
The Case for a Single-Chip Multiprocessor

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang

Computer Systems Laboratory

Stanford University

Stanford, CA 94305-4070

http:llwww-hydra. stanford.edu

Abstract

Advances in IC processing allow for more microprocessor design

options. The increasing gate density and cost of wires in advanced

integrated circuit technologies require that we look for new ways to

use their capabilities effectively. This paper shows that in advanced

technologies it is possible to implement a single-chip multiproces-

sor in the same area as a wide issue superscalar processor. We find

that for applications with little parallelism the performance of the

two microarchitectures is comparable. For applications with large

amounts of parallelism at both the fine and coarse grained levels,

the multiprocessor microarchitectnre outperforms the superscrdar

architecture by a significant margin. Single-chip multiprocessor

architectures have the advantage in that they offer localized imple-

mentation of a high-clock rate processor for inherently sequential

applications and low latency interprocessor communication for par-

allel applications.

1 Introduction

Advances in integrated circuit technology have fueled microproces-

sor performance growth for the last fifteen years. Each increase in

integration density allows for higher clock rates and offers new

opportunities for microarchitecturrd innovation. Both of these are

required to maintain microprocessor performance growth. Microar-

chitectural innovations employed by recent microprocessors

include multiple instruction issue, dynamic scheduling, speculative

execution and non-blocking caches. In the future, the trend seems to

be towards CPUS with wider instruction issue and support for larger

amounts of speculative execution. In this paper, we argue against

this trend. We show that, due to fundamental circuit limitations and

limited amounts of instruction level parallelism, the superscrrlrrr

execution model will provide diminishing returns in performance

for increasing issue width. Faced with this situation, building a

complex wide issue superscalar CPU is not the most efficient use of

silicon resources. We present the case that a better use of silicon

area is a multiprocessor microarchitecture constructed from simpler

processors.

Permission to make digitalhard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the mpyright notice, the
title of the publication and its date appear, and notice is given that
COpyin(l is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

ASPLOS Vll 10/96 MA, USA
Q 1996 ACM 0-89791 -767-719610010...$3.50

To understand the performance trade-offs between wide-issue pro-

cessors and multiprocessors in a more quantitative way, we com-

pare the performance of a six-issue dynamically scheduled

superscalar processor with a 4 x two-issue multiprocessor. Our

comparison has a number of unique features. First, we accurately

account for and justify the latencies, especially the cache hit time,

associated with the two microarchitectures. Second, we develop

floor-plans and carefully allocate resources to the two microarchi-

tectures so that they require an equal amount of die area. Third, we

evaluate these architectures with a variety of integer, floating point

and multiprogramming applications running in a realistic operating

system environment.

The results show that on applications that cannot be parallelized,

the superscalar microarchitecture performs 3070 better than one

processor of the multiprocessor architecture. On applications with

fine grained thread-level parallelism the multiprocessor microarchi-

tecture can exploit this parallelism so that the superscalar microar-

chitecture is at most 10% better. On applications with large grained

thread-level parallelism and multiprogramming workloads the mul-

tiprocessor microarchitecture performs 50–1 00% better than the

wide superscalar micro architecture.

The remainder of this paper is organized as follows. In Section 2,

we discuss the performance limits of superscalar design from a

technology and implementation perspective. In Section 3, we make

the case for a single chip multiprocessor from an applications per-

spective. In Section 4, we develop floor plans for a six-issue super-

scalar microarchitecture and a 4 x two-issue multiprocessor and

examine their area requirements. We describe the simulation meth-

odology used to compare these two microarchitectures in Section 5,

and in Section 6 we present the results of our performance compar-

ison. Finally, we conclude in Section 7.

2 The Limits of the Superscalar Approach

A recent trend in the microprocessor industry has been the design

of CPUS with multiple instruction issue and the ability to execute

instructions out of program order. This ability, called dynamic

scheduling, first appeared in the CDC 6600 [21]. Dynamic schedul-

ing uses hardware to track register dependencies between instruc-

tions; an instruction is executed, possibly out of program order, as

soon as all of its dependencies are satisfied. In the CDC 6600 the

register dependency checking was done with a hardware structure

called the scoreboard. The IBM 360/9 1 used register renaming to

improve the efficiency of dynamic scheduling using hardware struc-

2

Instruction
Fetch

PInstruction
Fetch &
Decode

AInstruction
Cache

Issue snd
Retirement

R::e~r +

and

Instruction
Issue 4-

Queues

+

@il

c1Data
Cache

Figure 1. A dynamic superscalar CPU

tures called reservation stations [3]. It is possible to design a

dynamically scheduled superscalar microprocessor using reserva-

tion stations; Johnson gives a thorough description of this approach

[13]. However, the most recent implementations of dynamic super-

scalar processors have used a structure similar to the one shown in

Figure 1. Here register renaming between architectural and physical

registers is done explicitly, and instruction scheduling and register

dependency tracking between instructions are performed in an

instruction issue queue. Examples of microprocessors designed in

this manner are the MIPS Technologies R1OOOO [24] and the HP

PA-8000 [14]. In these processors the instruction queue is actually

implemented as multiple instruction queues for different classes of

instructions (e.g. integer, floating point, load/store). The three major

phases of instruction execution in a dynamic superscalar machine

are also shown in Figure 1. They are fetch, issue and execute. In the

rest of thk section we describe these phases and the limiti~tions that

will arise in the design of a very wide instruction issue CPU.

