
Accelerators and
Architectural
Specialization
15-740 SPRING’18

NATHAN BECKMANN

1

Today: Accelerators & specialization
Trends towards increasing architectural specialization

◦ Advantages

◦ Challenges

◦ Why now?

Accelerator case studies
◦ Deep learning x2

◦ Graphs

Analysis & forecasting
◦ Specialization’s real benefits & how much is needed

◦ What computing may look like in 5-10 years

2

Why specialization?

3

What is specialization?
Architectures designed with a specific class of computations in mind

◦ Optimizations that only make sense for the target applications

◦ Sometimes “fixed-function” – i.e., only run target applications – but usually some configurability /
programmability

◦ Fuzzy where exactly to draw the line

4

Sp
e

ci
al

iz
e

d
G

e
n

e
ral-P

u
rp

o
se

ASICs CPUsVectorGPUs VLIWFPGAsAccelerators

* — Actual order will depend on application

Ex: Modest specialization
IMP: Indirect memory prefetcher [Yu et al, MICRO’15]

for (i = 0; i < N; i++)

if (A[B[i]] > 0)

X += A[B[i]]

IMP prefetches indirect memory references
◦ Detects when LD addresses match data elsewhere in memory

◦ E.g., A[B[i]] is a function of the B[i] in memory

◦ Prefetches B[i] to then prefetch A[B[i]]

Lets indirect memory apps saturate memory bandwidth

…But complex: Requires a reverse TLB to detect access pattern (why?)

Is this specialization or just an optimization? Line is fuzzy…

5

Ex: Moderate specialization
Bespoke Processors for Applications with Ultra-Low Area and Power Constraints

[Cherupalli et al, ISCA’17]

Profile applications and see which gates are used

Remove everything else from your processor

Saves 62% area and 50% power

Fully automatic

Leverages verification & design of a baseline processor

6

Ex: Extreme specialization
“Race logic” [Madhavan et al, ISCA’14]

Compute shortest path through a graph:
◦ Nodes mapped onto PEs

◦ PEs connected via on-chip network

◦ PEs signal each other, adding delay according to
edge weight between source and destination

◦ The delay from source to destination gives the
shortest path in the graph

◦ PEs very simple  lots of PEs & fast

Computation primitive can solve several
problems, e.g., DNA alignment:

7

What is specialization?
BENEFITS / OPPORTUNITIES

Hardwired, low-power control

Custom functional units

Custom & direct communication
◦ Not through registers / cache

Custom memory system

Extreme parallelism using app knowledge

 Energy & area spent on useful work

WEAKNESSES / CHALLENGES

Scope – how many programs can my chip run?
◦ Tension between efficiency & generality

◦ “Amdahl’s Law of specialization” – is it better to
speedup 1% of apps by 100× or all apps by 1%?

System integration
◦ How do users know about & use an accelerator?

◦ Do accelerators & cores communicate?

◦ One-off solutions vs. general framework

Test & design costs – hardware is hard!

9

Why is specialization relevant now?
Technology trends & “dark silicon”

◦ Power not decreasing, transistor counts are

◦  Cannot toggle all transistors anymore

Limits of parallelism & Amdahl’s Law
◦ Getting good performance out of multicore is hard

◦ Specialization gives 100× perf/energy for “free”

Important emerging workloads
◦ Especially deep learning!

◦ Two-three sessions on deep learning per conference in last three years

10

0

5

10

15

20

25

ISCA
2010

ISCA
2011

ISCA
2012

ISCA
2013

ISCA
2014

ISCA
2015

ISCA
2016

ISCA
2017

ISCA
2018

Number of accelerator papers at ISCA

* – its becoming hard to find the real accelerator papers
because everyone says they “accelerate” something now

Case study:
Deep learning (1/2)

11

DianNao: An early DNN accelerators
Series of papers:

◦ DianNao [Chen et al, ASPLOS’14, Best paper]

◦ DaDianNao [Chen et al, MICRO’14, Best paper]

◦ PuDianNao [Liu et al, ASPLOS’15]

◦ ShiDianNao [Du et al, ISCA’15]

DNNs were becoming increasingly important & large
◦ Prior accelerators had focused on compute

