
• On transactional store, the speculative value is kept

in the local cache

• On eviction of speculative cache lines, the processor

writes them into MVM using a special, invisible

version

• On transaction commit, the processor obtains a

commit timestamp by atomically fetch-and-add the

timestamp counter. It then checks whether cache

lines in its write set have been overwritten by other

transaction commits during its begin and commit. If

not, commit succeeds, and all dirty lines are forced

back to MVM.

Advantage:

• Support unbounded transactions; Fewer aborts

Disadvantage

• No support for serializability; Global lock on commit

MVCS-TM: Multiversion Conflict Serializable Hardware Transactional Memory

Ziqi Wang, Hao Wei

Computer Science Department

Carnegie Mellon University

Method

We extend SI-TM in the following aspects:

• Instead of a single shared timestamp counter, we

propose a global transaction queue that holds the

status and write set of all committed and committing

transactions in the memory controller.

• Using bloom filters to approximate transaction’s

read and write sets. Membership testing and

intersection is merely bitwise AND test

• Support fully conflict serializable semantics in

addition to snapshot isolation. Users make choices

based on the workload

Motivation

Stanford SI-TM (Snapshot-Isolation TM):

• Physical address space is multiversioned

• A special hardware device, the Multiversion

Manager (MVM), is inserted between the L2 and

shared LLC

• Transactional instructions access memory with a

timestamp. Given a physical address and a

timestamp, the MVM translates them into the

physical address to the versioned storage

• At most four versions are supported

Overview

Problem:

• Commercial implementations of Hardware

Transactional Memory are overly restrictive. Only

small transactions can be supported

• Conflict resolution mechanism using cache

coherence is sufficient, but only low degrees of

parallelism is achieved

Solution:

• HTM systems must overflow transactional states

into DRAM to support large transactions

• Instead of relying on 2PL-style cache coherence

for conflict detection, we leverage Optimistic

Concurrency Control for better parallelism

Figure 2. The Commit Queue and Timestamps

SI-TM transaction commit and begin protocol:

• A global shared timestamp counter provides

monotonically increasing source of timestamps

• On transaction begin, the counter is read as the

begin timestamp of the transaction

• On transactional load, the processor uses the begin

timestamp as the version to access MVM

Figure 3. Abort Rate and Cycles per Transaction of MVCS-TM Using

High Contention Workloads

Results

Implemented a prototype using zSim, and ran

performance test using the STAMP benchmark

• 4, 8, 16 and 32 Threads

Figure 1. The Multiversion Manager (MVM)

Protocol changes compared with SI-TM:

• On transaction begin, a begin timestamp is obtained as

the version of the most recent committed transaction

• On transaction commit, a commit timestamp is obtained

as the next empty slot’s identifier

• Conflicts are detected by intersecting current

transaction’s read set with committed transactions’

write sets between the begin and commit timestamp

Future Work

• More detailed profiling of our simulations to determine

typical transaction sizes, reasons for aborting, etc, to

better understand the characteristic of MVCS-TM

• Support concurrent transaction commit as long as their

write sets do not overlap

• Better support for nested transactions as well as

interaction with non-transactional memory operations

……

Begin Timestamp Commit Timestamp

C
o

m
m

it
te

d

C
o

m
m

it
te

d

C
o

m
m

it
te

d

C
o

m
m

it
ti

n
g

C
o

m
m

it
ti

n
g

E
m

p
ty

E
m

p
ty

Conclusion from the benchmark:

• Our implementation has little overhead

compared with Intel TSX and SI-TM

• The abort rate decreases by using flexible ways

of running transactions in either snapshot

isolation mode or conflict serializable mode

• MVCS-TM scales with up to 32 worker threads

Figure 4. Comparison between Intel TSX, SI-TM and MVCS-TM on

Abort Rate and Cycles per Transaction

