
Go Deep: Fixing Architectural Overheads of the

Go Scheduler

Craig Hesling
hesling@cmu.edu

Sannan Tariq
stariq@cs.cmu.edu

May 11, 2018

1 Introduction

Golang is a programming language developed to target modern use contexts such
as mult-icore programming, networked systems, massive computation clusters
and web programming. In recent years, Golang has been gaining momentum,
currently ranked as the 9th most popular language on Github (higher than C) [1]
and 19th on the TIOBE index [2]. Golang is developed and heavily backed by
Google, being used for parts of the Youtube and Google DL servers.

Golang abstracts the concurrency units from OS level threads to Goroutines.
The crux of Go’s novelty, and the main reason it can provide several advantages
over other languages, lies in its Runtime component that multiplexes all Gor-
outines over actual OS threads. Go developers claim several advantages of this
abstraction

• Context Switches do not incur expensive kernel overhead

• Goroutines are lightweight compared to OS threads in terms of memory
overhead

• Goroutines have less state to setup and are thus faster in start-up times

We find that the Go Scheduler’s policy of scheduling Goroutines on different
OS threads, that may be running on different cores, may cause poor cache
coherence interactions or false sharing overhead. Given that the scheduler is
in user space and can be modified, we believe that there is an opportunity to
mitigate these overheads by some hardware aware scheduling.

During our investigation, we find that the Channels construct, the main
concurrency primitive that Golang provides, suffers heavily from cache coher-
ence overhead problems. We instrument the Go Runtime to observe and change
core affinity depending on the use of Channels between Goroutines. For our
benchmark, we find that that our scheduler reacts relatively fast, and is able
to heavily reduce cache coherence protocol overheads, resulting in shorter run
times for channel using sections of a program, while not causing any significant
overhead to non-concurrent sections.

1

2 Related Work

The Golang Runtime has been the subject of some research in recent times.
[3] analyse the Golang Scheduler and suggest some points of improvement.
Some of the improvements are a riteration of what Vyukov had previously sug-
gested [4] and have now been implemented into the Runtime. A more recent
design document[5] by Vyukov targets the same issue as our work: reducing the
overhead of communicating Goroutines in a multi-core (or multi node) system.
However, only suggestions and motivations are presented here and no ideas for
overcoming the overhead this would cause are discussed. Our work tries to
overcome the overhead mentioned here by targeting the channels construct in
particular instead of the scheduler scehduling every Goroutine.

3 Goals

Our expected goals for this project, as given in the project proposal, were as
follows

1. 75%: Identify at least one code construct that seems to evoke a schedul-
ing/cache problem during run-time

2. 100%: Comprehensive analysis of the discovered problems to determine
the underlying cause of these problems

3. 125%: Suggest modifications/fixes to the scheduler to overcome the prob-
lems found

We believe that we fulfilled all three goals, and even went beyond our 125%
goal by actually implementing a modification to the Golang Runtime to fix the
discovered problem.

More precisely, we did the following for each of our goals:

1. 75%: We identified the Channel construct as a source of repeated cache
coherence protocol triggering by observing hardware counters.

2. 100%: We analyzed the code implementing the Channel message passing
interface and found a shared lock between all readers and writers on a
channel, that would bounce around the cache if the communicating Gor-
outines ended up on different cores.

3. 125%: We implemented a fix for this problem by instrumenting the run-
time to adapt to channel usage by switching between single core and multi-
core affinity during execution.

4 Methodology

Our Goal was to identify cases where the current Go Runtime would cause a
significant overhead, due to an architectural issue, and then modify the Runtime
to perform better in that case.

2

4.1 Channels

We target the Channels construct, which is the main concurrency primitive
that Golang provides. Channels essentially provide an explicit message passing
interface between multiple Goroutines.

The Channel structure contains a Queue of Senders and Receivers of in
the channel. When a Goroutine has something to receive from the channel, it
performs some checks on the channel structure (whether it is closed, whether
it is buffered, whether there is a Goroutine in the Send queue etc.) and adds
itself to the Receive linked list queue. When a sender has something to send, it
performs the similar checks and adds itself to the Send linked list queue. This
modification of the channel structure requires all Goroutines acting on shared
channel to grab a lock, whether they are readers or writers. When a sender
finds a non-empty receiver queue, the sender writes directly to the stack of the
receiver Goroutine and removes it from the receiver queue. Other cases are
handled in a similar manner.