◦ DianNao tackled memory challenge

12

𝑥1

Neural networks (NNs)
Simple artificial model of a brain

NN are trained to find the parameters 𝑤𝑖 , 𝑏 that minimize a loss function over some input set

Deep neural networks (DNNs) use many layers with different structure

13

x1

x2

x3

x4

y1

y2

෍⇒𝑓(⋅)

𝑤1

𝑤2

𝑤3

𝑥2

𝑥3

𝑓 ∑𝑥𝑖𝑤𝑖 + 𝑏

Accelerating NNs
Directly represent neurons in hardware

Pros: Simplicity and performance

Cons: NN size limited by area
◦ Time multiplexing possible but expensive

◦ Only used for small perceptrons, not DNNs

14

DianNao architecture
Treat DNNs as dense linear algebra

Simple, microcoded control
◦ Highly specialized “instructions”

Custom datapath for multiply + add + sigmoid

Custom scratchpads for inputs (NBin), outputs (NBout),
and synapses (SB)

◦ No associative lookups, no conflicts

◦ Match line size to tile size for efficiency

◦ DMA issued as needed to rotate values in/out

15

DianNao results

16

110 × avg performance improvement vs SIMD

21 × avg energy improvement vs SIMD
◦ Much smaller improvement than other studies!

◦ Memory dominates energy

DaDianNao added large on-chip memories on
multiple chips to improve energy by 150 ×

3mm2

Case study:
Deep learning (2/2)

17

EIE: Sparse Neural Networks
[Han et al, ISCA’16]

Also focuses on memory bottleneck

Observation: Weights are concentrated at a few values
◦ Use only two bits to represent weight

◦ Need higher precision than this
 use codebook to store 22 bits = 4 higher-precision values

Observation: Most weights are close to zero
◦ Prune near-zero weights
 significantly less memory & compute needed!

◦ Turns NNs into sparse linear algebra computation
 irregular control & memory references

10-49× reduction in memory footprint

18

EIE architecture
Compression lets all weights for a layer fit in on-chip SRAM

 Large energy improvements

Hardware support for codebooks, run-length encoding, + sparse address calculation

19

EIE results
41mm2 @ 45nm (much bigger than DianNao)

Significantly less energy spent on memory accesses

Claims 24,000 × improvement vs CPU and 3,400 × improvement vs GPU w/out compression

20

Other work in deep learning
Industry – Google TPU [Jouppi et al, ISCA’16]

◦ Same architectural principles as DianNao

Convolutional layers: Small weights  compute matters more
◦ Systolic arrays & detailed dataflow analysis, e.g., Eyeriss [Chen, Emer, and Sze; ISCA’16]

◦ Sparse convolutions [Parashar et al, ISCA’17]

FPGAs [Sharma et al, MICRO’16]

Much, much more…

21

Case study:
Graphs

22

Graphicianado
[Ham et al, MICRO’16, Best paper]

Graph analytics is important
◦ E.g., PageRank for web search

Graphs have irregular memory accesses that limit their performance
◦ Little compute to do per vertex

◦ Memory latency-bound  Low bandwidth utilization, cores mostly idle

◦ Very inefficient on big, out-of-order cores

Graphicianado introduces a pipelined accelerator to keep memory busy & reduce energy spent
on compute

23

GraphMat framework
First, loop over edges accumulating
updates

Then, loop over vertices applying
the update

Covers many common algorithms

24

Graphicianado datapath
Custom pipeline for each inner loop of GraphMat

Parallelized across multiple “streams”

Have to deal with some tricky issues
◦ E.g., hazards when vertex update is in-flight

Must re-synthesize design for each algorithm

25

Graphicianado memory system
Graphicianado “slices” graph into many pieces that fit in on-chip SRAM

(Hopefully) lots of reuse within a slice most memory accesses are on-chip

Orchestrates DMA (similar to DianNao)

32MB on-chip scratchpad (eDRAM) with line size customized to algorithm

Other optimizations, e.g., perfect prefetching

Must re-synthesize design for each algorithm

26

Graphicianado evaluation
Synthezised in “proprietary sub-28nm” at 1GHz – no area #’s given

◦ This is unfortunately common for some fabs

1.75 − 6.5 × speedup vs CPU

50 − 100 × energy improvement

All energy goes into the scratchpad

Evaluation does not include main memory!

