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Today: Accelerators & specialization

Trends towards increasing architectural specialization
o Advantages

o Challenges
o Why now?

Accelerator case studies
° Deep learning x2

o Graphs

Analysis & forecasting
o Specialization’s real benefits & how much is needed

o What computing may look like in 5-10 years



Why specialization?




What is specialization?

Architectures designed with a specific class of computations in mind
o Optimizations that only make sense for the target applications

o Sometimes “fixed-function” —i.e., only run target applications — but usually some configurability /
programmability

o Fuzzy where exactly to draw the line

Specialized
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ASICs Accelerators FPGAs GPUs Vector VLIW CPUs

* — Actual order will depend on application




Ex: Modest specialization

IMP: Indirect memory prefetcher [Yu et al, MICRO’15]

for (1 = 0; 1 < N; 1++)
if (A[B[1]] > 0)
X += A[B[1i]]

IMP prefetches indirect memory references
o Detects when LD addresses match data elsewhere in memory

o E.g., A[B][i]] is a function of the B[i] in memory
o Prefetches BJi] to then prefetch A[B]Ji]]

Lets indirect memory apps saturate memory bandwidth

...But complex: Requires a reverse TLB to detect access pattern (why?)

Is this specialization or just an optimization? Line is fuzzy...



Ex: Moderate specialization

Bespoke Processors for Applications with Ultra-Low Area and Power Constraints

[Cherupalli et al, ISCA’17]
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What is specialization?

BENEFITS / OPPORTUNITIES WEAKNESSES / CHALLENGES

Hardwired, low-power control Scope — how many programs can my chip run?

: : o Tension between efficiency & generalit
Custom functional units o Y . & o y
o “Amdahl’s Law of specialization” —is it better to

Custom & direct communication speedup 1% of apps by 100X or all apps by 1%?
> Not through registers / cache

Custom memory system System integration

Extreme parallelism using app knowledge > How do users know about & use an accelerator?
° Do accelerators & cores communicate?

o One-off solutions vs. general framework
=>» Energy & area spent on useful work

Test & design costs — hardware is hard!



Why is specialization relevant now?

Tech nology trends & “dark silicon” Number of accelerator papers at ISCA
o Power not decreasing, transistor counts are 25
o = Cannot toggle all transistors anymore 20

15
. . . ’ 10
Limits of parallelism & Amdahl’s Law
o Getting good performance out of multicore is hard ) I I I
> Specialization gives 100X perf for “free” = B .
peCIa |Zat|on glves x per /energy or ree ISCA ISCA ISCA ISCA ISCA ISCA ISCA ISCA ISCA

2010 2011 2012 2013 2014 2015 2016 2017 2018

* —its becoming hard to find the real accelerator papers
because everyone says they “accelerate” something now

Important emerging workloads
o Especially deep learning!
o Two-three sessions on deep learning per conference in last three years



Case stuay:
Deep learning (1/2)




DianNao: An early DNN accelerators

Series of papers:
o DianNao [Chen et al, ASPLOS’14, Best paper]

o DaDianNao [Chen et al, MICRO’14, Best paper]
o PuDianNao [Liu et al, ASPLOS’15]
o ShiDianNao [Du et al, ISCA’15]

DNNs were becoming increasingly important & large

> Prior accelerators had focused on compute fﬁg"f“,{}fjﬁ' ’?ﬁ?ﬁ:g ?ﬁ?:‘f"r{}:f:":' Cz‘,’jjfe'
> DianNao tackled memory challenge S hye). IR D=2

Figure 1. Neural network hierarchy containing convolutional,
pooling and classifier layers.



Neural networks (NNs)

Simple artificial model of a brain
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NN are trained to find the parameters w;, b that minimize a loss function over some input set

Deep neural networks (DNNs) use many layers with different structure



Accelerating NNs

Directly represent neurons in hardware }{
’ weight | neuron
output PEASS output
] L layer ' -
Pros: Simplicity and performance 'Y :
hidden .
. .. layer '
Cons: NN size limited by area
o Time multiplexing possible but expensive
o Only used for small perceptrons, not DNNs O |
@ o
_ synapse/

Figure 9. Full hardware implementation of neural networks.



for (int nnn = 0; nnn | Nn; non += Tnn) { # tiling for output neurons;
for (int iii = 0: iii ; Ni: iii +=Tii) { #tiling for input neurons;
for (int nn = nnn; nn ; nnn + Tnn; nn += Tn) {

D I a n N a O a rC h |te Ct u re o fﬂlﬁ}.ﬁ‘_ o on -+ To; i)

tor (int 11 = 11 1§ 11 + Tt 1 +="Ti)
M — Original code —
H for (int n = nn; n < nn + Tn; n++)
Treat DNNs as dense linear algebra for (int 1 11 < 1 Tic 1o
sum[n] += synapse[n][i] = neuronli]:
for (int n = nn; n < nn + Tn; n++)
neuron[n] = sigmoid(sum|n]);

