
Vector Computers and
GPUs
15-740 SPRING’18

NATHAN BECKMANN

BASED ON SLIDES BY DANIEL SANCHEZ, MIT

1

Today: Vector/GPUs
Focus on throughput, not latency

Programmer/compiler must expose parallel work directly

Works on regular, replicated codes (i.e., data parallel)

2

Background: Supercomputer Applications
Typical application areas
◦ Military research (nuclear weapons aka “computational fluid dynamics”, cryptography)

◦ Scientific research

◦ Weather forecasting

◦ Oil exploration

◦ Industrial design (car crash simulation)

◦ Bioinformatics

◦ Cryptography

All involve huge computations on large data sets

In 70s-80s, Supercomputer == Vector Machine

4

Vector Supercomputers
Epitomized by Cray-1, 1976:

Scalar Unit
◦ Load/Store Architecture

Vector Extension
◦ Vector Registers

◦ Vector Instructions

Implementation
◦ Hardwired Control

◦ Highly Pipelined Functional Units

◦ Interleaved Memory System

◦ No Data Caches

◦ No Virtual Memory

5

Cray-1 (1976)

6

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec
data
load/store

320MW/sec
instruction
buffer refill

4 Instruction
Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element
Vector Registers

memory bank
cycle 50 ns

Scalar Registers

r0

r15

Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

Vector Programming Model

8

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15

Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

Vector Programming Model

9

Scalar Registers

r0

r15

Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

Vector Programming Model

10

v1
Vector Load and

Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Scalar Code

LI R4, 64

loop:

LD F0, 0(R1)

LD F2, 0(R2)

ADD F4, F2, F0

ST F4, 0(R3)

ADD R1, R1, 8

ADD R2, R2, 8

ADD R3, R3, 8

SUB R4, R4, 1

BNEZ R4, loop

Vector Code

LI VLR, 64

LI R4, 4

LV V1, R1, R4

LV V2, R2, R4

ADDV V3, V1, V2

SV V3, R3, R4

C code

for (i=0; i<64; i++)

C[i] = A[i] + B[i];

11

Vector Code Example

What if we want to execute larger loops than the vector registers?

Problem: Vector registers are finite

Solution: Break loops into chunks that fit into registers, “stripmining”

Vector Stripmining

12

AND R1, N, 63 # N mod 64

MV VLR, R1 # Do remainder

loop:

SUB N, N, R1

SLL R2, R1, 3 # Multiply by 8

LV V1, RA # Inner loop using vector

ADD RA, RA, R2

LV V2, RB

ADD RB, RB, R2

ADDV V3, V1, V2

SV V3, RC

ADD RC, RC, R2

LI R1, 64 # Reset full length

MV VLR, R1

BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

64 elements

Vector Instruction Set Advantages
Compact

◦ one short instruction encodes N operations

Expressive, tells hardware that these N operations:

◦ are independent

◦ use the same functional unit

◦ access disjoint registers

◦ access registers in same pattern as previous instructions

◦ access a contiguous block of memory
(unit-stride load/store)

◦ access memory in a known pattern
(strided load/store)

Scalable & (somewhat) portable

◦ can run same code on more parallel pipelines (lanes)

13

Use deep pipeline to execute element operations
◦ Deep pipeline  Fast clock!

Much simpler pipeline control!
◦ Operations are independent no pipeline hazards

Vector maximizes advantages of pipelining and avoids its downsides

V3 <- V1 * V2

Six stage multiply pipeline

Vector Arithmetic Execution

14

V
1

V
2

V
3

Vector Instruction Execution
Vector machine can microarchitecturally vary the number of “lanes”

15

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined

functional units

16

Lane

Functional
Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

Vector Unit Structure

Challenge is bandwidth aggressive banking

Cray-1: 16 banks, 4 cycle bank busy time, 12 cycle latency
◦ More on this in GPUs…

Vector Memory System

17

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Vector Chaining

18

Vector analog of bypassing

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Vector Chaining Advantage

19

• With chaining, can start dependent instruction as soon as first
result appears

Load

Mul

Add

Load

Mul

AddTime

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

Vector Instruction-Level Parallelism
Can overlap execution of multiple vector instructions

◦ Example machine has 32 elements per vector register and 8 lanes

20

Complete 24 operations/cycle while issuing <1 short instruction/cycle

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Vector Conditional Execution
Problem: Want to vectorize loops with conditional code:

◦ for (i=0; i<N; i++)
if (A[i]>0)

A[i] = B[i];

