
Register Allocation

1

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 1

15-745

Graph Coloring
Register Allocation

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 2

Intro to Global Register Allocation
Problem:

• Allocation of variables (pseudo-registers) to hardware registers in a 
procedure

One of the most important optimizations
• Memory accesses are more costly than register accesses

– True even with caches

– True even with CISC architectures

• Important for other optimizations
– E.g., redundancy elimination assumes old values are kept in registers

• When it does not work well, the performance impact is noticeable.

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 3

Terminology
Allocation

• decision to keep a pseudo-register in a hardware register

• prior to register allocation, we assume an infinite set of registers 

– (aka “temps” or “pseudo-registers”).

Spilling
• when allocation fails...
• a pseudo-register is spilled to memory, if not kept in a hardware 

register

Assignment
• decision to keep a pseudo-register in a specific hardware 

register

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 4

What are the Problems?
• For this example:

• What is the minimum number of registers needed to avoid spilling?

• Given n registers in a machine, is spilling necessary?

• Find an assignment for all pseudo-registers, if possible.

• If there are not enough registers in the machine, how do we spill to memory?

IF A goto L1
A = ...

B = ... L1: C =...
= A 

D = B 
= A

D = C

ret D 



Register Allocation

2

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 5

Abstraction for Reg Alloc & Assignment

Intuitively:
• Two pseudo-registers interfere if at some point in the program they 

cannot both occupy the same register. 

Interference graph: an undirected graph, where
• nodes = pseudo-registers
• there is an edge between two nodes if their corresponding 

pseudo-registers interfere

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 6

Register Allocation and Coloring
• A graph is n-colorable

if every node in the graph can be colored with one of n colors 
such that two adjacent nodes do not have the same color.

• Assigning n registers (without spilling) = Coloring with n colors

– assign a node to a register (color) such that
no two adjacent nodes are assigned same registers(colors)

• Is spilling necessary? = Is the graph n-colorable?

• To determine if a graph is n-colorable is NP-complete, for n>2

– Too expensive 

– Heuristics

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 7

Simple Algorithm
Build an interference graph

• refining notion of a node
• finding the edges

Coloring
• use heuristics to try to find an n-coloring

– Success ⇒ colorable and we have an assignment

– Failure ⇒ graph not colorable, or 
graph is colorable, but we couldn’t find a coloring

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 8

Nodes in an Interference Graph

IF A goto L1
A = ...

B = ... L1: C =...
= A 

D = B 
= A

D = C

A = 2

= A



Register Allocation

3

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 9

Live Ranges & Merged Live Ranges
• Motivation: to create an interference graph that is easier to color

– Eliminate interference in a variable’s “dead” zones.

– Increase flexibility in allocation: 
can allocate same variable to different registers

• A live range consists of a definition and all the points in a program 
(e.g. end of an instruction) in which that definition is live. 

– How to compute a live range?

• Two overlapping live ranges for the same variable must be merged

a = 

= a

a = 

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 10

Example (Revisited)

A = ...  (A1)
IF A goto L1

L1:
C = ...  (C1)

= A
D = ...  (D1) 

B = ...  (B1)
= A

D = B  (D2) 

A = 2  (A2)

= A
ret D

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B1}
{B} {A1,B1}
{D} {A1,B1,D2}

Live Variables
Reaching Definitions

{A} {A1}
{A,C} {A1,C1}
{C} {A1,C1}
{D} {A1,C1,D1}

{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}

Merge

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 11

Merging Live Ranges
Merging definitions into equivalence classes:

• Start by putting each definition in a different equivalence class
• For each point in a program

– if variable is live, 
and there are multiple reaching definitions for the variable

– merge the equivalence classes of all such definitions into a one equivalence 
class

From now on, refer to merged live ranges simply as live range
• Merged live ranges are also known as “webs”

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 12

Example: Merged Live Ranges

A = ...  (A1)
IF A goto L1

L1:
C = ...  (C1)

= A
D = ...  (D1) 

B = ...  (B1)
= A

D = B  (D2) 

A = 2  (A2)

= A
ret D

{}
{A1}
{A1}

{A1}
{A1,B1}
{B1}
{D1,2}

{A1}
{A1,C1}
{C1}
{D1,2}

{D1,2}
{A2,D1,2}

{A2,D1,2}
{D1,2}



Register Allocation

4

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 13

Edges of Interference Graph
Intuitively:

• Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program.

• Algorithm:
– At each point in program,

enter an edge for every pair of live ranges at that point

An optimized definition & algorithm for edges:
For each inst i

Let x be live range of definition at inst i
For each live range y present at end of inst i

insert an edge between x and y

• Faster
• Better quality?

