
CPU/GPU Workload Harmony for BFS

How efficiently can we compute SSSP using BFS by using both the CPU & GPU?
● BFS: Breadth-First Search - each iteration moves one unit of distance further
● SSSP: Single Source Shortest Path - find distance from every vertex to some root
● 8-thread/4-core 3.20 GHz CPU (Intel i7-960)
● 2560-core/80-warp/20-SM 1.61 GHz GPU (Nvidia GTX 1080)

Current Implementation:
● GPU and CPU have independent vertex sets that they process in parallel
● Communicate each other’s seen vertices between iterations to synchronize
● Goal: Maximize overlap b/w computation and communication

Implementation

Frontier representation:
● Full (Boolean vs. Bit Vectors)
● Sparse

Partitioning:
● Static: Statically assign some fraction of the graph edges to the CPU and the rest to the GPU
○ Random
○ Degree-based: Sort the vertices based on degree and then partition between the two

processors
● Dynamic
○ A work-queue of frontiers : CPU and GPU pick work dynamically
○ Mid and small sized graphs reside on both the CPU and GPU

Synchronization:
● After every iteration
● After multiple iterations

grid1000x1000
~1m vertices ~4m edges  

Avg Degree: 3.996

com-youtube_3m
~1m vertices ~3m edges

Avg Degree: 2.653

random_500m
50m vertices ~500m edges

Avg Degree: 10

FU
LL

 (B
OO

LE
AN

)
SP

AR
SE

Full vs. Sparse Frontiers

ego_twitter_2m
~80k vertices ~2m edges

Avg Degree: 30

VE
RT

EX
ED

GE

Vertex vs. Edge Based Partitioning

grid1000x1000
~1m vertices ~4m edges  

Avg Degree: 3.996

random_500m
50m vertices ~500m edges

Avg Degree: 10

Single vs. Multiple Iterations b/w Synchronization
SI

NG
LE

M
UL

TI
PL

E

(16x) (8x) (4x)

grid1000x1000
~1m vertices ~4m edges  

Avg Degree: 3.996

random_500m
50m vertices ~500m edges

Avg Degree: 10

com-youtube_3m
~1m vertices ~3m edges

Avg Degree: 2.653

soc-slashdot_900k
~80k vertices ~900k edges

Avg Degree: 11.54

Synchronous vs. Asynchronous Transfers
SY

NC
HR

ON
OU

S
AS

YN
CH

RO
NO

US

grid1000x1000
~1m vertices ~4m edges  

Avg Degree: 3.996

random_500m
50m vertices ~500m edges

Avg Degree: 10

What’re we doing next

● Standardize across implementations and optimize even further

● Merge ideas from different implementations to create new strategies/ approaches

● At runtime, pick the best strategy based on graph analysis and statistics

What we borrowed

● Publications
○ Efficient Large-Scale Graph Processing on Hybrid CPU and GPU Systems https://arxiv.org/

pdf/1312.3018.pdf
○ HyGraph: Fast Graph Processing on Hybrid CPU-GPU Platforms by Dynamic Load-

Balancing http://materials.dagstuhl.de/files/17/17431/17431.AnaLuciaVarbanescu1.Preprint.pdf

● Graphs
○ Stanford Large Network Dataset Collection

https://snap.stanford.edu/data/

● Starter Setup Code (for graph importing)
○ CMU 15418 Spring 2017

http://15418.courses.cs.cmu.edu/spring2017/article/7

https://arxiv.org/pdf/1312.3018.pdf
https://arxiv.org/pdf/1312.3018.pdf
http://materials.dagstuhl.de/files/17/17431/17431.AnaLuciaVarbanescu1.Preprint.pdf
https://snap.stanford.edu/data/
http://15418.courses.cs.cmu.edu/spring2017/article/7

