Lecture 10
Interval Analysis

I Basic Idea
I Algorithm
il Optimization and Complexity

v Comparing interval analysis with iterative algorithms

Reference: Muchnick 7.5-7.7, 8.8
Advanced readings (optional):

R. E. Tarjan, “A Unified Approach to Path Problems”,
JACM 28 (3) July 1981, pp. 577-593.

R. E. Tarjan, “Fast Algorithms for Solving Path Problems”,
JACM 28 (3) July 1981, pp. 594-614.

CS745: Interval Analysis 1 T. Mowry

Motivation for Studying Interval Analysis

» Exploit the structure of block-structured programs in data flow

» Tie in several concepts studied

¢ Use of structure in induction variables, loop invarient
¢ motivated by nature of the problem
 This lecture: can we use structure for speed?

« lterative algorithm for data flow
« This lecture: an alternative algorithm

¢ Reducibility
« all retreating edges of DFST are back edges
« reducible graphs converge quickly
 This lecture: algorithm exploits & requires reducibility

» Usefulness in practice
« Faster for “harder” analyses
e Useful for analyses related to structure
» Theoretically interesting - better understanding of data flow

CS745: Interval Analysis 2 T. Mowry



|. Big Picture

Carnegie Mellon -

CS745: Interval Analysis 3 T. Mowry

Basic Idea

* In iterative analysis

» DEFINITION: Transfer function Fg:
summarize effect from beginning to end of basic block B

* In interval analysis

+ DEFINITION: Transfer function Fg g:
summarize effect from beginning of R to end of basic block B

* Recursively
construct a larger region R from smaller regions
construct Fg g from transfer functions for smaller regions
until the program is one region

 Let P be the region for the entire program,
and v be initial value at entry node

* out[B] =Fp g (V)
e in[B] = A g-out[B’], where B’ is a predecessor of B

CS745: Interval Analysis 4 T. Mowry



]
1. Algorithm

(@) Operations on transfer functions
¢ (b) How to build nested regions?

¢ (c) How to construct transfer functions
that correspond to the larger regions?

CS745: Interval Analysis 5 T. Mowry

]
(a) Operations on Transfer Functions

» Example: Reaching Definitions

* F(x)=Genu (x-Kill)

o Fa(F1(x))  =Geny U (F(x) - Killy)
= Gen, U (Geny U (x- Killy)) - Kill,)
= Gen, U (Gen; U (x- Killy)) - Kill,)
= Gen, U (Gen; - Killy) U (x - (Killy U Kill,)

° Fl(X) A Fz(X) = Genl ) (X - Kl"l) ) Gen2 U (X - K|"2)
= (Genq LU Geny) U (x - (Kill; Killy))

¢ F*(x) <=F"(x), Vn=0
=x U FX) U FFX) v ..
=x U (Gen U (x- Kill)) U (Gen U ((Gen U (x - Kill)) - Kill)) U ...
=Genu (x- Q)

CS745: Interval Analysis 6 T. Mowry



|
(b) Structure of Nested Regions (An example)

» Arregion in a flow graph is a set of nodes that
« includes a header, which dominates all other nodes in a region
e T1-T2 rule (Hecht & Ullman)

e T1: Remove a loop
If n is a node with a loop, i.e. an edge n->n, delete that edge

e T2: Remove a vertex
If there is a node n that has a unique predecessor, m,
then m may consume n by
deleting n and making all successors of n be successors of m.

CS745: Interval Analysis 7 T. Mowry

* Inreduced graph:

« each vertex represents a subgraph of original graph (a region).
 each edge represents an edge in original graph
 Limit flow graph: result of exhaustive application of T1 and T2
« independent of order of application.
« if limit flow graph has a single vertex => reducible

 Can define larger regions (e.g. Allen&Cocke’s intervals)
simple regions=>simple composition rules for transfer functions

CS745: Interval Analysis 8 T. Mowry



¢) Transfter Functions 1or uie

-

 Transfer function
Fr g: summarizes the effect from beginning of R to end of B
FR,in(H2): summarizes the effect from beginning of R to beginning of H2