The goal of the fetch phase is to present the rest of the CPU with a

large and accurate window of decoded instructions. Three factors

constrain instruction fetch: mispredicted branches, instruction mis-

alignment, and cache misses. The ability to predict branches cor-

rectly is crucial to establishing a large, accurate window of

instructions. Fortunately, by using a moderate amount of memory

(64Kbit), branch predictors such as the selective branch predictor

proposed by McFarling are able to reduce misprediction rates to

under 590 for most programs [15]. However, good branch predic-

tion is not enough. As Conte pointed out, it is also necessary to

align a packet of instructions for the decoder [7]. When the issue

width is wider than four instructions there is a high probability that

it will be necessary to fetch across a branch for a single packet of

instructions since, in integer programs, one in every five instruc-

tions is a branch [12]. This will require fetching from two cache

lines at once and merging the cache lines together to form a single

packet of instructions. Conte describes a number of methods for

3

achieving this. A technique that divides the instruction cache into

banks and fetches from multiple banks at once is not too expensive

to implement and provides performance that is within 3% of a per-

fect scheme on an 8-wide issue machine. Even with good branch

prediction and alignment a significant cache miss rate will limit the

ability of the fetcher to maintain an adequate window of instruc-

tions. There are still some applications such as large logic simula-

tions, transactions processing and the OS kernel that have

significant instruction cache miss rates even with fairly large 64 KEt

two way set-associative caches [19]. Fortunately, it is possible to

hide some of the instruction cache miss latency in a dynamically

scheduled processor by executing instructions that are already in

the instruction window. Rosenblum et. al. have shown that over

60% of the instruction cache miss latency can be hidden on a data-

base benchmark with a 64KB two way set associative instruction

cache [19]. Given good branch prediction and instruction alignment

it is likely that the fetch phase of a wide-issue dynamic superscalar

processor will not limit performance.

In the issue phase, a packet of renamed instructions is inserted into

the instruction issue queue. An instruction is issued for execution

once all of its operands are ready. There are two ways to implement

renaming. One could use an explicit table for mapping architectural

registers to physical registers, this scheme is used in the R1 0000

[24], or one could use a combination reorder buffer/instruction

queue as in the PA-8000 [14]. The advantage of the mapping table

is that no comparisons are required for register renaming. The dis-

advantage of the mapping table is that the number of access ports

required by the mapping table structure is O x W, where O is the

number of operands per instruction and W is the issue width of the

machine. An eight-wide issue machine with three operands per

instruction requires a 24 port mapping table. Implementing renami-

ng with a reorder buffer has its own set of drawbacks, It requires

n x Q x O x W l-bit comparators to determine which physical reg-

isters should supply operands for a new packet of instructions,

where rr is the number of bits required to encode a register identi-

fier and Q is the size of the instruction issue queue. Clearly, the

number of comparators grows with the size of the instruction queue

and issue width. Once an instruction is in the instruction queue, all

instructions that issue must update their dependencies. This

requires another set of n x Q x O x W comparators. For example, a

machine with eight wide issue, three operand instructions, a 64-

entry instruction queue, and 6-bit comparisons requires 9,216 l-bit

comparators. The net effect of all the comparison logic and encod-

ing associated with the instruction issue queue is that it takes a large

amount of area to implement. On the PA-8000, which is a four-

issue machine with 56 instruction issue queue entries, the instruc-

tion issue queue takes up 20% of the die area. In addition, as issue

widths increase, larger windows of instructions are required to find

independent instmctions that can issue in parallel and maintain the

full issue bandwidth. The result is a quadratic increase in the size of

the instruction issue queue. Moving to the circuit level, the instruc-

tion issue queue uses a broadcast mechanism to communicate the

tags of the instructions that are issued, which requires wires that

span the length of the structure. In future advanced integrated cir-

cuit technologies these wires will have increasingly long delays rel-

ative to the gates that drive them [9]. Given this situation,

ultimately, the instruction issue queue will limit the cycle time of

the processor. For these reasons we believe that the instruction issue

queue will fundamentally limit the performance of wide issue

superscalar machines.

In the execution phase, operand values are fetched from the register

file or bypassed from earlier instructions to execute on the func-

tional units. The wide superscalar execution model will encounter

performance limits in the register file, in the bypass logic and in the

functional units. Wider instruction issue requires a larger window of

instructions, which implies more register renaming. Not only must

the register file be larger to accommodate more renamed registers,

but the number of ports required to satisfy the full instruction issue

bandwidth also grows with issue width. Again, this causes a qua-

dratic increase in the complexity of the register tile with increases

in issue width. Farkas et. al. have investigated the effect of register

file complexity on performance [10]. They find that an eight-issue

machine only performs 20’%0better than a four-issue machine when

the effect of cycle-time is included in the performance estimates,

The complexity of the bypass logic also grows quadratically with

number of execution units; however, a more limiting factor is the

delay of the wires that interconnect the execution units. As far as

the execution units themselves are concerned, the arithmetic func-

tional units can be duplicated to support the issue widtb, but more

ports must be added to the primary data cache to provide the neces-

sary load/store bandwidth. The cheapest way to add ports to the

data cache is by building a banked cache [20], but the added muM-

plexing and control required to implement a banked cache increases

the access time of the cache. We investigate this issue in more detail

in Section 4.2.

3 The Case for a Single-Chip Multiprocessor

The motivation for building a single chip multiprocessor comes

from two sources; there is a technology push and an application

pull. We have already argued that technology issues, especially the

delay of the complex issue queue and multi-port register files, will

limit the performance returns from a wide superscalar execution

model. This motivates the need for a decentralized microarchitec-

ture to maintain the performance growth of microprocessors. From

the applications perspective, the microarchitecture that works best

depends on the amount and characteristics of the parallelism in the

applications.

