
Analysis of Read-Modify-Write Performance in NUMA Architectures Naama Ben-David and Ziv Scully

Fine Grained Analysis of Read-Modify-Write Performance
in NUMA Architectures
Naama Ben-David Ziv Scully

{nbendavi, zscully}@cs.cmu.edu

1 Overview
Read-Modify-Write is a widely used synchronization primitive. Many lock-free data structures base their design on a
read-modify-write loop, in which each thread reads the current state of the data structure, locally modi�es it, and
then compare-and-swaps its new value. However, despite their ubiquity, the performance of such read-modify-write
loops under varying degrees of contention is poorly understood.

In this project, we conduct a thorough experimental study of compare-and-swap based read-modify-write work-
loads. We design �ne-grained benchmarks that allow collecting detailed information about the throughput and data
movement pa�erns of the execution, while introducing minimal perturbation. �rough our experiments, we uncover
several unintuitive characteristics of such workloads in NUMA architectures. In particular, we show that it can be
bene�cial for threads to contend on their read-modify-write operations across node boundaries rather than keeping
contention within their own node. Furthermore, we show how this e�ect changes as the amount of local modi�cation
work is varied. We also plot more detailed information, tracking the movement of the contended cache line among
the di�erent cores. We compare the behavior of an Intel machine and an AMD machine. Our goal for the project is to
further understand what causes the throughput pa�erns that we observe, and be able to use this knowledge to gain
insight into algorithm design.

2 Benchmarks and Architectures
2.1 Tested Architectures
We run our benchmarks on two di�erent NUMA architectures. �e �rst is an Intel Xeon machine with four NUMA
nodes, each on a di�erent socket. Each node has 18 cores, with two-way hyperthreading. �e other machine is an
AMD Bulldozer with four sockets, and two NUMA nodes per socket. Each node has 4 cores, again with two-way
hyperthreading. �e details of the two machines are summarized in Table 2.1.

Sockets Nodes Cores Coherence Protocol
Intel 4 4 72 MESIF
AMD 4 8 32 MOESI

Table 2.1:Machine Details

2.2 Benchmark Details
�e goal of our benchmarks is to simulate various contended workloads that may appear in practice. At its core,
our benchmark simply has all threads execute a CAS-based fetch-and-add on a single memory location for a given
amount of time. We measure throughput; how many successful changes to the memory location were made.

Our benchmarks allow varying several parameters: the number of threads contending and their location in the
NUMA architecture, as well as number of memory locations accessed and on which nodes this memory is allocated.
Furthermore, we allow injecting a given amount of delay between a thread’s read operation and its subsequent CAS
(called ‘read-cas’, or ‘rc’ delay), or between its CAS and its next read (called ‘cr’ delay). Using these parameters, we
can simulate many di�erent workloads.

In order to retain information about the execution, we have each thread CAS in its id and a timestamp. When
a thread reads or executes a CAS on the contended location, it records in a locally allocated log the data that was
stored in the shared location. �is data is always the id and timestamp of the thread that executed the most recent
successful CAS. �is logging has low overhead - the execution with logging has only about 5% lower throughput than
when running without logging. However, the resulting logs (one per thread) allow us to extract a lot of information

1



Analysis of Read-Modify-Write Performance in NUMA Architectures Naama Ben-David and Ziv Scully

about the run, as we discuss in Section 3. One downside of this detailed logging is that it takes a lot of space; every
single shared memory operation by every single thread is recorded. Since each thread can get in as many as 300, 000
a�empts per second, memory can run out fast. Even if we allocate a large amount for each thread to use, longer
executions can cause segfaulting. �erefore, we have a ‘logging’ �ag, which we always keep o� for long runs. �us,
the logging information that we present was all created from relatively short (few seconds) runs. One possible future
direction is to solve this problem by having threads turn their logging on in the middle of a longer run, a�er they
reach ”steady state”, or periodically turn on logging for a li�le bit. However, this is not as easy as it sounds, since the
logging information is most useful when it is synchronized across all threads, thus allowing us to reconstruct a part
of the execution. If we have threads begin their logging in the middle of their execution, having them synchronize to
turn on the log could throw o� the trace, yielding useless results.

We also made options for our benchmark to vary the default read-modify-CAS pa�ern in order to test out other
approaches and heuristics. For example, we have an option for the benchmark to back o� when it reads certain values,
or even to skip its reads altogether, and just use the CAS’s return value as the ‘expected value’ for its next CAS. �ese
heuristics and their results are discussed in Section 5.