* Unchanged for blocks B in region Ry (Fr g = Fr1 )
* FRrint2) = ~ p Frp Where pis a predecessor of H,

* For blocks B in region Ry: Fr g = Fro g ‘FRin(H2
e e ===

CS745: Interval Analysis 9 T. Mowry

Transfer Functions for T1 Rule

R
4 )
Ry

>

* Transfer function Fg g
* Fring) = (A p Fryp) *, where p is a predecessor of H in R

* FrB =FRry,8'FRiin(H)

CS745: Interval Analysis 10 T. Mowry



First Example

,\( e e

By B
R|TyT2 | R’ FrinrR" FrB1 FrB2 FrB3 FrB4
Ry [T, Bz |Fe1 Fg1 Fe2FR1,inB2)
Ry T2 |Ry FriB1- FriB2 Fg3
R3 |T1  |Ry | (FrogirFRroB2)* | Fro,B1FR3in(R2) | FR2B2FR3inR2) | FR2,83FR3,in(R2)
R4 | T, | By | FragsrFras2 Fr3,B1 Fr3,B2 FRr3,B3 FB4'FRa,in(B4)

e R:region name
* R’: region whose header will be subsumed

CS745: Interval Analysis 11

T. Mowry

111. Complexity of Algorithm
@%@—1>
—

“ 3
— S 4
R |TuT2 | R” | Frinr) | Fri1 Fr.B2 FrB3 FrBa | FrBS
Ry [T, |B1 |Feo Fe1Fa2 Fg2
Ry [T |Rg FriB1 FriB2 Fes3
Ry [T, |Ry |Fgy Frog1Fea |FroB2FBs |Fr2B3FB4 |FB4
Ry [T |R3g |Fps Frsp1Fes |Frsp2Fes |Fr3psFes |FeaFes|Fes

Ry
/\

R | Frainr) B Frap By R,

Ry |1 Bg | Fgsl /\

R3 | Fes:FRa,in(r4) B4 | FBaFRa,in(r3) By &

R2 | FBa'FRa,in(R3) B3 | Fe3-Fra,inr2) B3/ R,
Ry Fra,inR2) B2 | FB2:FRra,inr1) AN
B1 | Fe2'FRa,inR1) B1 | Fe1Fraine) B, B

CS745: Interval Analysis 12

T. Mowry




R
Optimization

e Let m = number of edges, n = number of nodes

* ldeas for optimization
* If we compute Fg g for every region B is in,
then it is very expensive
« We are ultimately only interested in the entire region (E);
we need to compute only Fg g for every B.
* There are many common subexpressions between Fg g1, Fg o,

* Number of Fg g calculated = m
* Also, we need to compute Fg jyr-), Where R’ represents the
region whose header is subsumed.
* Number of Fg g calculated, where R is not final = n

* Total number of Fg g calculated: (m + n)

« Data structure keeps “header” relationship
« Practical algorithm: O(m log n)
» Complexity: O(mo(m,n)), a is inverse Ackermann function

Carnegie Mellon -

T. Mowry

CS745: Interval Analysis 13

Reducibility

(D)

£

e Ifno T1, T2 is applicable before graph is reduced to single node
split node and continue

» Worst case: exponential
* Most graphs (including GOTO programs) are reducible

T. Mowry

CS745: Interval Analysis 14



]
1VV. Comparison with Iterative Data Flow

» Applicability
« Definitions of F* can make technique
more powerful than iterative algorithms

» Backward flow -- reverse graph is not typically reducible.
Requires more effort to adapt to backward flow than iterative alg.

* More important for interprocedural optimization
» Speed
« Irreducible graphs

« |terative algorithm can process irreducible parts uniformly
 Serious “irreducibility” can be slow with elimination

* Reducible graph & Cycles do not add information (common)

* lterative: (depth + 2) passes
depth is 2.75 average, independent of code length

« Elimination: Theoretically almost linear, typically O(m log n)

¢ Reducible & Cycles add information
« |terative takes longer to converge
 Elimination remains the same

CS745: Interval Analysis 15 T. Mowry