Wall has performed one of the most comprehensive studies of

application parallelism [22]. The results of his study indicate that

applications fall in two classes. The first class consists of applica-

tions with low to moderate amounts of parallelism; under ten

instructions per cycle with aggressive branch prediction and large,

but not infinite window sizes. Most of these applications are integer

applications. The second class consists of applications with large

amounts of parallelism, greater than forty instructions per cycle

with aggressive branch prediction and large window sizes. The

majority of these applications are floating point applications and

most of the parallelism is in the form of loop-level parallelism.

The application pull towards a single-chip multiprocessor arises

because these two classes of applications require different execu-

tion models. Applications in the first class work best on processors

that are moderately superscalar (2 issue) with very high clock rates

because there is little parallelism to exploit, To make this more con-

crete we note that a 200 MHz MIPS R5000, which is a single issue

machine when running integer programs, achieves a SPEC95 inte-

ger rating which is 70% of the rating of a 200 MHz MIPS R1OOOO,

which is a four-issue machine [6], Both machines have the same

size data and instruction caches, but the R5000 has a blocking data

cache, while the R1OOOOhas a non-blocking data cache. Applica-

tions in the second class have large amounts of parallelism and see

performance benefits from a variety of methods designed to exploit

parallelism such as superscalrrr, VLIW or vector processing. How-

ever, the recent advances in parallel compilers make a multiproces-

sor an efficient and flexible way to exploit the parallelism in these

programs [1]. Single-chip multiprocessors, designed so that the

individual processors are simple and achieve very high clock rates,

will work well on integer programs in the first class. The addition of

low latency communication between processors on the same chip

also allows the multiprocessor to exploit the parallelism of the float-

ing point programs in the second class. In Section 6 we evaluate

the performance of a single-chip multiprocessor for these two

application classes.

There are a number of ways to use a multiprocessor. Today, the

most common use is to execute multiple processes in parallel to

increase throughput in a multiprogramming environment under the

control of a multiprocessor aware operating system. We note that

there are a number of commercially available operating systems

that have this capability (e.g. Silicon Graphics IRIX, Sun Solaris,

Microsoft Windows NT). Furthermore, the increasingly widespread

use of visualization and multimedia applications tends to increase

tbe number of active processes or independent threads on a desktop

machine or server at a particular point in time.

Another way to use a multiprocessor is to execute multiple threads

in parallel that come from a single application. llvo examples are

transaction processing and hand parallelized floating point scien-

tific applications [23]. In this case the threads communicate using

shared memory, and these applications are designed to run on paral-

lel machines with communication latencies in the hundreds of CPU

clock cycles; therefore, the threads do not communicate in a very

tine grained manner. Another example of manually parallelized

applications are fine-grained thread-level integer applications.

Using the results from Wall’s study, these applications exhibit mod-

erate amounts of parallelism when the instruction window size is

very large and the branch prediction is perfect because the parallel-

ism that exists is widely distributed. Due to the large window size

and the perfect branch prediction it will be very difficult for this

parallelism could be extracted with a superscalar execution model.

However, it is possible for a programmer that understands the

nature of the parallelism in the application to parallelize the appli-

cation into multiple threads. The parallelism exposed in this manner

is fine-grained and cannot be exploited by a conventional multipro-

cessor architecture. The only way to exploit this type of parallelism

is with a single-chip multiprocessor architecture.

A third way to use a multiprocessor is to accelerate the execution of

sequential applications without manual intervention; this requires

automatic parallelization technology. Recently, this automatic par-

allelization technology was shown to be effective on scientific

applications [2], but it is not yet ready for general purpose integer

applications. Like the manually parallelized integer applications,

these applications could derive significant performance benefits

from the low-latency interprocessor communication provided by a

single-chip multiprocessor.

4

6.way SS 4x2.way MP

#of CPUS 1 4

Degret srrpcrscalm 6 4x2

#of architectural registers 32int 132fp 4 x 32int 132fp

#of physical registers lrihrt / 160fp 4x40hrt/40fp

#of integer functional units 3 4X1

#of floating pt. functional units 3 4X1

#of loarfk.tore ports 8 (one per bank) 4X1

BTB size 2048 entries 4x512 entries

Retarn stack size 32 entries 4 x 8 entries

Irrstraction issue queue size 128 entries 4 x 8 entries

I cache 32 KB, 2-way S. A. 4 x 8 KB, 2-way S. A.

D cache 32 ICE, 2-way S. A. 4 x 8 KB, 2-way S. A.

LI hit time 2 cycles (4 ns) 1 cycle (2 rrs)

LI cache interleaving 8 banka NIA

Unified L2 cache 256 KB, 2-way S. A. 256 KB, 2-way S. A.

L2 hit time/ L1 penatty 4 cycles (8 ns) 5 cycles (10 ns)

Memory latency / L2 penalty 50 cycles (100 ns) 50 cycles (100 ns)

Table 1. Key characteristics of the two microarchitectures

4 Two Microarchitectures

To compare the wide superscalar and multiprocessor design

approaches, we have developed the microarchitectures for two

machines that will represent the state of the art in processor design

a few years from now. The superscalar microarchitecture (SS) is a

logical extension of the current R1OOOO superscalar design, wid-

ened from the current four-way issue to a six-way issue implemen-

tation. The multiprocessor microarchitecture (MP), is a four-way

single-chip multiprocessor composed of four identical 2-way super-

scalar processors. In order to fit four identical processors cm a die of

the same size, each individual processor is comparable to the Alpha

21064, which became available in 1992 [8].

