
Belady:

Pr(, ,) RDD:

You know the future
reuse distance.

You know the distribution
over possible future reuse
distances.

Reuse-based Adaptive Caching
Isaac Grosof and Katherine Cordwell

15-740

THE RDD AND CACHING
For a given cache line `, its reuse distance is the num-
ber of accesses to a cache set between two consecutive
accesses to `. For an example, see the figure below.

Recall...

● Reuse Distance = “the number of memory accesses to a cache set between two accesses to the

same cache line”

● Each line has an associated Reuse Distance Distribution (RDD)

For a given cache line, we can also consider its dis-
tribution over possible reuse distances. This distribu-
tion is called the RDD. The RDD gives us the proba-
bility associated with each potential future reuse dis-
tance.

Many caching policies are based on an approxima-
tion of the RDD. Approximation methods are highly
nonuniform across policies.

OUR QUESTION
Current policies often compare themselves to Be-

lady’s MIN, which is the offline optimal policy that
knows the future. However, Belady may not be the
right baseline comparison for RDD-based policies. In
particular, it gives no information about how much
information was lost due to approximation error.

Accordingly, we are interested in the follow-
ing question: Given access to the full RDD, what is
the best caching policy? In other words, instead of a
comparison like this (which we’ve taken from Takagi
and Hiraki’s paper on Inter-reference Gap Distribu-
tion cache replacement),

Motivation

● Often policies will compare themselves to Belady’s

MIN, which is unrealistic

● Moreover, such a comparison provides little insight

into how much we’re losing from the approximation

itself

versus versus
we want to have a comparison like this:

?

?
?

OptRDD?

as this gives an indication of how good IGDR could
have been, given that it is an RDD-based policy.

THE GITTINS INDEX
Towards this goal, we develop a Gittins index policy.
In this policy, each line has a hit rank, which is defined
as its hit chance over its occupancy time. At any step,
we evict the line with the lowest rank.
As a math equation, this translates to

min
`

max
b∈supp D−age`

Pr(D − age` ≤ b | D > age`)

E(min(D − age`, b) | D > age`

In a situation where we can evict lines whenever we
want, Gittins is optimal.

SIMULATION PARAMETERS
We make the following assumptions:

• Fully associative, inclusive cache
• Every line has a discrete RDD
• There is a fixed number of discrete RDDs (and

some probability distribution over those RDDs)
• A line is inserted into cache with a lifetime sam-

pled from its RDD

We compare the following policies:

• Gittins
• Belady’s MIN
• LRU
• Expected Reuse Distance (ERD)
• BRRIP/SRRIP-FA, SRRIP-HP
• Economic Value Added (EVA)
• Optimal static protection distance (optPD)

In optPD, we run static PDP with all feasible protec-
tion distances, and pick the best one.

RESULTS (ONE RDD)
Here is some data after running experiments with a
single, “randomly generated” RDD, with hit counts
normalized to the hit count of Gittins. It is relatively
representative of general behavior, although LRU can
do better depending on the cache size.

Also, there are some examples where ERD and EVA
perform poorly. One of these is shown below. Here,
it seems that EVA does not always explore the future
enough to know that things will hit at time 18. We can
fix this by seeding EVA with the choices that Gittins
would have made for a small percentage of timesteps.

Additionally, there are rare examples where optPD
performs poorly. One is shown below.

RESULTS (MULTIPLE RDDS)
Some policies only really make sense to evaluate in
the case where we have multiple RDDs.

For example, with a single RDD, it doesn’t make
sense to compare LRU, SRRIP, or BRRIP to Gittins and
other RDD-based policies, because in this case LRU,
SRRIP, and BRRIP don’t make any use of the RDD
and have no chance of performing well. With mul-
tiple RDDs, and given a sufficient number of cache
lines, it is slightly more fair to compare LRU, SRRIP,
and BRRIP to Gittins, because by design, these poli-
cies will “learn” some information about the RDDs, in
the sense that they are more likely to keep lines with
RDDs that are likely to get many hits than lines with
RDDs that are likely to get few hits. We can see this
in the test case below.

However, it no longer makes sense to compare
optPD to Gittins when there are multiple RDDs, be-
cause optPD is essentially designed to be a good pol-
icy when there is one RDD, and its performance is not
only computationally infeasible but also significantly
degraded in the case where there are many disparate
RDDs.

TAKEAWAYS
We can get more nuanced comparisons if we clas-

sify policies according to what information they are
using and evaluate them against policies that use sim-
ilar information.

For example, Belady’s MIN is an unrealistic com-
parison point for RDD-based policies, but it would be
a fair comparison point for policies that are based on
the program counter.

With a single RDD, Gittins, optPD, EVA, and ERD
are comparable, but it is not necessarily fair to com-
pare Gittins to SRRIP, BRRIP, or LRU. With multiple
RDDs, Gittins, SRRIP, BRRIP, LRU, EVA, and ERD are
comparable, but it is not necessarily fair to compare
Gittins to optPD.

Gittins seems to be the best RDD-only policy.

WHAT NEXT?
Some things we may consider next are:
• More multiple RDD experiments.
• Modifying Gittins to take into account that in a

cache, lines may linger beyond when we expect
them to be evicted.