4.2 Identifying Overheads

The perf c2c is a tool meant for analyzing programs to identify possible false
sharing and cache line contention among multiple threads. We use the value
of a particular hardware counter Cache Hit Modified(HitM), which tracks the
number of hits that occurred on cache lines that were in a ‘Modified’ state (ac-
cording to the MESI protocol). This value helps us gauge if multiple threads
are causing the ownership of the cache line to bounce around among multiple
cores. perf c2c also provides an analysis of what code is causing these partic-
ular HitM’s. We used the tool on several Channel using programs and found
that the channel structure lock often ended up being the offensive data value
causing HitMs during execution. So we target this particular structure in our
solution.

5 Instrumentation

In order to modify the Go Runtime to perform better in cases with with heavy
channel usage, we do two things

1. We modify the Go Channels construct to store state to represent its us-
age/popularity

2. We implement functionality to monitor and change program cpu core affin-
ity based on the channel usage

In order to store state in the Channel structure we added a new field called
touch count. This value is incremented each time the lock for the channel is
grabbed by a Goroutine. We use this value to keep track of the channel usage.

Our periodic checker is triggered every 500 milliseconds. The checker will
walk through all channel’s state, determines if a given channel has high enough

3

activity to benefit from being placed on a single core, and then zero the touch
counter. If the channel would benefit, we say that the channel votes to put
the program into single core mode. If the majority of the channels vote yes for
single core mode, we issue the sched setaffinity() syscall to with mask value
0x1. A channel is considered to have high activity if the touch count is greater
than 800 in the 500ms window.

6 Experimental Setup

For our experiments we used two custom benchmark Go programs. The first
preliminary benchmark, called hotpotato, was used to contrive a case where
multiple Goroutines would communicate over multiple channels and then carry
out an ‘embarrassingly parallel’ section concurrently. In the communication
stage, we created a ring of Goroutines. Each Goroutine is connected to it’s
forward neighbor via a channel. During runtime, all Goroutines receive an
integer from their backward neighbor, increment the value and pass it on to their
forward neighbor. The program terminates when the value reaches a certain
threshold value. The embarrassingly parallel section simply crunches a series of
arithmetic operations repeatedly.

The second benchmark, which we call the fast regex is supposed to mimic
a real life use case of channels. It parallelizes regular expression matching over
a large file by launching multiple Goroutines to handle different sections of the
file. The Goroutines independently find matches in their section of the file and
then report back their matches over a single channel. This is a standard message
passing example, where threads only communicate when they are finished with
their task.

For each benchmark, we record the running times and the internal touch count

values for each channels, which we are used to make our scheduling affinity de-
cision. Additionally, we used perf to continuously record the Hardware Hit
Modified Counter value (at high granularity) during the program runtime.

We carried out our experiments on an Intel Xeon E3-1505M v5 @2.80 GHz
machine with 4 physical cores (8 with hyper-threading).

7 Results

7.1 hotpotato

We ran both the experiments for this benchmark on the 4-physical-core machine.
We ran 8 Goroutines that carried out about 5 × 107 channel communica-

tion operations over 8 channels in total and then performed some non-shared
concurrent work. The results are shown in Figure 1. Note that the HITMs are
practically eliminated when our auto affinity decides to trigger single core mode.

We then performed another experiment, to observe the trend over over ad-
ditional concurrency, by running the same experiment with 1 to 8 Goroutines
in a ring. As before, we limit the number being transfered inside the channels,

4

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

P
r
o
g
r
a
m

T
e
r
m
i
n
a
t
e
dC
o
u
n
t
e
r

V
a
l
u
e

Time Elapsed (seconds)

Native Go Scheduling

Hits on Modified Cache Lines

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

S
i
n
g
l
e

C
o
r
e

-
-
>

M
u
l
t
i
-
C
o
r
e

M
u
l
t
i
-
C
o
r
e

-
-
>

S
i
n
g
l
e

C
o
r
e

P
r
o
g
r
a
m

T
e
r
m
i
n
a
t
e
dC
o
u
n
t
e
r

V
a
l
u
e

Time Elapsed (seconds)

Adaptive AutoAffinity

Hits on Modified Cache Lines

Figure 1: ‘Hit Modified’ Events during Preliminary Benchmark

thus all goroutines make the same number of channel transfers. compared the
total running time of the case where we used our AutoAffinity Scheduler vs the
Native Go Scheduler. The results are shown in Figure 2

7.2 fast regex

We carried out the experiments for fast regex on both the machines. We
search for a reasonably complicated regular expression in a 535 MB file with
approximately 10.6 × 106 lines. A simple, non-parallized implementation takes
about ≈ 123 seconds to run.

7.2.1 Adaptive Scheduling

Figure 3 and 4 show results for running our touch count benchmark with 8
Goroutines with our AutoAffinity scheduler turned off and on respectively. We
record the Hit Modified hardware event counts and in the case of our scheduler
turned on, we also track the touch count value we are observing.