These two extremely different microarchitectures have nearly iden-

tical die sizes when built in identical process technologies. The pro-

cessor size we select is based upon the kinds of processor chips that

advances in silicon processing technology will allow in the next few

years. When manufactured in a 0.25 Lm process, which should be

possible by the end of 1997, each of the chips will have im area of

430 mm2 — about 30% larger than leading-edge microprocessors

being shipped today. llig represents typical die size growth over

the course of a few years among the largest, fastest microprocessors

[11].

We have argued that the simpler two-issue CPU used in (the multi-

processor microarchitecture will have a higher clock rate than the

six issue CPU; however, for the purposes of this comparison we

have assumed that the two processors have the same clock rate. To

achieve the same clock rate the wide superscalar architecture would

require deeper pipelining due to the large amount of instruction

issue logic in the critical path. For simplicity, we ignore latency

variations between the architectures due to the degree of pipelining.

We assume the clock frequency of both machines is 500 MHz. At

500 MHz the main memory latencies experienced by the processor

are large. We have modeled the main memory as a 50-cycle, 100 ns

delay for both architectures, typical values in a workstation today

with 60 ns DRAMs and 40 ns of delays due to buffering in the

DRAM controller chips [25].

Table 1 shows the key characteristics of the two architectures, We

explain and justify these characteristics in the following sections.

The integer and floating point functional unit result and repeat

Iatencies are the same as the RIOOOO [24]

4.1 6-Way Superscalar Architecture

The 6-way superscalar architecture is a logicrd extension of the cur-

rent R1OOOOdesign. As the floorplarr in F@re 2 and the area break-

down in Table 2 indicate, the logic necessary for out-of-order

instruction issue and scheduling dominates the area of the chip, due

to the quadratic area impact of supporting 6-way instruction issue.

First, we increased the number of ports in the instruction buffers by

50% to support 6-way issue instead of 4-way, increasing the area of

each buffer by about 30-40%. Second, we increased the number of

instruction buffers from 48 to 128 entries so that the processor

examines a larger window of instructions for ILP to keep the execu-

tion units busy. This large instruction window also compensates for

the fact that the simulations do not execute code that is optimized

for a 6-way superscalar machine. The larger instruction window

size and wider issue width causes a quadratic area increase of the

instruction sequencing logic to 3-4 times its original size. Alto-

gether, the logic necessary to handle out-of-order instruction issue

occupies about 120 mm2 — about 30% of the die. In comparison,

the actual execution units only occupy about 70 mm2 — just 18%

of the die is required to build triple R1OOOO execution units in a

0.25 ~m process.

Due to the increased rate at which instructions are issued, we also

enhanced the fetch logic by increasing the size of the branch target

buffer to 2048 entries and the call-return stack to 32 entries. This

increases the branch prediction accuracy of the processor and pre-

5

4 21 mm F

2

Instruction

::ti::: Instruction
Cache

Fetch
(32 KB)

TLB

Inst. Decode & Data
Rename Cache

(32 KB)

z
x
UI

g

h
Reorder Buffer,

Instruction Queues, .~
and Out-of-Order Logic 3

&
m
al
g

Floating Point
Unit

2
v

G

Figure 2. Floorplan for the six-issue dynamic superscalar

microprocessor.

vents the instruction fetch mechanism from becoming a bottleneck

since the 6-way execution engine requires a much higher instruc-

tion fetch bandwidth than the 2-way processors used in the MP

architecture.

The on-chip memory hierarchy is similar to the Alpha 21164 — a

small, fast level one (Ll) cache backed up by a large on-chip level

two (L2) cache. The wide issue width requires the L1 cache to sup-

port wide instruction fetches from the instruction cache and multi-

ple loads from the data cache during each cycle. The two-way set

associative 32 KB L1 data cache is banked eight ways into eight

small, single-ported, independent 4 KB cache banks each of which

handling one access every 2 ns processor cycle. However, the addi-

tional overhead of the bank control logic and crossbar required to

arbitrate between the multiple requests sharing the 8 data cache

banks adds another cycle to the latency of the L1 cache, and

increases the area by 25%. Therefore, our modeled L1 cache has a

hit time of 2 cycles. Backing up the 32 KB L1 caches is a large, uni-

fied, 256 KB L2 cache that takes 4 cycles to access. These latencies

are simple extensions of the times obtained for the L1 caches of

current Alpha microprocessors [4], using a 0.25 ~m process tech-

nology

4.2 4 x 2-way Superscalar Multiprocessor

Architecture

The MP architecture is made up of four 2-way superscalar proces-

sors interconnected by a crossbar that allows the processors to share

the L2 cache. On the die, the four processors are arranged in a grid

with the L2 cache at one end, as shown in Figure 3. Internally, each

of the processors has a register renaming buffer that is much more

limited than the one in the 6-way architecture, since each CPU only

has an 8-entry instruction buffer. We also quartered the size of the

branch prediction mechanisms in the fetch units, to 512 BTB

entries and 8 call-return stack entries. After the area adjustments

caused by these factors are accounted for, each of the four proces-

2 m

>-cache #1 (8K) l-Cache #2 (8K)

External

Intetiace

Processor Processor
#1 #2

6?
x
w

a
n g
Ur(n 2

D-Cache #1 (8K) D-Cache #2 (8K) $
0

D-Cache #3 (8K) D-Cache #4 (8K)
s

G

o.- 5
G
0 Q.-
S z

Processor Processor
y

#3
z

#4 E 6

G
N
-1

]-Cache #3 (8X) l-Cache #4 (8K)

Figure 3. FloorPlan for the four-way single-chip

multiprocessor.

sors is less than one-fourth the size of the 6-way SS processor, as

shown in Table 3. The number of execution units actually increases

in the MP because the 6-way processor had three units of each type,

while the 4-way MP must have four — one for each CPU. On the

other hand, the issue logic becomes dramatically smaller, due to the

decrease in instruction buffer ports and the smaller number of

entries in each instruction buffer. The scaling factors of these two

units balance each other out, leaving the entire processor very close

to one-fourth of the size of the 6-way processor.

