

Body of (strip-mined) loop Thread block

Scalar loop iteration Thread

Thread of vector instructions Warp

Vector lane Core/Thread processor
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Main memory Global memory
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GPU ISA and Compilation
GPU microarchitecture and instruction set change very frequently

To achieve compatibility:
◦ Compiler produces intermediate pseudo-assembler language (e.g., Nvidia PTX)

◦ GPU driver JITs kernel, tailoring it to specific microarchitecture

In practice, little performance portability
◦ Code is often tuned to specific GPU architecture

◦ E.g., “Driver updates” for newly released games
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GPU Architecture Overview
A highly multithreaded multicore chip

Example: Nvidia Kepler GK110

• 15 cores or streaming 
multiprocessors (SMX)

• 1.5MB Shared L2 cache
• 6 memory channels
• Fixed-function logic for 

graphics (texture units, raster 
ops, …)

• Scalability  change 
number of  cores and 
memory channels

• Scheduling mostly controlled 
by hardware
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Zoom In: Kepler Streaming Multiprocessor

Execution units
◦ 192 simple FUs (int and single-

precision FP)

◦ 64 double-precision FUs

◦ 32 load-store FUs

◦ 32 special-function FUs (e.g., sqrt, 
sin, cos, …)

Memory structures
◦ 64K 32-bit registers

◦ 64KB data memory, split between 
shared memory (scratchpad) and L1

◦ 48KB read-only data/texture cache
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Streaming Multiprocessor Execution Overview

Each SM supports 10s of warps (e.g., 
64 in Kepler)

◦ I.e., HW multithreading

Multithreading is a GPU’s main 
latency-hiding mechanism
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Thread Scheduling & Parallelism

In theory, all threads can be independent

For efficiency, 32 threads packed in warps
◦ Warp: set of parallel threads that execute the same instruction

◦ Warp ≈ a thread of vector instructions

◦ Warps introduce data parallelism 

◦ 1 warp instruction keeps cores busy for multiple cycles
(like vector instructions we saw earlier)

Individual threads may be inactive
◦ Because they branched differently

◦ Equivalent of conditional execution (but implicit)

◦ Loss of efficiency if not data parallel

Software thread blocks mapped to warps
◦ When HW resources are available
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Context Size vs Number of Contexts
SMs support a variable number of thread contexts based on required registers and shared 
memory

◦ Few large contexts  Fewer register spills

◦ Many small contexts More latency tolerance

◦ Choice left to the compiler

◦ Constraint: All warps of a thread block must be scheduled on same SM

Example: Kepler SMX supports up to 64 warps
◦ Max: 64 warps @ <= 32 registers/thread

◦ Min: 8 warps @ 255 registers/thread
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Kepler Warp Scheduler & Instruction Dispatch
Scheduling 

◦ 4 schedulers select 1 warp/cycle

◦ 2 independent instructions issued per warp

◦ Total throughput = 4 * 2 * 32 = 256 ops per cycle

Register scoreboarding
◦ To track ready instructions

◦ Simplified using static latencies from compiler
(a la VLIW)
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Conditional Execution & Branch Divergence
Similar to vector masking, but masks are handled internally

◦ Per-warp stack stores PCs and masks of non-taken paths

On a conditional branch
◦ Push the current mask onto the stack

◦ Push the mask and PC for the non-taken path

◦ Set the mask for the taken path

At the end of the taken path
◦ Pop mask and PC for the non-taken path and execute

At the end of the non-taken path
◦ Pop the original mask before the branch instruction

If a mask is all zeros, skip the block
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Example: Branch Divergence
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if (m != 0) {

if (a > b) {

y = a - b;

} else {

y = b - a;

}

} else {

y = 0;

}

Assume 4 threads/warp,

initial mask 1111

M = [1, 1, 0, 0]

A = [5, 4, 2, 6]

B = [3, 7, 3, 1]

How efficient is this execution?



Memory Access Divergence
All loads are gathers, all stores are scatters

SM address coalescing unit detects sequential and strided patterns, coalesces memory requests
◦ Optimizes for memory bandwidth, not latency

Warps stall until all operands ready
◦ Must limit memory divergence to keep cores busy

◦  Good GPU code requires regular access patterns, even though programming model allows arbitrary 
patterns!
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Memory System
Within a single SM:

◦ Instruction and constant data caches

◦ Multi-banked shared memory (scratchpad, not cache)

◦ No inter-SM coherence (unlike, say, Xeon Phi)

GPUs now include a small, shared L2 cache
◦ Reduce energy, amplify bandwidth

◦ Faster atomic operations

Bandwidth-optimized main memory
◦ Interleaved addresses

◦ Aggressive access scheduling & re-ordering

◦ Lossless and lossy compression (e.g., for textures)
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Example: Kepler Memory Hierarchy
Each SM has 64KB of memory

◦ Split between shared mem and L1 cache
◦ 16/48, 32/32, 48/16

◦ 256B per access

48KB read-only data cache (texture memory)

1.5MB shared L2
◦ Supports synchronization operations (atomicCAS, 

atomicADD, …)

◦ How many bytes/thread?

GDDR5 main memory
◦ 384-bit interface (6x 64-bit channels) @ 1.75 GHz (x4 

T/cycle)

◦ 336 GB/s peak bandwidth
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Synchronization
Barrier synchronization within a thread block (__syncthreads())

◦ Tracking simplified by grouping threads into warps

◦ Counter tracks number of warps that have arrived to barrier

Atomic operations to global memory
◦ Read-modify-write operations (add, exchange, compare-and-swap, …)

◦ Performed at the memory controller or at the L2

Limited inter-block synchronization!
◦ Can’t wait for other blocks to finish
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GPU Kernel Execution

Transfer input data from CPU to GPU 
memory

Launch kernel (grid)

Wait for kernel to finish
(if synchronous)

Transfer results to CPU memory
CPU

Mem

GPU

Mem

3

1

2

4

1

3

2

4
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• Data transfers can dominate execution
– Pipeline: Overlap next transfer & current execution

– Integrated GPUs with unified address space  no copies



Hardware Scheduling

HW unit schedules grids on SMX
◦ Priority-based scheduling

32 active grids
◦ More queued/paused

Grids can be launched by CPU or 
GPU
◦ Work from multiple CPU threads and 

processes
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System-Level Issues
Memory management

◦ First GPUs had no virtual memory

◦ Recent support for basic virtual memory (protection among grids, no paging)

◦ Host-to-device copies with separate memories (discrete GPUs)

Scheduling
◦ Each kernel is non-preemptive (but can be aborted)

◦ Resource management and scheduling left to GPU driver, opaque to OS
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GPU Programmability
GPUs are historically accelerators, with general-purpose programming added after-the-fact

◦ Original GPGPU codes hijacked fixed-function graphics pipeline

◦ CUDA gives C++ interface, but many legacy limitations are still prominent

◦ E.g., incoherent memory between SMs, costly synchronization, graphics-optimized primitives like 
texture memory & FUs

Irregular programs with divergent branches or loads perform badly by design
◦ GPUs choose not to pay overheads of running these well

Rapid development of better programming features
◦ Open question: what’s a good consistency model?

◦ Xeon Phi’s big marketing advantage
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Vector/GPU Summary
Force programmers to write (implicitly or explicitly) parallel code

Simple hardware can find lots of work to execute in parallel more compute per 
area/energy/cost

Solves memory latency problem by overlapping it with useful work
◦ Must architect for memory bandwidth instead of latency

◦ Less focus on caches, more on banking etc

GPUs are modern incarnation of this old idea
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