Pr}
Slmple’ microcoded control Figure 5. Pseudo-code for a classifier (here, perceptron) layer
o nghly specialized “instructions” (original loop nest + locality optimization).
e
< > Control Processor (CP)
o . Instructions

Custom datapath for multiply + add + sigmoid

Custom scratchpads for inputs (NBin), outputs (NBout),
and synapses (SB)

> No associative lookups, no conflicts

o Match line size to tile size for efficiency

o DMA issued as needed to rotate values in/out

adepuaiul Alowap

Figure 11. Accelerator.




DianNao results

110 X avg performance improvement vs SIMD

21 X avg energy improvement vs SIMD
o Much smaller improvement than other studies!

> Memory dominates energy

DaDianNao added large on-chip memories on
multiple chips to improve energy by 150 X
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Figure 19. Breakdown of SIMD energy.



Case stuay:
Deep learning (2/2)




EIE: Sparse Neural Networks

[Han et al, ISCA’16]

o weights cluster index
Also focuses on memory bottleneck (32 bit loat) > b vl
0.98| 1.48 3 o | 2|1
Observation: Weights are concentrated at a few values -1.08 cluster | 1 | 1 | 0 | 3
o Use only two bits to represent weight
.y . . P . & -0.91 -1.03 E> 0 3 1 0
o Need higher precision than this
=> use codebook to store 22 PitS = 4 higher-precision values 1.53 | 1.49 3 | 1| 2| 2
befare pruning after pruning

Observation: Most weights are close to zero

° Prune near-zero weights
=» significantly less memory & compute needed!

o Turns NNs into sparse linear algebra computation
=>» irregular control & memory references

pruning
synapses

-——=

pruning
neurons

10-49X reduction in memory footprint



EIE architecture

Compression lets all weights for a layer fit in on-chip SRAM

=» Large energy improvements

Hardware support for codebooks, run-length encoding, + sparse address calculation
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EIE results

41mm? @ 45nm (much bigger than DianNao)

Significantly less energy spent on memory accesses

Claims 24,000 X improvement vs CPU and 3,400 X improvement vs GPU w/out compression

® memory @ clock network
© register ® combinational

SpMat

A0 Al

Ptr_Even Arithm Ptr_Odd

SpMat




Other work in deep learning

Industry — Google TPU [Jouppi et al, ISCA’16]
o Same architectural principles as DianNao

Convolutional layers: Small weights =» compute matters more
o Systolic arrays & detailed dataflow analysis, e.g., Eyeriss [Chen, Emer, and Sze; ISCA’16]

o Sparse convolutions [Parashar et al, ISCA’17]

FPGAs [Sharma et al, MICRO’16]

Much, much more...



Case stuay:
Graphs




Graphicianado

[Ham et al, MICRO’16, Best paper]

Graph analytics is important
o E.g., PageRank for web search

Graphs have irregular memory accesses that limit their performance
o Little compute to do per vertex
> Memory latency-bound =2 Low bandwidth utilization, cores mostly idle
o Very inefficient on big, out-of-order cores

Graphicianado introduces a pipelined accelerator to keep memory busy & reduce energy spent
on compute



GraphMat framework

First, loop over edges accumulating GraphMat Processing Model
updates 1 For each Vertex V
2 For each incoming edge E(U,V) from active vertex U
3 Res <— Process_Edge (E.eight, Uprop, [OPTIONALIVprgp)
4 Viemp «— Reduce(Vienmp, Res)
Then, loop over vertices applying s End
& End
the update 7 For each Vertex V,
] Vorop <— APPLY (Viemp, Vprop, Veonst)
s End

Covers many common algorithms

Algorithms Process_Edge (Eucight, Uprop, |Optional|Vyop)  Reduce (Viemp, Res)  Apply (Viemps Virops Veonst)

PageRank U,,,, Viemp + Res (a4 (1 = a)Viemp)/Vieg
BFS N/A min(Viemyp, lterCount)  Viepp

SSSpP Uprop + Eweight min(Viemp, Res) min(Viemp, Vorop)

CF (Eweight (U, V) = Virop * Uprop)Uprop — A - Vprop  Viemp + Res Vprop + 77 * Viemp

TABLE I: Example mapping of algorithms to programming model. For an edge E = (U, V'), U is the source vertex and V' is the destination vertex.