The on-chip cache hierarchy of the multiprocessor is significantly

different from the cache hierarchy of the 6-way superscalar proces-

sor. Each of the 4 processors has its own single-banked and single-

ported 8 KB instruction and data caches that can both be accessed

in a single 2 ns cycle. Since each cache can only be accessed by a

single processor with a single load/store unit, no additional over-

head is incurred to handle arbitration among independent memory-

access units. However, since the four processors now share a single

L2 cache, that cache requires an extra cycle of latency during every

access to allow time for interprocessor arbitration and crossbar

delay. We model this additional L2 delay by penalizing the MP an

additional cycle on every L2 cache access, resulting in a 5 cycle L2

hit time.

5 Simulation Methodology

Accurately evahrating the performance of the two microarchitec-

tures requires a way of simulating the environment in which we

would expect these architectures to be used in real systems, In this

6ection we describe the simulation environment and the applica-

tions used in this study.

5.1 Simulation Environment

We execute the applications in the SimOS simulation environment

[18]. SimOS models the CPUS, memory hierarchy and I/O devices

6

0.35Pm R1OK Size Extrapolated % Growth Due to
CPU Component Original Size (mm*) to 0.25prn (mmz) New Functionality New Size (mmz) % Area

256K Orr-Cfdp L2 Cache a 219 112 o% 112 26%

8-bank D Cache (32 KB) 26 13 25% 17 4%

8-bank I Cache (32 KB) 28 14 25% 18 4%

TLB Mechanism 10 5 200% 15 3%

External Interface Unit 27 14 0% 14 3%

Instruction Fetch Unit and BTB 18 9 200% 28 6%

Irrshuction Decode Section 21 11 250% 38 9%

Instruction Queues 28 14 250% 50 12%

Reorder Buffer 17 9 300% 34 9%

Integer Functional Units 20 10 200% 31 7%

FP Functional Units 24 12 200% 37 9%

Clncking & Overhead 73 37 o% 37 9%

TotaJSize — — . 430 100%

Table 2. Size extrapolations for the 6-way superscalar from the MIPS R1OOOOprocessor

% Area
0.351un R1OK Size Extrapolated % Growth Due to (of CPU /of entire

CPU Component Original Size (mmz) to 0.25vrrr (mmz) New Functionality New Size (mmz) chip)

D Cache (8 KB) 26 13 -75%
~

6% /3%

I Cache (8 KB) 28 14 -75% 4 7%13%

TLB Mechanism 10 5 o% 5 9% I 5%

Instruction Fetch Unit nnd BTB 1s 9 -25% 7 13%/7%

Instruction Decode Section 21 11 -50% 5 10% /5%

Inso’uction Queues 28 14 -70% 4 8% 14%

Reorder Buffer 17 9 -80% 2 3%12%

IrWger Functional Units 20 10 o% 10 20%/ 10%

FPFunctional Units 24 12 0% 12 23%/12%
,

Per-CPU Subtotal — — — 53 100% / 50%

256K On-Chip L2 Cache’ 219 112 o% 112 26%

External Interface Unit 27 14 o% 14 3%

Crossbnr Between CPUS — — — 50 12%

Clocking & Overhead 73 37 o% 37 9%

Total Size — — . 424 100%

Table 3. Size extrapolations in the 4 x 2-way MP from the MIPS R1OOOOprocessor.

a. estimated from current L] caches

of uniprocessor and multiprocessor systems in sufficient detail to

boot and run a commercial operating system. SimOS uses the

MIPS-2 instruction set and runs the Silicon Graphics lRIX 5.3

operating system which has been tuned for multiprocessor perfor-

mance. SimOS actually simulates the operating system; therefore,

all the memory references made by the operating systemi and the

applications are generated. This feature is particularly important for

the study of multiprogramming workloads where the time spent

executing kernel code makes up a significant fraction of the non-

idle execution time.

A unique feature of SimOS that makes studies such as this, feasible

is that SimOS supports multiple CPU simulators that use a common

instruction set architecture. This allows trade-offs to be made

between the simulation speed and accuracy. The fastest CPU simu-

lator, called Embra, uses binary-to-binary translation techniques

and is used for booting the operating system and positioning the

workload so that we can focus on interesting regions of execution.

The medium performance CPU simulator, called Mipsy, is two

orders of magnitude slower than Embra. Mipsy is an instruction set

simulator that models all instructions with a one cycle result latency

and a one cycle repeat rate. Mipsy interprets all user and privileged

instructions and feeds memory references to a memory system sim-

ulator. The slowest, most detailed CPU simulator is MXS, which

supports dynamic scheduling, speculative execution and non-block-

ing memory references. MXS is over four orders of magnitude

slower than Embra.

The cache and memory system component of our simulator is com-

pletely event-driven and interfaces to the SimOS processor model

7

Integer applications

compress compresses and uncompressed file in memory

eqntott translates logic equations into truth tables
1

I m88ksim Motorola 88000 CPU simulator I
I

MPsim VCS compiled Verilog simulation of a multiprocessor

Floating point applications

applu solver for parabolic/elliptic partial differential equations

apsi solves problems of temperature, wind, velocity, and distribution of pollutants

swim shallow water model with 1K x 1K grid

tomcatv mesh-generation with Thompson solver,
Multiprogramming application

pmake I parallel make of gnuchess using c compiler

Table 4. The applications.

which drives it, Processor memory references cause threads to be

generated which keep track of the state of each memory reference

and the resource usage in the memory system. A call-back mecha-

nism is used to inform the processor of the status of all outstanding

references, and to inform the processor when a reference com-

pletes. These mechanisms allow for very detailed cache and mem-

ory system models, which include cycle accurate measures of

contention and resource usage throughout the system.