3 Initial Results
�e �rst surprising result we encountered is the following: with low delay between memory operations, throughput
(number of successful CAS a�empts per second) is highest when workers are distributed across di�erent nodes instead
of clustered in a single node.

Above, we show the throughput on the Intel machine for increasing delay between the read and CAS for two
di�erent worker layouts: one with 18 workers on a single NUMA node (orange), and one with 18 workers distributed
near-evenly over all four NUMA nodes (blue). Clustering on a single NUMA node is be�er for throughput only for
large delays between the read and CAS.

To try to get a be�er understanding of why this is the case, we measured the number of a�empts and successes of
individual workers. Below we show results for benchmarks on the Intel and AMD machines with all workers active
and minimal delay. From le� to right, we show for each core (1) the number of CAS a�empts made, (2) the number of
successful a�empts, and (3) the success ratio. Blue is Intel; orange is AMD. Each NUMA node has a di�erent dot color.
In both cases, the location being read and CASed is allocated in the memory of NUMA node 0.

On both machines, workers on node 0 seem to have slightly fewer read a�empts than those on other nodes, but
they have substantially fewer CAS successes. �is is a phenomenon that we found hard to explain. We know that in
cases with low delay with a single read/CAS location, the node with fewer successes is the one where the location is
allocated. �is was unexpected because we expect that the location is always in cache. A possible explanation is that

2



Analysis of Read-Modify-Write Performance in NUMA Architectures Naama Ben-David and Ziv Scully

cores on node 0 a�empt to load the location from main memory. If the cache line were clean, it is in some systems the
case that loading from main memory within a NUMA node is faster than reading from a di�erent node’s L3 cache. Of
course, in our benchmark, the cache line is always dirty, so reading from main memory never helps but might instead
create additional overhead.

�e AMD machine gets in fewer a�empts and successes, which might be expected given that the Intel machine is
newer. However, it also has lower success ratio, indicating that some of Intel’s success-throughput advantage are due
to architectural di�erences, not just improved hardware. Strangely, the AMD machine also seems to behave very
asymmetrically with respect to the nodes other than node 0, in contrast to the Intel machine, which treats the other
nodes similarly. Moreover, the exact asymmetry of the the AMD machine’s performance is qualitatively di�erent
depending on which NUMA node the location is allocated on (not shown).

One fun feature of the Intel a�empts plot (le�, blue) is the downwards ridges visible for the �rst worker of each
NUMA node. We believe these indicate the cores where the location’s cache line lives (each core keeps part of a
shared L3). �is is because from run to run, the ridges’ locations change, but there always is one per NUMA node, and
the “in-node o�set” of the ridges is always consistent accross the four nodes, suggesting that they in-node o�set is
being decided by the same hash function of the locations’ address. It seems that the tra�c at the L3 directory means
the corresponding core has fewer changes to read. Similarly, in the Intel success plot (right, blue), there are upward
ridges at the same locations. �is suggests that although the tra�c limits the number of the core’s a�empts, being
nearby gives it a higher success rate.

So far, we have just seen data summarizing the statistics for each worker. �e plots below, which are for the
Intel machine, show how o�en each worker sees each other worker during a read, counting both the total number of
sightings (le�) and the number of sightings that precede a CAS success (right). �e diagonal, representing nodes
seeing themselves or the hyperthread on the same core, is truncated in both plots.

One thing we notice from the a�empts plot (le�) is that workers are far more likely to see the last success from a
worker on their own NUMA node. However, we see from the successs plot (right) that workers are very unlikely to
succeed if they last saw someone from their own NUMA node that was not themselves or the hyperthread on their
core. In the next section, we take a closer look at exactly how the benchmarks are playing out to try to �gure out why
this is.

4 Fine-Grained Traces
Our �ne-grained logging allows us to see in detail what happens during the benchmarks. For example, the following
plot shows an excerpt of the trace of successful CAS a�empts on the Intel machine.

3



Analysis of Read-Modify-Write Performance in NUMA Architectures Naama Ben-David and Ziv Scully

20 40 60 80 100 120
Time

20

40

60

80

100

120

140

Worker

Above, di�erent colors correspond to workers on di�erent nodes. �e x-axis is the index of the success; that is, it
can be thought of as time, but rather than real-time or clock cycles, it is measured in successful CASes. �us, it is
quite possible (and even likely) that more time passed between some pair of successes than between some other pair,
but this is not represented in the plot.