Processing
Phase

Hardware
Unit

Apply
Phase

Hardware
Unit

Graphicianado datapath

Custom pipeline for each inner loop of GraphMat

I Notify the vertexid of acompleted update ¢
P1: Read P2 : Read P3: Read [Optional] P&: Control F7: Read P9: Write
Active Edae iD?I'aable Edges for P4 :Read DST Atomic Temp Temp
SRC Property 9 given SRC Property Update DST Property DST Property
Sequential Read Edge ID Edge Read Random Custom Atomic Random Custom Random
Vertex Read Table Vertex Read Computation Update Vertex Read Computation Vertex Write
Ifa vertexis up-dEllE'd 4 \ Temporary Destination ///
A1: Read A2: Read Ad: Write AS: Write Vertex Property Update
F\i’ertex TerpVertex P"u"ertex Ac;ive Vertex I:I Sequential Memory Access - No Memory Access
roperty roperty roperty roperty I_l Random Memory Access |:| Random/Sequential Memaory Access

Sequential Sequential Custom Sequential Sequenti.al

Vertex Read Vertex Read Computation Vertex Write Vertex Write

llelized ltiple “ i Source - inati
Parallelized across mu t|p e “streams ource Destination-
—  Oriented ~—  ——_

Have to deal with some tricky issues — s -~

o E.g., hazards when vertex update is in-flight |

Stream 2 NN
Crasshar
Switeh

Must re-synthesize design for each algorithm  seeomsf

Tabla

. P2 : Read
Stream 4], Edga D

Tabla

Fig. 7: Parallel implementation of Graphicionado. This diagram omits the
Apply phase pipeline which is parallelized in a similar manner.



Graphicianado memory system

Graphicianado “slices” graph into many pieces that fit in on-chip SRAM

=0 4 O—0—0.0 O O
-0 0 o

Original Graph Slice 1 Slice 2

Fig. 10: Graph slicing Example.

(Hopefully) lots of reuse within a slice = most memory accesses are on-chip
Orchestrates DMA (similar to DianNao)
32MB on-chip scratchpad (eDRAM) with line size customized to algorithm

Other optimizations, e.g., perfect prefetching

Must re-synthesize design for each algorithm



Graphicianado evaluation

Synthezised in “proprietary sub-28nm” at 1GHz — no area #’s given
o This is unfortunately common for some fabs
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PageRank (PR) Breadth-First Search (BFS) Single Scurce Shortest Path (S55P) Eﬁllapor?éhrg
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Evaluation does not include main memory!

Fig. 17: Graphicionado energy consumption normalized to the energy con-
sumption of Xeon processor running software graph processing framework.
" Custom Computation Energy contributes to less than 1% of the total energy




Do we really neead
specialization?




What are the benefits of specialization?

Domain specialization is generally unnecessary for accelerators [Nowatzki, IEEE Micro’17]

The “five Cs” of specialization:
1. Concurrency

2. Compute

3. Communication

4. Caching

5. Coordination / control

Claim: Most of the = 100 X benefit from specialization goes away when compared against a
better baseline, programmable architecture that includes some of these optimizations.



ow much specialization is needed?

...but only =®5% of energy goes towards FUs even on simple cores! [Horowitz, ISSCC’14 Keynote]

Case study: energy-efficiency of a H.264 encoder @ 720p [Hameed et al, ISCA’12]
o General-purpose core — 1 X

(e}

(e}

o “Magic” super-instructions — 180 X
ASIC—-500 x

[¢]

“The inescapable conclusion is that truly efficient designs
will require application-specialized hardware.”

Limitation: Only 16-wide vectors ... not necessarily in conflict with [Nowatzki, IEEE Micro’17], or
even with GPUs that get > 10 X efficiency over CPUs



Paths forwara




“Agile” hardware & “Productive” HDLs

Amdahl’s Law & Dark Silicon: The future is not 1000s of conventional cores

If specialized hardware is the way of the future, how do we cope?

Large research effort underway to make hardware easier to build
o Chisel from UC Berkeley

o PyMTL from Cornell
o Huge DARPA funding

OpenSource hardware movement
o RISC-V ecosystem from UC Berkeley
o OpenPiton from Princeton

...but still a long way to go



Reconfigurable architectures

Multicore’s limitations does not necessarily imply rampant specialization
o Current SoCs are already heterogeneous: CPUs + GPUs + DSPs

o Maybe all we need is a DNN accelerator + one or two other programmable designs?