5.2 Applications

The performance of nine realistic applications is used to evaluate

the two microarchitectures. Table 4 shows that the nine applications

are made up of two SPEC95 integer benchmarks (compress,

m88ksim), one SPEC92 integer benchmark (eqntott), one other

integer application (MPsim), four SPEC95 floating point bench-

marks (applu, apsi, swim, tomcatv), and a multiprogramming appli-

cation (pmake).

The applications are parallelized in different ways to run on the MP

rnicroarchitecture. Compress is run unmodified on both the SS and

MP microarchitectures; using only one processor of the MP archi-

tecture. Eqntott is parallelized manually by modifying a single bit

vector comparison routine that is responsible for 9070 of the execu-

tion time of the application [16]. The CPU simulator m88ksim is

rdso parallelized manually into three threads using the SUIF com-

piler runtime system. Each of the three threads is allowed to be in a

different phase of simulating a different instruction at the same

time. This style of parallelization is very similar to the overlap of

instruction execution that occurs in hardware pipelining. The

MPsim application is a Verilog model of a bus based multiprocessor

running under a multi-threaded compiled code simulator (Chrono-

logic VCS-MT). The multiple threads are specified manually by

assigning parts of the model hierarchy to different threads. The

MPsim application uses four closely coupled threads; one for each

of the processors in the model. The parallel versions of the SPEC95

floating point benchmarks are automatically generated by the SUIF

compiler system [2]. The pmake application is a program develop-

ment workload that consists of the compile phase of the Modified

Andrew Benchmark [17]. The same pmake application is executed

on both microarchitectures; however, tbe OS takes advantage of the

extra processors in the MP microarchitecture to run multiple compi-

lations in parallel.

A difficult problem that arises when comparing the performance of

different processors is ensuring that they do the same amount of

work. The solution is not as easy as comparing the execution times

of each application on each machine. Due to the slow simulation

speed of the detailed CPU simulator (MXS) used to collect these

results it would take far too long to run the applications to comple-

tion. Our solution is to compare the two microarchitectures over a

portion of the application using a technique called representative

execution windows [5]. In most compute intensive applications

there is a steady state execution region that consists of a single outer

loop or a set of loops that makes up the bulk of the execution time.

It is sufficient to sample a small number of iterations of these loops

as a representative execution window if the execution time behavior

of the window is indeed representative of the entire program. Simu-

lation results show that for most applications the cache miss rates

and the number of instructions executed in the window deviates by

less than 1% from the results for the entire program.

The simulation procedure begins with a checkpoint taken with the

Embra simulator. Simulation from the checkpoint starts with the

instruction level simulator Mipsy and the full memory system.

After the caches are warmed by running the Mipsy simulator

through the representative execution window at least once, the sim-

ulator is switched to the detailed simulator, MXS, to collect the per-

formance results presented in this paper.

We use the technique of representative execution windows for all

the applications except pmake. Pmake does not have a well defined

execution region that is representative of the application as a whole.

Therefore, the results for pmake are collected by running the entire

application with MXS.

6 Performance Comparison

We begin by examining the performance of the superscalar

microarchitecture and one processor of the multiprocessor microar-

chitecture. Table 5 shows the IPC, branch prediction rates and

cache miss rates for one processor of the MP, Table 6 shows the

IPC, branch prediction rates, and cache miss rates for the SS

8

microarchitecture. The cache miss rates are presented in the tables

in terms of misses per completed instruction (MPCI); including

instructions that complete in kernel and user mode. When the issue

width is increased from two to six we see that the actual IPC

increases by less than a factor of 1.6 for all of the integer and multi-

programming applications. For the floating point applications the

performance improvement varies from a factor of 1.6 for torncatv to

2.4 for swim.,

BP Rate I cache D cache

i

G! cache
Program IPC % %MPC1 %MPCI %MPCI

compress 0.9 85.9 0.0 3.5 1.0

eqntott 1.3 79.8 0.0 0.8 0.7

m88kaim 1.4 91.7 2.2 0.4 0.0

MPsim 0.8 78.7 5.1 2,3 2.3

applu 0.9 79.2 0.0 2.0 1.7

apsi 0.6 95.1 1.0 4.1 2.1

swim 0.9 99.7 0.0 1.2 1,2

tomcatv 0.8 99.6 0,0 7.7 2.2

pmakc 1.0 86.2 2,3 2.1 0.4

Table 5. Performance of a single 2-issue superscalar processor.

BP Rate I cache D cache

4

L2 cache
Pcogram IPC % %MPC1 %MPCI %MPCI

comDcess 1.2 86.4 0.0 3.9 1.1

cqntott 1.8 80,0 0.0 1.1

a

1.1

m88k.im 2.3 92.6 0.1 0.0 0.0

MPsim 1.2 81.6 3.4 1.7 2,3

applu 1.7 79.7 0.0 2.8 2.8

apsi 1,2 95.6 0.2 3.1 2.6

swim 2.2 99.8 0.0 2.3 2.5

tomcatv 1,3 99.7 0.0 4.2

1+

4.3

pmakc 1,4 82.7 0.7 1.0 0.6

Table 6. Performance of the 6-issue superscalar processor.