A = 2  (A2)
{D1,2}
{A2,D1,2}

Edge between A2 and D1,2

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 14

Example 2

If Q goto L1

A = L1: B = 

If Q goto L2

= A L2: = B

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 15

Example: Interference Graph

A1

C D
{D1,D2}

B

A2

So was it worth it to 
split the live ranges?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 16

Coloring
• Reminder: coloring for n > 2 is NP-complete

• Observations

– a node with degree < n ⇒
can always color it successfully, given its neighbors’ colors

– a node with degree = n ⇒

– a node with degree > n ⇒



Register Allocation

5

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 17

Coloring Algorithm
Algorithm

• Iterate until stuck or done
– Pick any node with degree < n
– Remove the node and its edges from the graph

• If done (no nodes left)
– reverse process and add colors

Example (n = 3)

• Note: degree of a node may drop in iteration

• Avoids making arbitrary decisions that make coloring fail

B

E C

D

A

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 18

What Does Coloring Accomplish?
Done:

• colorable
• also obtained an assignment (colors correspond to registers)

Stuck (n = 2):
• colorable or not?

• One solution: optimistically remove nodes and hope we get lucky...

B

E C

D

A

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 19

Checkpoint
Problems:

• Given n registers in a machine, is spilling avoided?
• Find an assignment for all pseudo-registers, whenever possible.

Solution:
• Abstraction: an interference graph

– nodes: (merged) live ranges
– edges: presence of live range at time of definition

• Register Allocation and Assignment problems 
= n-colorability of interference graph
⇒ NP-complete

• Heuristics to find an assignment for n colors
– successful: colorable, and finds assignment
– unsuccessful: colorability unknown & no assignment

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 20

Discussion
What about when we can’t k-color?

• spill to memory: next time

Is the minimum coloring always what we want?
• Hint: no

What about architecture strangeness?
• subword registers (x86, 68k, ColdFire...)
• register pairing (HP PA-RISC, SPARC, x86)
• register classes (x86, 68k, ColdFire...)



Register Allocation

6

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 21

An Improvement: Move Coalescing
Basic idea:

• eliminate moves by assigning the src and dest to the same register
• copy propagation and dead code elimination can’t eliminate all 

unnecessary moves

How can we modify our interference graph to do this?

X = 1 X = Y

Z = X+2

If we allocate X and Y 
to the same register we 

can eliminate X = Y

(copy prop couldn’t)

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 22

An Exciting New Example

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

<- w

<- t

<- u

v               

w           
x        

u     
t 

First compute live ranges...

v

x w

u

t

...then construct interference graph

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 23

An Exciting New Example cont.

v

x w

u

t

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

<- w

<- t

<- u

u and v are special:
A move whose source is not live-out of 
the move is a candidate for coalescing

Want u and v to be 
assigned same 
color...

uv

...merge u and 
v to form a 
single node

That is, if the src and 
dest don’t interfere

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 24

Is Coalescing Always Good?
y

u x

b

av

uv

y

u x

b

av

move edge vs.

And the winner is?
3 colorable2 colorable



Register Allocation

7

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 25

When should we coalesce?
Always

• If we run into trouble start un-coalescing
– no nodes with degree < k, see if breaking up coalesced nodes fixes

• yuck
Only if we can prove it won’t cause problems

• Briggs: Conservative Coalescing
• George: Iterated Coalescing

y u x

b

av

When we simplify the 
graph, we remove nodes 
of degree < k...

want to make sure we will 
still be able to simplify 
coalesced node, uv

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 26

Briggs: Conservative Coalescing

y u x

b

av

•Can coalesce u and v if:
–(# of neighbors of uv with degree ≥ k) < k

•Why?
–Simplify pass removes all nodes with degree < k
–# of remaining nodes < k
–Thus, uv can be simplified

What does Briggs 
say about

k = 3?

k = 2?

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 27

George: Iterated Coalescing
Can coalesce u and v if

foreach neighbor t of u
– t interferes with v, or,
– degree of t < k

Why?
• let S be set of neighbors of u with degree < k
• If no coalescing, simplify removes all nodes in S, call that 

graph G1

• If we coalesce we can still remove all nodes in S, call that 
graph G2

• G2 is a subgraph of G1

doesn’t change degree
removed by simplification

Resulting node uv will 
(after simplification) 
have degree equal to 
degree of v

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 28

George: Iterated Coalescing

u

v

S1

S2 S3

S4

x1

x2

u

v
x1

x2

No coalescing, 
after 

simplification

uv
x1

x2

After coalescing and 
simplificationk = 4



Register Allocation

8

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 29

Why Two Methods?
• Why not?
• With Briggs, one needs to look at all neighbors of a & b
• With George, only need to look at neighbors of a.

So:
• Use George if one of a & b has very large degree
• Use Briggs otherwise

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 30

Where We Are
Build

Simplify

Coalesce

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 31

Where We’re Going
Build

Simplify

Potential Spill

Select

Actual Spill

Coalesce

plus a bunch of 
important details...

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 32

Proto-Professor Algarth Zag, pioneer in fire research