Solution: Add vector mask (or flag) registers
◦ vector version of predicate registers, 1 bit per element

…and maskable vector instructions
◦ vector operation becomes NOP at elements where mask bit is clear

Code example:
◦ CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTV vA, F0 # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

21

Masked Vector Instructions

22

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Efficient Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off result

writeback according to mask

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV vA, vB, vC # Do add

SV vA, rA # Store result

23

Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)

A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector

LVI vA, rA, vB # Gather initial A values

ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Scatter incremented values

24

Multimedia Extensions
Short vectors added to existing general-purpose ISAs

Initially, 64-bit registers split into 2x32b or 4x16b or 8x8b

Limited instruction set:
◦ No vector length control

◦ No strided load/store or scatter/gather

◦ Unit-stride loads must be aligned to 64-bit boundary

Limitation: Short vector registers
◦ Requires superscalar dispatch to keep multiply/add/load units busy

◦ Loop unrolling to hide latencies increases register pressure

Trend towards fuller vector support in microprocessors
◦ e.g. x86: MMX  SSEx (128 bits)  AVX (256 bits)  AVX-512 (512 bits)

26

Intel Larrabee Motivation

Data in chart taken from Seiler, L., Carmean, D., et al. 2008. Larrabee: A many-core x86 architecture for visual computing.

28

CPU cores 2 out of order 10 in-order

Instructions per issue 4 per clock 2 per clock

VPU lanes per core 4-wide SSE 16-wide

L2 cache size 4 MB 4 MB

Single-stream 4 per clock 2 per clock

Vector throughput 8 per clock 160 per clock

Design experiment: not a real 10-core chip!

20 times the multiply-add operations per clock

Larrabee/Xeon Phi: x86 with vectors
64 cores w/ short, in-order pipeline

◦ Pentium core + vectors

4 “hyper”-threads / core
◦ 288 threads total

◦ Time-multiplexed, skipping stalled threads

◦ Cannot issue from same thread consecutively

Separate scalar and vector units and register sets
◦ Vector unit: 16 x 32-bit ops/clock

Fast access to L1 cache

L1 connects to core’s portion of the L2 cache

Latest Xeon Phi have 72 “wimpy” out-of-order cores

29

Larrabee/Xeon Phi Vector ISA
Data types: 32-bit integer, 32- and 64-bit floating point

Vector operations
◦ Two input/one output operations

◦ Full complement of arithmetic and media operations

◦ Fused multiply-add (three input arguments)

◦ Mask registers select lanes to write

◦ Swizzle the vector elements on register read

Memory access
◦ Vector load/store including scatter/gather

◦ Data replication on read from memory

◦ Numeric type conversion on memory read

30

Graphics Processing
Units (GPUs)

Why Study GPUs?
GPUs combine two useful strategies to increase efficiency

◦ Massive parallelism: hide latency with other independent work

◦ Specialization: optimize architecture for particular workload

All to avoid architectural overheads & scaling limits of OoO
More resources available for useful computation

Most successful commodity accelerator
◦ Tension between performance and programmability

Culmination of many design techniques
◦ Multicore, vector, superscalar, VLIW, etc

32

Graphics Processors Timeline
Till mid-90s
◦ VGA controllers used to accelerate some display functions

Mid-90s to mid-2000s
◦ Fixed-function accelerators for the OpenGL and DirectX APIs

◦ 3D graphics: triangle setup & rasterization, texture mapping & shading

Modern GPUs
◦ Programmable multiprocessors optimized for data-parallelism

◦ OpenGL/DirectX and general purpose languages (CUDA, OpenCL, …)

◦ Still some fixed-function hardware for graphics (texture, raster ops, …)

◦ Converging to vector processors

33

GPUs in Modern Systems
Discrete GPUs

◦ PCIe-based accelerator

◦ Separate GPU memory

Integrated GPUs
◦ CPU and GPU on same die

◦ Shared main memory and
last-level cache

Pros/cons?

