Lecture 10

Interval Analysis

- I Basic Idea
- II Algorithm
- III Optimization and Complexity
- IV Comparing interval analysis with iterative algorithms

Reference: Muchnick 7.5-7.7, 8.8
Advanced readings (optional):
R. E. Tarjan, "A Unified Approach to Path Problems",
JACM 28 (3) July 1981, pp. 577-593.
R. E. Tarjan, "Fast Algorithms for Solving Path Problems",
JACM 28 (3) July 1981, pp. 594-614.

Motivation for Studying Interval Analysis

- · Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied
 - Use of structure in induction variables, loop invarient
 - motivated by nature of the problem
 - This lecture: can we use structure for speed?
 - Iterative algorithm for data flow
 - This lecture: an alternative algorithm
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - This lecture: algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for "harder" analyses
 - Useful for analyses related to structure
- Theoretically interesting better understanding of data flow

I. Big Picture

Basic Idea

• In iterative analysis

• DEFINITION: Transfer function F_B: summarize effect from beginning to end of basic block B

• In interval analysis

- DEFINITION: Transfer function F_{R,B}: summarize effect from beginning of R to end of basic block B
- Recursively

construct a larger region R from smaller regions construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region

- Let P be the region for the entire program, and v be initial value at entry node
 - $out[B] = F_{P,B}(v)$
 - in $[B] = \wedge_{B'}$ out[B'], where B' is a predecessor of B

II. Algorithm

- (a) Operations on transfer functions
- (b) How to build nested regions?
- (c) How to construct transfer functions that correspond to the larger regions?

(a) Operations on Transfer Functions

- Example: Reaching Definitions
- $F(x) = Gen \cup (x Kill)$
- $\begin{aligned} F_2(F_1(x)) &= \operatorname{Gen}_2 \cup (F_1(x) \operatorname{Kill}_2) \\ &= \operatorname{Gen}_2 \cup (\operatorname{Gen}_1 \cup (x \operatorname{Kill}_1)) \operatorname{Kill}_2) \\ &= \operatorname{Gen}_2 \cup (\operatorname{Gen}_1 \cup (x \operatorname{Kill}_1)) \operatorname{Kill}_2) \\ &= \operatorname{Gen}_2 \cup (\operatorname{Gen}_1 \operatorname{Kill}_2) \cup (x (\operatorname{Kill}_1 \cup \operatorname{Kill}_2)) \end{aligned}$
- $F_1(x) \wedge F_2(x) = \text{Gen}_1 \cup (x \text{Kill}_1) \cup \text{Gen}_2 \cup (x \text{Kill}_2)$ = $(\text{Gen}_1 \cup \text{Gen}_2) \cup (x - (\text{Kill}_1 \cap \text{Kill}_2))$
- $F^*(x) \leq F^n(x), \forall n \geq 0$ = $x \cup F(x) \cup F(F(x)) \cup ...$ = $x \cup (Gen \cup (x - Kill)) \cup (Gen \cup ((Gen \cup (x - Kill)) - Kill)) \cup ...$ = $Gen \cup (x - \emptyset)$

```
CS745: Interval Analysis
```

Carnegie Mellon

T. Mowry

(b) Structure of Nested Regions (An example)

- A region in a flow graph is a set of nodes that
 - includes a header, which dominates all other nodes in a region

• T1-T2 rule (Hecht & Ullman)

- T1: Remove a loop
 - If n is a node with a loop, i.e. an edge n->n, delete that edge
- T2: Remove a vertex If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

• Can define larger regions (e.g. Allen&Cocke's intervals) simple regions=>simple composition rules for transfer functions

8

• Transfer function

 $F_{R,B}$: summarizes the effect from beginning of R to end of B $F_{R,in(H2)}$: summarizes the effect from beginning of R to beginning of H2

- Unchanged for blocks B in region R_1 ($F_{R,B} = F_{R1,B}$)
- $F_{R,in(H2)} = \wedge_{P} F_{R,P}$, where p is a predecessor of H_2
- For blocks B in region R₂: $F_{R,B} = F_{R2,B} \cdot F_{R,in(H2)}$

	Carnegie Mellon	
CS745: Interval Analysis 9		T. Mowry

Transfer Functions for T1 Rule

• Transfer function F_{R,B}

- $F_{R,in(H)} = (\land P F_{R1,P}) *$, where p is a predecessor of H in R
- $F_{R,B} = F_{R1,B} \cdot F_{R,in(H)}$

