
CS745: Interval Analysis 1 T. Mowry

Carnegie Mellon

Lecture 10

Interval Analysis

I Basic Idea

II Algorithm

III Optimization and Complexity

IV Comparing interval analysis with iterative algorithms

Reference: Muchnick 7.5-7.7, 8.8
Advanced readings (optional):
R. E. Tarjan, “A Unified Approach to Path Problems”,
JACM 28 (3) July 1981, pp. 577-593.
R. E. Tarjan, “Fast Algorithms for Solving Path Problems”,
JACM 28 (3) July 1981, pp. 594-614.

CS745: Interval Analysis 2 T. Mowry

Carnegie Mellon

Motivation for Studying Interval Analysis

• Exploit the structure of block-structured programs in data flow

• Tie in several concepts studied

• Use of structure in induction variables, loop invarient
• motivated by nature of the problem
• This lecture: can we use structure for speed?

• Iterative algorithm for data flow
• This lecture: an alternative algorithm

• Reducibility
• all retreating edges of DFST are back edges
• reducible graphs converge quickly
• This lecture: algorithm exploits & requires reducibility

• Usefulness in practice

• Faster for “harder” analyses

• Useful for analyses related to structure

• Theoretically interesting - better understanding of data flow

CS745: Interval Analysis 3 T. Mowry

Carnegie Mellon

I. Big Picture

B1 B2 B4B3

B1 B2 B4B3

B1 B2 B4B3

B1 B2 B4B3

B1 B2 B4B3

CS745: Interval Analysis 4 T. Mowry

Carnegie Mellon

Basic Idea

• In iterative analysis

• DEFINITION: Transfer function FB:
summarize effect from beginning to end of basic block B

• In interval analysis

• DEFINITION: Transfer function FR,B:
summarize effect from beginning of R to end of basic block B

• Recursively
construct a larger region R from smaller regions
construct FR,B from transfer functions for smaller regions

until the program is one region

• Let P be the region for the entire program,
and v be initial value at entry node

• out[B] = FP,B (v)
• in [B] = B’ out[B’], where B’ is a predecessor of B∧

CS745: Interval Analysis 5 T. Mowry

Carnegie Mellon

II. Algorithm

• (a) Operations on transfer functions

• (b) How to build nested regions?

• (c) How to construct transfer functions
that correspond to the larger regions?

CS745: Interval Analysis 6 T. Mowry

Carnegie Mellon

(a) Operations on Transfer Functions
• Example: Reaching Definitions

• F(x) = Gen (x - Kill)

• F2(F1(x)) = Gen2 ∪ (F1(x) - Kill2)
= Gen2 ∪ (Gen1 ∪ (x - Kill1)) - Kill2)
= Gen2 ∪ (Gen1 ∪ (x - Kill1)) - Kill2)
= Gen2 ∪ (Gen1 - Kill2) ∪ (x - (Kill1 ∪ Kill2))

• F1(x) ∧ F2(x) = Gen1 ∪ (x - Kill1) ∪ Gen2 ∪ (x - Kill2)
= (Gen1 ∪ Gen2) ∪ (x - (Kill1∩ Kill2))

• F*(x) <= Fn(x), ∀ n ≥ 0
= x ∪ F(x) ∪ F(F(x)) ∪ ...
= x ∪ (Gen ∪ (x - Kill)) ∪ (Gen ∪ ((Gen ∪ (x - Kill)) - Kill)) ∪ ...
= Gen ∪ (x - ∅)

∪

CS745: Interval Analysis 7 T. Mowry

Carnegie Mellon

(b) Structure of Nested Regions (An example)

• A region in a flow graph is a set of nodes that

• includes a header, which dominates all other nodes in a region

• T1-T2 rule (Hecht & Ullman)

• T1: Remove a loop
If n is a node with a loop, i.e. an edge n->n, delete that edge

• T2: Remove a vertex
If there is a node n that has a unique predecessor, m,
then m may consume n by
deleting n and making all successors of n be successors of m.

CS745: Interval Analysis 8 T. Mowry

Carnegie Mellon

Example

• In reduced graph:

• each vertex represents a subgraph of original graph (a region).

• each edge represents an edge in original graph

• Limit flow graph: result of exhaustive application of T1 and T2

• independent of order of application.