34

Apple A7, 28nm TSMC, 102mm2Intel Ivy Bridge, 22nm 160mm2

GPU

Nvidia Kepler

Our Focus
GPUs as programmable multicores
◦ Vastly different design point than CPUs

◦ Software model

◦ Hardware architecture

Good high-level mental model
◦ GPU = Multicore chip with highly-threaded vector cores

◦ Not 100% accurate, but helpful as a SW developer

Will use Nvidia programming model (CUDA) and terminology (like Hennessy &
Patterson)

35

CUDA GPU Thread Model
Single-program multiple data (SPMD) model

Each thread has local memory

Parallel threads packed in blocks
◦ Access to per-block shared memory

◦ Can synchronize with barrier

Grids include independent blocks

Vector analog: Program a single lane;
HW dynamically schedules

36

Code Example: DAXPY

CUDA code launches 256 threads per block

CUDA vs vector terminology:

◦ Thread = 1 iteration of scalar loop (1 element in vector loop)

◦ Block = Body of vectorized loop (with VL=256 in this example)

◦ Grid = Vectorizable loop

C Code CUDA Code

37

GPU Terminology

In classical terms,

GPUs are superscalar, vector, multithreaded, multiprocessors

but GPUs have developed their own (confusing) nomenclature…

38

Grid

Block

Vector vs GPU Terminology

39

LD.V
MUL.V
ADD.V
ST.V

Thread
LD.V
MUL.V
ADD.V
ST.V

GPU/Device

SM

Vector vs GPU Terminology

40

LD.V
MUL.V
ADD.V
ST.V

Core
Warp

Vector vs GPU Terminology

[H&P5, Fig 4.25]

41

Vector vs GPU Terminology

42

Vector term GPU term

Vectorizable loop Grid

Body of (strip-mined) loop Thread block

Scalar loop iteration Thread

Thread of vector instructions Warp

Vector lane Core/Thread processor

Vector processor (multithreaded) Streaming processor

Scalar processor Giga thread engine

Thread scheduler (hw) Warp scheduler

Main memory Global memory

Private memory Local memory

Local memory Shared memory

Vector lane registers Thread registers

Pr
o

gr
am

m
in

g
C

o
m

p
u

te
M

em
o

ry

GPU ISA and Compilation
GPU microarchitecture and instruction set change very frequently

To achieve compatibility:
◦ Compiler produces intermediate pseudo-assembler language (e.g., Nvidia PTX)

◦ GPU driver JITs kernel, tailoring it to specific microarchitecture

In practice, little performance portability
◦ Code is often tuned to specific GPU architecture

◦ E.g., “Driver updates” for newly released games

43

GPU Architecture Overview
A highly multithreaded multicore chip

Example: Nvidia Kepler GK110

• 15 cores or streaming
multiprocessors (SMX)

• 1.5MB Shared L2 cache
• 6 memory channels
• Fixed-function logic for

graphics (texture units, raster
ops, …)

• Scalability  change
number of cores and
memory channels

• Scheduling mostly controlled
by hardware

44

Zoom In: Kepler Streaming Multiprocessor

Execution units
◦ 192 simple FUs (int and single-

precision FP)

◦ 64 double-precision FUs

◦ 32 load-store FUs

◦ 32 special-function FUs (e.g., sqrt,
sin, cos, …)

Memory structures
◦ 64K 32-bit registers

◦ 64KB data memory, split between
shared memory (scratchpad) and L1

◦ 48KB read-only data/texture cache

45

Streaming Multiprocessor Execution Overview

Each SM supports 10s of warps (e.g.,
64 in Kepler)

◦ I.e., HW multithreading

Multithreading is a GPU’s main
latency-hiding mechanism

46

Thread Scheduling & Parallelism

In theory, all threads can be independent

For efficiency, 32 threads packed in warps
◦ Warp: set of parallel threads that execute the same instruction

◦ Warp ≈ a thread of vector instructions

◦ Warps introduce data parallelism

◦ 1 warp instruction keeps cores busy for multiple cycles
(like vector instructions we saw earlier)

Individual threads may be inactive
◦ Because they branched differently

◦ Equivalent of conditional execution (but implicit)

◦ Loss of efficiency if not data parallel

Software thread blocks mapped to warps
◦ When HW resources are available

47

Context Size vs Number of Contexts
SMs support a variable number of thread contexts based on required registers and shared
memory

◦ Few large contexts  Fewer register spills

◦ Many small contexts More latency tolerance

◦ Choice left to the compiler

◦ Constraint: All warps of a thread block must be scheduled on same SM

Example: Kepler SMX supports up to 64 warps
◦ Max: 64 warps @ <= 32 registers/thread

◦ Min: 8 warps @ 255 registers/thread

48

Kepler Warp Scheduler & Instruction Dispatch
Scheduling

◦ 4 schedulers select 1 warp/cycle

◦ 2 independent instructions issued per warp

◦ Total throughput = 4 * 2 * 32 = 256 ops per cycle

Register scoreboarding
◦ To track ready instructions

◦ Simplified using static latencies from compiler
(a la VLIW)

49

Conditional Execution & Branch Divergence
Similar to vector masking, but masks are handled internally