<u>First Example</u>

R	$T_{1/}T_{2}$	R'	F _{R,in(R')}	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}
R_1	T ₂	B ₂	F _{B1}	F _{B1}	$F_{B2} \cdot F_{R1,in(B2)}$		
R ₂	T ₂	R ₁	F _{B3}	$F_{R1,B1} \cdot F_{R2,in(R1)}$	$F_{R1,B2} \cdot F_{R2,in(R1)}$	F _{B3}	
R ₃	T ₁	R ₂	$(F_{R2B1} \land F_{R2B2})^*$	$F_{R2,B1} \cdot F_{R3,in(R2)}$	$F_{R2,B2}$ · $F_{R3,in(R2)}$	$F_{R2,B3}$ · $F_{R3,in(R2)}$	
R4	T ₂	B ₄	F _{R3B3} AF _{R3B2}	F _{R3,B1}	F _{R3,B2}	F _{R3,B3}	$F_{B4} \cdot F_{R4,in(B4)}$

- R: region name
- R': region whose header will be subsumed

		Carnegie Mellon	
CS745: Interval Analysis	11	T. Mowry	

III. Complexity of Algorithm

R	$T_{1/}T_{2}$	R'	F _{R,in(R')}	F _{R,B1}	F _{R,B2}	F _{R,B3}	F _{R,B4}	F _{R,B5}
R_1	T ₂	B_1	F _{B2}	$F_{B1} \cdot F_{B2}$	F _{B2}			
R ₂	T ₂	R_1	F _{B3}	$F_{R1,B1} \cdot F_{B3}$	$F_{R1,B2} \cdot F_{B3}$	F _{B3}		
R ₃	T ₂	R_2	F _{B4}	$F_{R2,B1} \cdot F_{B4}$	$F_{R2,B2}$ · F_{B4}	$F_{R2,B3} \cdot F_{B4}$	F _{B4}	
R_4	T ₂	R ₃	F _{B5}	$F_{R3,B1} \cdot F_{B5}$	$F_{R3,B2}$ · F_{B5}	$F_{R3,B3} \cdot F_{B5}$	$F_{B4} \cdot F_{B5}$	F _{B5}

					R ₄		
R	F _{R4,in(R)}	В		F _{R4,B}	B ₅ R ₂		
R_4	Ι	B	5	$F_{B5} \cdot I$			
R ₃	F_{B5} · $F_{R4,in(R4)}$	B	4	$F_{B4} \cdot F_{R4,in(R3)}$	$B_4 R_2$		
R ₂	$F_{B4} \cdot F_{R4,in(R3)}$	B	3	F_{B3} · $F_{R4,in(R2)}$	B ₂	R.	
R_1	$F_{B3} \cdot F_{R4,in(R2)}$	B	2	$F_{B2} \cdot F_{R4,in(R1)}$	- 3		
B_1	F_{B2} · $F_{R4,in(R1)}$	B	1	F_{B1} · $F_{R4,in(B1)}$	B ₂	B ₁	
						Carnegie Mellon	

Optimization

- Let m = number of edges, n = number of nodes
- Ideas for optimization
 - If we compute $F_{R,B}$ for every region B is in, then it is very expensive
 - We are ultimately only interested in the entire region (E); we need to compute only F_{E,B} for every B.
 - There are many common subexpressions between $F_{E,B1}$, $F_{E,B2}$,
 - Number of $F_{E,B}$ calculated = m
 - Also, we need to compute $F_{R,in(R')}$, where R' represents the region whose header is subsumed.
 - Number of $F_{R,B}$ calculated, where R is not final = n
- Total number of $F_{R,B}$ calculated: (m + n)
 - Data structure keeps "header" relationship
 - Practical algorithm: O(m log n)
 - Complexity: $O(m\alpha(m,n))$, α is inverse Ackermann function

		Carnegie Mellon
CS745: Interval Analysis	13	T. Mowry

Reducibility

• If no T1, T2 is applicable before graph is reduced to single node split node and continue

14

- Worst case: exponential
- Most graphs (including GOTO programs) are reducible

IV. Comparison with Iterative Data Flow

• Applicability

- Definitions of F* can make technique more powerful than iterative algorithms
- Backward flow -- reverse graph is not typically reducible. Requires more effort to adapt to backward flow than iterative alg.
- · More important for interprocedural optimization

• Speed

- Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Serious "irreducibility" can be slow with elimination
- Reducible graph & Cycles do not add information (common)
 - Iterative: (depth + 2) passes depth is 2.75 average, independent of code length
 - Elimination: Theoretically almost linear, typically O(m log n)
- Reducible & Cycles add information
 - Iterative takes longer to converge
 - Elimination remains the same

CS745: Interval Analysis

15

T. Mowry

Carnegie Mellon