One striking feature of the plot is that the trail of successes by and large rotates between the nodes in a �xed
order: yellow, purple, orange, blue, then back to yellow, etc., with only occasional skips. So far, we know that the �xed
order changes occasionally over time, but we do not yet know how long streaks of a single order last. �e followng
plot, which summarizes jumps in the above trace over a region of 65536 successful CAS a�empts, shows that two
di�erent orderings occurred during the region.

Above, the height of a yellow bar at (x ,y) indicates the number of times a CAS a�empt by worker x was followed
by a successful a�empt by worker y. �e ridge in the middle indicates that hyperthreads on the same core (which
have consecutive worker numbers) o�en succeed a�er each other.

We were interested in understanding whether the ‘skipped’ nodes in the almost-round-robin trace pa�ern were
indeed skipped altogether, or whether perhaps the cache line made its way to those nodes, but the cores were simply

4



Analysis of Read-Modify-Write Performance in NUMA Architectures Naama Ben-David and Ziv Scully

not given enough time to execute any successful CAS. With some careful analysis, we were able to reconstruct not
only the trace of successes, but also where failures occurred during a given trace interval. Below, we show the Intel
trace plot, but with the failed a�empts presented as well. Here, a read is represented with a light dot, and a CAS
with a dark dot. Lines connect a read and its corresponding failed CAS. Just like before, points on the line represent
successful CASes.

From the above plot, we can see that indeed, in most cases where the cache line seemed to have ‘skipped’ a node,
it actually did go there, but no core on the node was able to successfully modify it before it was taken away. Examples
of this can be seen towards the end of the trace shown, where the grey line does not reach the yellow node for a few
rounds, but points o� the line (failed a�empts) can be seen in the yellow node during that time.

A few more interesting phenomena emerge from observing this plot. One in particular is that it seems like failed
CASes and reads seem to o�en happen in batches; the line travels to a certain node several times, during which there
are barely any failures, and then, once every 4 or 5 visits to that node, there is suddenly a large amount of action
going on, and many threads fail their a�empts, and possibly start new ones all at once. We believe that this is some
heuristic that Intel implements to ensure some form of ‘fairness’, whereby every once in a while, it allows all pending
threads on a node to get the cache line.

Below, we show the same kind of plot, but for the AMD machine. We note that the access pa�ern is not round
robin, but rather seems to be mostly uniform among the 3 nodes that get in many a�empts. �e 5 other nodes get the
cache line much less o�en. Furthermore, the batching phenomenon observed for the Intel machine is not present.

5



Analysis of Read-Modify-Write Performance in NUMA Architectures Naama Ben-David and Ziv Scully

In this plot, there are many ‘blank’ y-values. �is indicates that the threads corresponding to those y-values did
not get in a full reads or CASes during the interval we consider.

Interestingly, for the threads that did get in at least two operations, there are very few spaces between the
horizontal lines. �is means that upon failing a CAS a�empt, it is very common for the threads to immediately restart
another a�empt, and get a response for their read operation before the cache line gets taken away from them. In
particular, it means that read operations go through quickly (more so than on the Intel machine, on which there are
more spaces between the horizontal lines of the same thread).

5 Di�erent Protocols
We a�empted to use the information we learned from the detailed traces on the Intel machine to create a smarter
backo� protocol that, based on which worker it saw upon reading, would back o� a di�erent amount of time in an
a�empt to reduce contention. Speci�cally, we used the following protocol for each worker:

If the last success was from another worker on your NUMA node other than you or your hyperthread,
wait then read again instead of trying to do the work (that is, wait the RC delay) and CAS straight away.

We put a bound on the maximum amount of backo�. �e results are summarized in the plot below, which shows the
number of successes per worker. Purple is default; green is the “smart” backo� strategy described above.

6



Analysis of Read-Modify-Write Performance in NUMA Architectures Naama Ben-David and Ziv Scully

Unfortunately, our strategy had slightly lower throughput than the default. �ough the above plot has a large RC
delay, representing a parallel algorithm with a small but nonzero workload, we got similar results for a wide array of
parameters. In future work, we hope to either

• �nd a hardware-aware backo� protocol that signi�cantly increases throughput or
• identify from the benchmarks concrete limitations in the hardware, which might show that no backo� protocol
can signi�cantly increase throughput.

7


	Overview
	Benchmarks and Architectures
	Tested Architectures
	Benchmark Details

	Initial Results
	Fine-Grained Traces
	Different Protocols