FPGAs making a comeback

Renewed interest in CGRAs — coarse-grain reconfigurable arrays
° Programmable similar to FPGAs

o But with more hardened FUs / control / memories for efficiency
o E.g., Plasticine [Prabhakar et al, ISCA’17] and Stream-dataflow acceleration [Nowatzki, ISCA’17]

o Plasticine has a nice programming story, too, building on a large body of work on domain-specific
language (DSL) for parallel patterns



Plasticine

[Prabhakar et al, ISCA’17]

I o

Plasticine maps high-leve

al CUTOFF: = Date(™1939B8-12-01")
2] lineltems: Array[Lineltem] = ...
] before = lineltems.filter{ item => item.date < CUTOFF }

val gquery = before.hashReduce| item =>
IF Key function (k)
(item.returnFlag, item.lineStatus)

}{ item ==
ff Value functlnn (w)
] gquantity = item.gquantity

ral prlce = item.extendedPrice
ral discount = item.discount
ral discountPrice = price =
1 charge =
count = 1
iquantlty, price, discount, discountedPrice, count)

(1.0 — discount)
price = (1.0 - discount) = (1.0 + item.tax)

H {a,b) ==
fﬁ Camblne function (r) - combine using summation
] gquantity = a.guantity + b.guantity

ral prlce = a.price + b.price

ral discount = a.discount + b.discount

ral discountPrice = a.discountPrice + b.discountPrice
count = a.count + b.count

iquantlty, price, discount, discountFrice,

}

count)

Figure 2: Example of using filter (FlatMap) and HashReduce in
a Scala-based language, inspired by TPC-H query 1.

parallel patterns”

to hardware structures in a CGRA

Programming Model

Hardware

Pipelined compute

Compute Parallel pat
P Araflel ptterms SIMD lanes
Intermediate scalars Distributed pipeline registers
On-Chip Tiled, linear accesses Baafked scratchpads
Me Random reads Duplicated scratchpads
mory
T Streaming, linear accesses Banked FIFOs
Mested patterns Dwouible buffering support
(OMf-Chip Linear accesses Burst commands
Memaory Random reads/writes Gather/scatter support
Fold Cross-lane reduction trees
Interconnect )
FlatMap Cross-lane coalescing
. Pattern indices Parallelizable counter chains
Control

NMested patterns

Programmable control

Table 2: Programming model components and their corre-
sponding hardware implementation requirements.




Plasticine

[Prabhakar et al, ISCA’17]
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Figure 5: Plasticine chip-level architecture (actual organization 16 x 8). All three networks have the same structure.
PCU:Pattern Compute Unit, PMU: Pattern Memory Unit, AG: Address Generator, S: Switch Box.




Plasticine

[Prabhakar et al, ISCA’17]
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PCU -~ —_— Figure 3: Pattern Compute Unit (PCU) architecture. We show only 4 stages and 4 SIMD lanes, and omit some control signals.
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Cosisacing Each PCU implements a single, low-level parallel pattern
Unit PRI PCU PMILU
. Pipelined SIMD engine w/ communication across lanes
) e o= C s s} Control via simple state machine w/ counters

Figure 5: Plasticine chip-level architecture {actual organization 16
PCU:Pattern Compute Unit, PMU: Pattern Memory Unit, AG: Ad



Plasticine

[Prabhakar et al, ISCA’17]

Each PMU provides SRAM scratch pads & address calculation

4=9‘ o s . ] (Address calculation in PCUs leaves lanes under-utilized)
] o - B Interconnect is statically configured (i.e., per app) to route data
@E s s s \[— and control signals
-~ L / L K
_— PCU ‘ PMU PCU
ol E D
4=b‘ AG : il gl ' I ::LI,T; i | Scratchpad Scalar
Coalescing ~ E’ _rE.‘ré_. 1 . . Output:
Unit PR
't\ I [ —E' _ Vector
' '-.-'0.:‘.5--' ' X . I N = " Banki Outputs
B : E‘ | Lo E = :ﬁ ZHJ = E Buttering Iy
Figure 5: Plasticine chip-level architecture {actual organization npus Vector ] | —jp . Logic
PCU:Pattern Compute Unit, PMU: Pattern Memory Unit, AG: = FIFO
Control ] L : = 3
o | o

1 Block —:'.. c1

Figure 4: Pattern Memory Unit (PMU) architecture: configurable scratchpad, address calculation datapath, and control.




Plasticine Evaluation

112mm? in 28nm @ 1GHz
o 48% in compute units (pretty high!)

(o]

30% in memory units

(o]

16% in interconnect

[¢]

5% in memory controller
Can change balance of PCUs/PMUs as needed (but only at design time)

[¢]

Reconfigurability costs estimated 11 X area vs. ASIC design, on average

1.5 — 77 X energy improvement vs. FPGA (depends heavily on how well app maps to FPGA)
o More memory available in PMUs

o More efficient compute in PCUs



Summary: Accelerators & specialization

Several trends point to diminishing returns from general-purpose architectures

Specialization promises = 100 X improvement in perf/energy

...But comes with major challenges
o What applications to specialize for?

> How to cope with design costs?
o Multicores were too hard to use effectively, and somehow accelerators are supposed to help?

Cynical perspective: Moore’s Law made computer science complacent

“Why worry about efficiency? Everything will be 2 X better in a year...”

Moore’s Law is over! Now the hard work begins!