One of the major causes of processor stalls in a superscrdar proces-

sor is cache misses. However, cache misses in a dynamically sched-

uled superscalar processor with speculative execution and non-

blocking caches are not straightforward to characterize. The cache

misses that occur in a single issue in-order processor are net neces-

sarily the same as the misses that will occur in the speculative out-

of-order processor. In speculative processors there are misses that

are caused by speculative instructions that never complete. With

non-blocking caches, misses may also occur to lines which already

have outstanding misses. Both types of misses tend to inflate the

cache miss rate of a speculative out-of-order processor, lle second

type of miss is mainly responsible for the higher L2 cache miss

rates of the 6-issue processor compared to the 2-issue processor,

even though the cache sizes are equal.

Figure 4 shows the IPC breakdown for one processor of the MP

microarchitecture with an ideal IPC of two. In addition to the actual

IPC achieved, we show the loss in IPC due to data and instruction

cache stalls, and pipeline stalls. We see that a large percentage of

the IPC loss is due to data cache stall time, This is caused by the

small size of the primary data cache. Mk88ksim, MPsim ad pmake

have significant instruction cache stall time which is due to the

large instruction working set size of these applications. Pmake also

has multiple processes and significant kernel execution time which

further increases the instruction cache miss rate.

F@me 4. IPC Breakdown for a single 2-issue processor.

6-

5-

4-

f/3:

2-

1-

0-

D Cache Stall

I Cache Stall

Pipelina Stall

Actual IPC

Figure 5. IPC Breakdown for the 6-issue processor.

Figure 5 shows the IPC breakdown for the SS microarchitecture.

We see that a significant amount of IPC is lost due to pipeline stalls.

The increase in pipeline stalls relative to the two-issue processor is

due to limited ILP in the applications and the 2-cycle L1 data cache

hit time. The larger instruction cache in the SS microarchitecture

eliminates most of the stalls due to instruction misses for all of the

applications except MPsim and pmake. Although the SPEC95 float-

ing point applications have a significant amount of ILP, their perfor-

mance is limited on the SS microarchitecture due to data cache

stalls which consume over one-half of the available IPC

Table 7 shows cache miss rates for the MP microarchitecture given

in terms of MPCI. To reduce miss-rate effects caused by the idle

loop and spinning due to synchronization, the number of completed

instructions are those of the single 2-issue processor. Comparing

Table 5 and Table 7 shows that for eqntott, m88ksim and apsi the

MP microarchitecture has significantly higher data cache miss rates

than the single 2-issue processor. This is due primarily to the high-

9

I cache D cache L2 cache
Application %MPCI %MPCI %MPCI

commess 0.0 3.5 1.0. .
eqntott 0.6 5.4 1.2

m88tilm 2.3 3.3 0.0

I MPsim I 4.8 I 2.5 I 3.4 I

apsi 2,7 6.9 2.0

swim 0.0 1.2 1.5

tomcatv 0.0 7.8 2.5

pmakc 2.4 4.6 0.7

Table 7. Performance of the 4 x 2-issue processor.

degree of communication present in these applications. Although

pmake also exhibits an increase in the data cache miss rate, it is

caused by process migration from processor to processor in the MP

micro architecture.

Figure 6 shows the performance comparison between the SS and

MP microarchitectures. The performance is measured as the

speedup of each microarchitectnre relative to the single 2-issue pro-

cessor. On compress, an application with little parallelism, the MP

is able to achieve 75% of the SS performance even though three of

the four processors are idle. Neither microarchitecture shows sig-

nificant improvement over the 2-issue processor, however.

For applications with fine-gmined parallelism and high-communi-

cation, such as eqntott, m88ksim and apsi, the MP and SS are simi-

lar. Both architectures are able to exploit tine-grained parallelism,

although in different ways. The SS microarchitectnre relies on the

dynamic extraction of ILP from a single thread of control. The MP

can take advantage of moderate levels of ILP and can, unlike con-

ventional multiprocessors, exploit fine-grained thread-level paral-

lelism. Both the SS and MP approaches provide a 30% to 100%

performance increase over the 2-issue processor.

Applications with large amounts of parallelism allow the MP

microarchitecture to take advantage of coarse-grained parallelism

in addition to fine-grained parallelism and ILP. For these applica-

tions, the MP is able to significantly outperform the SS microarchi-

tecture, whose ability to dynamically extract parallelism is limited

by the 128 instruction window.

7 Conclusions

The characteristics of advanced integrated circuit technologies

require us to look for new ways to utilize large numbers of gates

and mitigate the effects of high interconnect delays. We have dis-

cussed the details of implementing both a wide, dynamically sched-

uled superscalar processor and a single chip multiprocessor. The

implementation complexity of the dynamic issue mechanisms and

size of the register files scales quadraticrdly with increasing issue

width and ultimately impacts the cycle time of the machine. The

alternative multiprocessor rnicroarchitecture, which is composed of

simpler processors, can be implemented in approximately the same

area. We believe that the multiprocessor rnicroarchitecture will be

easier to implement and will reach a higher clock rate.

4

3.5

3 1

❑ Ss

■ MP -

Figure 6. Performance comparison of SS and MP.

Our results show that on applications that cannot be parallelized the

superscalar rnicroarchitecture performs 30% better than one proces-

sor of the multiprocessor architecture. On applications with tine

grained thread-level parallelism the multiprocessor microarchitec-

ture can exploit this parallelism so that the superscalar rnicroarchi-

tecture is at most 109to better, even at the same clock rate. We

anticipate that the higher clock rates possible with simpler CPUS in

the multiprocessor will eliminate this small performance difference.