• if limit flow graph has a single vertex => reducible

• Can define larger regions (e.g. Allen&Cocke’s intervals)
simple regions=>simple composition rules for transfer functions

a

b c

d

a

b c

d

CS745: Interval Analysis 9 T. Mowry

Carnegie Mellon

(c) Transfer Functions for T2 Rule

• Transfer function
FR,B: summarizes the effect from beginning of R to end of B
FR,in(H2): summarizes the effect from beginning of R to beginning of H2

• Unchanged for blocks B in region R1 (FR,B = FR1,B)

• FR,in(H2) = P FR,P, where p is a predecessor of H2

• For blocks B in region R2: FR,B = FR2,B ·FR,in(H2)

R1 R
H1

R2
H2

R1 R
H

R2

∧

CS745: Interval Analysis 10 T. Mowry

Carnegie Mellon

Transfer Functions for T1 Rule

• Transfer function FR,B

• FR,in(H) = (P FR1,P) *, where p is a predecessor of H in R

• FR,B = FR1,B·FR,in(H)

R1

R

H

∧

CS745: Interval Analysis 11 T. Mowry

Carnegie Mellon

First Example

• R: region name

• R’: region whose header will be subsumed

R T1/T2 R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4

R1 T2 B2 FB1 FB1 FB2⋅FR1,in(B2)

R2 T2 R1 FB3 FR1,B1⋅FR2,in(R1) FR1,B2⋅FR2,in(R1) FB3

R3 T1 R2 (FR2B1∧FR2B2)* FR2,B1⋅FR3,in(R2) FR2,B2⋅FR3,in(R2) FR2,B3⋅FR3,in(R2)

R4 T2 B4 FR3B3∧FR3B2 FR3,B1 FR3,B2 FR3,B3 FB4⋅FR4,in(B4)

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3

CS745: Interval Analysis 12 T. Mowry

Carnegie Mellon

III. Complexity of Algorithm

R T1/T2 R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4 FR,B5

R1 T2 B1 FB2 FB1⋅FB2 FB2

R2 T2 R1 FB3 FR1,B1⋅FB3 FR1,B2⋅FB3 FB3

R3 T2 R2 FB4 FR2,B1⋅FB4 FR2,B2⋅FB4 FR2,B3⋅FB4 FB4

R4 T2 R3 FB5 FR3,B1⋅FB5 FR3,B2⋅FB5 FR3,B3⋅FB5 FB4⋅FB5 FB5

12345
1
2
3
4

R4

R3

B4 R2

R1

B2 B1

B3

B5
R FR4,in(R)

R4 I
R3 FB5⋅FR4,in(R4)

R2 FB4⋅FR4,in(R3)

R1 FB3⋅FR4,in(R2)

B1 FB2⋅FR4,in(R1)

B FR4,B

B5 FB5⋅I
B4 FB4⋅FR4,in(R3)

B3 FB3⋅FR4,in(R2)

B2 FB2⋅FR4,in(R1)

B1 FB1⋅FR4,in(B1)

CS745: Interval Analysis 13 T. Mowry

Carnegie Mellon

Optimization

• Let m = number of edges, n = number of nodes

• Ideas for optimization

• If we compute FR,B for every region B is in,
then it is very expensive

• We are ultimately only interested in the entire region (E);
we need to compute only FE,B for every B.

• There are many common subexpressions between FE,B1, FE,B2,
...

• Number of FE,B calculated = m

• Also, we need to compute FR,in(R’), where R’ represents the
region whose header is subsumed.

• Number of FR,B calculated, where R is not final = n

• Total number of FR,B calculated: (m + n)

• Data structure keeps “header” relationship
• Practical algorithm: O(m log n)
• Complexity: O(m (m,n)), is inverse Ackermann functionα α

CS745: Interval Analysis 14 T. Mowry

Carnegie Mellon

Reducibility

• If no T1, T2 is applicable before graph is reduced to single node
split node and continue

• Worst case: exponential

• Most graphs (including GOTO programs) are reducible

1

2 3

CS745: Interval Analysis 15 T. Mowry

Carnegie Mellon

IV. Comparison with Iterative Data Flow
• Applicability

• Definitions of F* can make technique
more powerful than iterative algorithms

• Backward flow -- reverse graph is not typically reducible.
Requires more effort to adapt to backward flow than iterative alg.

• More important for interprocedural optimization

• Speed

• Irreducible graphs
• Iterative algorithm can process irreducible parts uniformly
• Serious “irreducibility” can be slow with elimination

• Reducible graph & Cycles do not add information (common)
• Iterative: (depth + 2) passes

depth is 2.75 average, independent of code length
• Elimination: Theoretically almost linear, typically O(m log n)

• Reducible & Cycles add information
• Iterative takes longer to converge
• Elimination remains the same