27

Do we really need
specialization?

28

What are the benefits of specialization?
Domain specialization is generally unnecessary for accelerators [Nowatzki, IEEE Micro’17]

The “five Cs” of specialization:

1. Concurrency

2. Compute

3. Communication

4. Caching

5. Coordination / control

Claim: Most of the ≈ 100 × benefit from specialization goes away when compared against a
better baseline, programmable architecture that includes some of these optimizations.

29

How much specialization is needed?
…but only ≈5% of energy goes towards FUs even on simple cores! [Horowitz, ISSCC’14 Keynote]

Case study: energy-efficiency of a H.264 encoder @ 720p [Hameed et al, ISCA’12]
◦ General-purpose core – 1 ×

◦ VLIW/Vector – 7 ×

◦ Custom, “fused” FUs – 10 ×

◦ “Magic” super-instructions – 180 ×

◦ ASIC – 500 ×

“The inescapable conclusion is that truly efficient designs
will require application-specialized hardware.”

Limitation: Only 16-wide vectors … not necessarily in conflict with [Nowatzki, IEEE Micro’17], or
even with GPUs that get ≫ 10 × efficiency over CPUs

30

Paths forward

31

“Agile” hardware & “Productive” HDLs
Amdahl’s Law & Dark Silicon: The future is not 1000s of conventional cores

If specialized hardware is the way of the future, how do we cope?

Large research effort underway to make hardware easier to build
◦ Chisel from UC Berkeley

◦ PyMTL from Cornell

◦ Huge DARPA funding

OpenSource hardware movement
◦ RISC-V ecosystem from UC Berkeley

◦ OpenPiton from Princeton

…but still a long way to go

32

Reconfigurable architectures
Multicore’s limitations does not necessarily imply rampant specialization

◦ Current SoCs are already heterogeneous: CPUs + GPUs + DSPs

◦ Maybe all we need is a DNN accelerator + one or two other programmable designs?

FPGAs making a comeback

Renewed interest in CGRAs – coarse-grain reconfigurable arrays
◦ Programmable similar to FPGAs

◦ But with more hardened FUs / control / memories for efficiency

◦ E.g., Plasticine [Prabhakar et al, ISCA’17] and Stream-dataflow acceleration [Nowatzki, ISCA’17]

◦ Plasticine has a nice programming story, too, building on a large body of work on domain-specific
language (DSL) for parallel patterns

33

Plasticine
[Prabhakar et al, ISCA’17]

Plasticine maps high-level “parallel patterns” to hardware structures in a CGRA

34

Plasticine
[Prabhakar et al, ISCA’17]

35

Plasticine
[Prabhakar et al, ISCA’17]

36

Each PCU implements a single, low-level parallel pattern
Pipelined SIMD engine w/ communication across lanes
Control via simple state machine w/ counters

Plasticine
[Prabhakar et al, ISCA’17]

37

Each PMU provides SRAM scratch pads & address calculation
(Address calculation in PCUs leaves lanes under-utilized)

Interconnect is statically configured (i.e., per app) to route data
and control signals

Plasticine Evaluation
112mm2 in 28nm @ 1GHz

◦ 48% in compute units (pretty high!)

◦ 30% in memory units

◦ 16% in interconnect

◦ 5% in memory controller

◦ Can change balance of PCUs/PMUs as needed (but only at design time)

Reconfigurability costs estimated 11 × area vs. ASIC design, on average

1.5 − 77 × energy improvement vs. FPGA (depends heavily on how well app maps to FPGA)
◦ More memory available in PMUs

◦ More efficient compute in PCUs

38

Summary: Accelerators & specialization
Several trends point to diminishing returns from general-purpose architectures

Specialization promises ≈ 100 × improvement in perf/energy

…But comes with major challenges
◦ What applications to specialize for?

◦ How to cope with design costs?

◦ Multicores were too hard to use effectively, and somehow accelerators are supposed to help?

Cynical perspective: Moore’s Law made computer science complacent

“Why worry about efficiency? Everything will be 2 × better in a year…”

Moore’s Law is over! Now the hard work begins!

39