On applications with large grained thread-level parallelism and

multiprogramming workloads the multiprocessor microarchitecture

performs 50-1 00% better than the wide superscalar tnicroarchitec-

ture.

Acknowledgments

We would like to thank Edouard Bugnion, Mendel Rosenblum, Ben

Verghese and Steve Herrod for their help with SimOS, Doug Will-

iams for his assistance with MXS, the SUIF compiler group for use

of their applications, and the reviewers for their insightful com-

ments. This work was supported by DARPA contracts DABT63-95-

C-0089 and DABT63-94-C-O054.

10

References

[1] S. P. Amarasinghe, J. M. Anderson, M. S, Lam, and C.-W.
Tseng, “An overview of the SUIF compiler for scalable
parallel machines; Proceedings of the Seventh SIAM
Conference on Parallel Processing for Scientific
Compiler, San Francisco, 1995.

[2] S. Amarasinghe et.al., “Hot compilers for future hot chips,”
presented at Hot Chips WI, Stanford, CA, 1995.

[3] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The
IBM System/360 model 91: Machine philosophy and
instruction-handling; IBM Journal of Research and
Development, vol. 11, pp. 8-24,1967.

[4] W. Bowhill et. al., “A 300MHz 64b quad-issue CMOS
microprocessor;’ IEEE International Solid-State Circuits
Conference Digest of Technical Papers, pp. 182-1183, San
Francisco, CA, 1995.

[5] E. Bugnion, J. Anderson, T. Mowry, M. Rosenbhrm, and M,
Lam. “Compiler-Directed Page Coloring for
Multiprocessors:’ Proceedings Seventh International
Symp. Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII),
October 1996.

[6] “Chart watch: RISC processors,” Microprocessor Report, vol.
10, no. 1, p. 22, January, 1996.

[7] T. Conte, K. Menezes, P. Mills, and B. Patel, “Optimization of
instmction fetch mechanisms for high issue rates,”
Proceedings of the 22nd Annual International Symposium
on Computer Architecture, pp. 333-344, Santa
Mrrrgherita Ligure, Italy, June, 1996.

[8] D. Dobberpuhl et. al., “A 200-MHz 64-b dual-issue CMOS
microprocessor,” IEEE Journal of Solid-State Circuits,
VO1. 27, Pp. 1555–1557, 1992.

[9] Don Drappper, ‘The interconnect nightmare;” IEEE
International Solid-State Circuits Conference Digest of
Technical Papers, p. 278, San Francisco, CA, 19!~6.

[10] K. Farkas, N. Jouppi, and P. Chow, “Register file
considerations in dynamically scheduled processors,”
Proceedings of the 2nd Int. Symp. on High-Per@nnance
Computer Architecture, pp. 40-51, San Jose, CA,
February, 1996.

[11] J, Hennessy and N. Jouppi, “Computer technolc)gy and
architecture an evolving interaction,” IEEE Computer
Magazine, vol. 24, no, 1, pp. 18-29, 1991.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture A
Quantitative Approach 2nd Edition. San Francisco,
California Morgan Kaufman Publishers, Inc., 1996.

[13] M. Johnson, Superscalar Microprocessor Design. Englewood
Cliffs, NJ: Prentice Hall, Inc., 1991

[14] J. Lotz. G. Lesartre. S. Naffzinszer. and D. Kism. “A auad issue

[15] s.

[16] B.

out-of-order M’SC CPU,” ~EEE Interna;i%al S;lid-State
Circuits Conference Digest of Technical Papers, lpp. 210-
211, San Francisco, CA, 1996.

McFarling, “Combining branch predictors:’ WRL
Technicrd Note TN-36, Digital Equipment Corporation,
1993.

A. Nayfeh, L. Hammond, and K. Olukohm, “Evaluating

[19] M.

SimOS approach,” IEEE Parallel and Distributed
Technology, vol. 4, no. 3, 1995.

Rosenblum, E. Bugnion, S. Herrod, E. Witchel, and A.
Gupta, “The impact of architectural trends on operating
system performance,” Proceedings of 15th ACM
symposium on Operating Systems Principles, Colorado,
December, 1995.

[20] G. Sohi and M. Franklin, “High Bandwidth Data Memory
Systems for Superscalar Processors:’ Proceedings of 4th
Int. Con$ Architectural Support for Programming
Lunguages and Operating Systems (ASPLOS-IV), pp. 53-
62, April, 1991.

[21] J. E. Thornton, “Parallel operation in the Control Data 6600~’
Proceedings of Spring Joint Computer Conference, 1964.

[22] D. W. Wall, “Limits of Instruction-Level Parrdlelism~’ Digital
Western Research Laboratory, WRL Research Report 93/
6, November 1993.

[23] S. C. Woo, M. Ohara~o&a~:, J.P. Singh and A. Gupta, “The
SPLASH-2 Characterization and
Methodological Considerations”, 22nd Annual Int. Symp.
Computer Architecture, Santa Margherita, Italy, June
1995,

[24] K. Yeager et. al., “R1OOOO Superscalar Microprocessor,”
presented at Hot Chips VII, Stanford, CA, 1995.

[25] J. Zurawski, J. Murray and P. Lemmon, “The design and
verification of the AlphaStation 600 5-series
workstation:’ Digital Technical Journal, vol. 7, no. 1, pp.
89-99, 1995.

alternatives for a multiprocessor microprc~cessor~’
Proceedings of 23rd Int. Symp. Computer Architecture,
pp. 66-77, Philadelphia, PA, 1996.

[17] J. Ousterhout, “Why aren’t operating systems getting faster as
fast as hardware?; Summer 1990 USENIX Conference,
pp. 247-256, June 1990.

[18] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “The

11