◦ Per-warp stack stores PCs and masks of non-taken paths

On a conditional branch
◦ Push the current mask onto the stack

◦ Push the mask and PC for the non-taken path

◦ Set the mask for the taken path

At the end of the taken path
◦ Pop mask and PC for the non-taken path and execute

At the end of the non-taken path
◦ Pop the original mask before the branch instruction

If a mask is all zeros, skip the block

50

Example: Branch Divergence

51

if (m != 0) {

if (a > b) {

y = a - b;

} else {

y = b - a;

}

} else {

y = 0;

}

Assume 4 threads/warp,

initial mask 1111

M = [1, 1, 0, 0]

A = [5, 4, 2, 6]

B = [3, 7, 3, 1]

How efficient is this execution?

Memory Access Divergence
All loads are gathers, all stores are scatters

SM address coalescing unit detects sequential and strided patterns, coalesces memory requests
◦ Optimizes for memory bandwidth, not latency

Warps stall until all operands ready
◦ Must limit memory divergence to keep cores busy

◦  Good GPU code requires regular access patterns, even though programming model allows arbitrary
patterns!

53

Memory System
Within a single SM:

◦ Instruction and constant data caches

◦ Multi-banked shared memory (scratchpad, not cache)

◦ No inter-SM coherence (unlike, say, Xeon Phi)

GPUs now include a small, shared L2 cache
◦ Reduce energy, amplify bandwidth

◦ Faster atomic operations

Bandwidth-optimized main memory
◦ Interleaved addresses

◦ Aggressive access scheduling & re-ordering

◦ Lossless and lossy compression (e.g., for textures)

54

Example: Kepler Memory Hierarchy
Each SM has 64KB of memory

◦ Split between shared mem and L1 cache
◦ 16/48, 32/32, 48/16

◦ 256B per access

48KB read-only data cache (texture memory)

1.5MB shared L2
◦ Supports synchronization operations (atomicCAS,

atomicADD, …)

◦ How many bytes/thread?

GDDR5 main memory
◦ 384-bit interface (6x 64-bit channels) @ 1.75 GHz (x4

T/cycle)

◦ 336 GB/s peak bandwidth

55

Synchronization
Barrier synchronization within a thread block (__syncthreads())

◦ Tracking simplified by grouping threads into warps

◦ Counter tracks number of warps that have arrived to barrier

Atomic operations to global memory
◦ Read-modify-write operations (add, exchange, compare-and-swap, …)

◦ Performed at the memory controller or at the L2

Limited inter-block synchronization!
◦ Can’t wait for other blocks to finish

56

GPU Kernel Execution

Transfer input data from CPU to GPU
memory

Launch kernel (grid)

Wait for kernel to finish
(if synchronous)

Transfer results to CPU memory
CPU

Mem

GPU

Mem

3

1

2

4

1

3

2

4

57

• Data transfers can dominate execution
– Pipeline: Overlap next transfer & current execution

– Integrated GPUs with unified address space  no copies

Hardware Scheduling

HW unit schedules grids on SMX
◦ Priority-based scheduling

32 active grids
◦ More queued/paused

Grids can be launched by CPU or
GPU
◦ Work from multiple CPU threads and

processes

58

System-Level Issues
Memory management

◦ First GPUs had no virtual memory

◦ Recent support for basic virtual memory (protection among grids, no paging)

◦ Host-to-device copies with separate memories (discrete GPUs)

Scheduling
◦ Each kernel is non-preemptive (but can be aborted)

◦ Resource management and scheduling left to GPU driver, opaque to OS

59

GPU Programmability
GPUs are historically accelerators, with general-purpose programming added after-the-fact

◦ Original GPGPU codes hijacked fixed-function graphics pipeline

◦ CUDA gives C++ interface, but many legacy limitations are still prominent

◦ E.g., incoherent memory between SMs, costly synchronization, graphics-optimized primitives like
texture memory & FUs

Irregular programs with divergent branches or loads perform badly by design
◦ GPUs choose not to pay overheads of running these well

Rapid development of better programming features
◦ Open question: what’s a good consistency model?

◦ Xeon Phi’s big marketing advantage

60

Vector/GPU Summary
Force programmers to write (implicitly or explicitly) parallel code

Simple hardware can find lots of work to execute in parallel more compute per
area/energy/cost

Solves memory latency problem by overlapping it with useful work
◦ Must architect for memory bandwidth instead of latency

◦ Less focus on caches, more on banking etc

GPUs are modern incarnation of this old idea

61