7.2.2 Performance Improvement

[!htb] To quantify the performance gains with varying number of Goroutines,
we carried out an experiment, running the fast regex benchmark with 4 to 8
Goroutines, with our AutoAffinity Scheduling turned on or off. The results are
shown in figure 5

8 Discussion

We find that the touch count on our channel structures is a good indicator of
the actual cache coherence operation overhead. As shown in section 7.2.1, we
find that the Hit Modified events, which trigger the Cache Coherence protocol,
are greatly reduced by our AutoAffinity scheduler. We also observe that as
soon as the Hit Modified events reduce in frequency, we change affinity back to
multiple cores as in Figure 1, allowing the program to take full advantage of its

5

Figure 2: Completion time for hotpotato with increasing number of Goroutines

inherent parallelism. In the case of our fast regex benchmark, we find that
there are some Hit Modified events that our scheduler does not observe. We
investigated and found that these were being caused by the memory allocation
engine of Go. However, as soon as channel usage began, our scheduler kicked in
and reduced the Hit Modifies.

An important thing to note here is that despite the extra state checking
we add into the Runtime, we do not have cause a significant overhead on the
‘embarrassingly parallel’ section of the program, so our solution will at least not
hurt performance, even if it doesn’t necessarily improve it. It should also be
noticed that we are able to greatly reduce the time of the channel usage section
in our benchmark by setting affinity to a single core.

We can clearly see the benefit of our AutoAffinity scheduler during in Figure5.
In the single Go Routine case, we might be getting some gain because there
might be some Runtime Go Routines that are benefited by our AutoAffinity
scheduling. We also see that we have a clear gain with increasing number of
Go Routines, as the more and more Go Routines contend on a channel, we get
more benefit of putting them on a single core.

9 Conclusion & Future Work

We set out to identify points of optimization in the Go Runtime with archi-
tectural knowledge. We found that the Golang concurrency primitive was a
hotspot for cache overheads due to heavy mutex sharing among Goroutines us-

6

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

P
r
o
g
r
a
m

T
e
r
m
i
n
a
t
e
dC
o
u
n
t
e
r

V
a
l
u
e

Time Elapsed (seconds)

Native Go Scheduling

Hits on Modified Cachelines

Figure 3: Native Scheduler Hit Modified events and touch count on 4-physical-
core machine

ing specific hardware counters. We determined the amount of times a channel
is used as a reasonable alias for how much cache coherence overhead it is likely
to cause and implemented a system to monitor this value and change the core
affinity of the program depending on the value. Our evaluation shows that our
modification is able to provide significant improvements in real world use cases.

Although we tested our solution on a dual socket machine, we would like to
see the benefits of being able to set affinity to a single NUMA node instead of a
single core. We expect to see some interesting results as some cache coherence
problems will still exist, but these operations will be cheaper within a single
NUMA node. Additionally, we would get the benefit of multiple cores within
that NUMA node instead of making the program completely sequential as is the
current case. This would allow programs with more diverse workloads to take
advantage of our solution.

7

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

M
u
l
t
i
-
C
o
r
e

-
-
>

S
i
n
g
l
e

C
o
r
e

P
r
o
g
r
a
m

T
e
r
m
i
n
a
t
e
dC
o
u
n
t
e
r

V
a
l
u
e

Time Elapsed (seconds)

Adaptive AutoAffinity Scheduling

Hits on Modified Cachelines
touch_count

Figure 4: AutoAffinity Scheduler Hit Modified events and touch count on 4-
physical-core machine

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7 8

T
i
m
e

E
l
a
p
s
e
d

(
s
e
c
o
n
d
s
)

of Go Routines

fast_regex Run Times with Varying # of Go Routines

Native Sched
AutoAffinity Sched

Figure 5: Run Times for fast regex with varying number of Goroutines

8

References

[1] “Github octoverse 2018.” https://octoverse.github.com. Accessed:
2018-04-10.

[2] “Tiobe index.” https://www.tiobe.com/tiobe-index/. Accessed: 2018-
04-10.

[3] N. Deshpande, E. Sponsler, and N. Weiss, “Analysis of the go runtime
scheduler,” URl: http://www.cs.columbia.edu/˜ aho/cs6998/reports/12-12-
11 DeshpandeSponslerWeiss GO.pdf (visited on 2016-12-19), 2012.

[4] “Scalable go scheduler design doc.” https://docs.google.com/document/

d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw/edit#heading=h.

mmq8lm48qfcw. Accessed: 2018-03-10.

[5] “Numa aware go scheduler.” https://docs.google.com/document/u/0/d/

1d3iI2QWURgDIsSR6G2275vMeQ_X7w-qxM2Vp7iGwwuM/pub. Accessed: 2018-
04-10.

9

