Register Allocation

15-745

Graph Coloring
Register Allocation

Cs745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Intro to Global Register Allocation

Problem:

« Allocation of variables (pseudo-registers) to hardware registers in a
procedure

One of the most important optimizations
« Memory accesses are more costly than register accesses
— True even with caches
— True even with CISC architectures
* Important for other optimizations
— E.g., redundancy elimination assumes old values are kept in registers

* When it does not work well, the performance impact is noticeable.

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Terminology

Allocation
« decision to keep a pseudo-register in a hardware register

« prior to register allocation, we assume an infinite set of registers
— (aka “temps” or “pseudo-registers”).
Spilling

« when allocation fails...
« apseudo-register is spilled to memory, if not kept in a hardware

register
Assignment
« decision to keep a pseudo-register in a specific hardware
register

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

What are the Problems?

« For this example:
* What is the minimum number of registers needed to avoid spilling?
« Given n registers in a machine, is spilling necessary?

+ Find an assignment for all pseudo-registers, if possible.

« If there are not enough registers in the machine, how do we spill to memory?

A= ..
IF A goto L

L1: C

mnann
>

O w
oy
w>:

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Abstraction for Reg Alloc & Assignment

Intuitively:

« Two pseudo-registers interfere if at some point in the program they
cannot both occupy the same register.

Interference graph: an undirected graph, where
* nodes = pseudo-registers

« thereis an edge between two nodes if their corresponding
pseudo-registers interfere

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Register Allocation

Register Allocation and Coloring

A graph is n-colorable
if every node in the graph can be colored with one of n colors
such that two adjacent nodes do not have the same color.

Assigning n registers (without spilling) = Coloring with n colors

— assign a node to a register (color) such that
no two adjacent nodes are assigned same registers(colors)

Is spilling necessary? = Is the graph n-colorable?
To determine if a graph is n-colorable is NP-complete, for n>2

— Too expensive
— Heuristics

Cs745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 3

Simple Algorithm

Build an interference graph
« refining notion of a node
« finding the edges

Coloring
« use heuristics to try to find an n-coloring

— Success = colorable and we have an assignment

— Failure = graph not colorable, or
graph is colorable, but we couldn't find a coloring

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Nodes in an Interference Graph

A= ...
IF A goto L]

O\,

B= ... L1: C =..
= A = A
D=8 D=C¢C
\/
A=2
\
= A

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 8

Register Allocation

Live Ranges & Merged Live Ranges Example (Revisited)
* Motivation: to create an interference graph that is easier to color Live Variables
i initi { Y
— Eliminate interference in a variable’s “dead” zones. Reaching Definitions A=.. (A) | fa Al
o) IFAgotoLl] a A}
— Increase flexibility in allocation: 1
can allocate same variable to different registers
{A {A} B=.. (By)
L1: A A
* Aliverange consists of a definition and all the points in a program g;is} %ﬁ“g% :_A C=..(Cy) EA?C} %Afcl}
(e.g. end of an instruction) in which that definition is live. (D} (AiBiDz} D=B (D) = {c} {A,.C}
— How to compute a live range? D= ©®) |} {A,C.DY
{AlvBlvcl

Merge

-) A,,B,,C
« Two overlapping live ranges for the same variable must be merged A8 Cy

(a1 L[L5=1 {AD} {A,B,,CyDy.D, Y —
D A, B,,C,D,D -
{ } { 2 1 1 1 2} ret D

[=a]
CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 9 CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 10
Merging definitions into equivalence classes:

< Start by putting each definition in a different equivalence class A=.. (A) EA }

1.
« For each point in a program IF Agoto L1 A}

— if variable is live,
and there are multiple reaching definitions for the variable A}
1 =
— merge the equivalence classes of all such definitions into a one equivalence {A.B} B - A (B L1: (A}
class B - C=..(Cy) {A,C,}
{B;} D=B (D, _ 1,C1.
{D12} Z {Cy
= (B {Dy2}
{D} (A BCrB B} e o
{AD} {A;,B4,C,,D4,D5} {D15}
{AZ’DLZ}
From now on, refer to merged live ranges simply as live range (A,D.)
212 _
« Merged live ranges are also known as “webs” {Dy .} t_D
" rei
CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 1n (CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 12

Edges of Interference Graph

Intuitively:

« Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program.

« Algorithm:

— At each point in program,
enter an edge for every pair of live ranges at that point

An optimized definition & algorithm for edges:

For each inst i
Let x be live range of definition at inst i
For each live range y present at end of inst i
insert an edge between x and y

« Faster

« Better quality? D
A=2 (A) EA;gl ;T Edgebetween A, and D,

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Register Allocation

Example 2

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Example: Interference Graph

So was it worth it to
split the live ranges?

N

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Coloring

* Reminder: coloring for n > 2 is NP-complete

* Observations

— anode with degree <n =
» can always color it successfully, given its neighbors’ colors

— anode with degree = n =

— a node with degree > n =

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Coloring Algorithm

Algorithm
« lterate until stuck or done
— Pick any node with degree <n
— Remove the node and its edges from the graph
« If done (no nodes left)
— reverse process and add colors

Example (n = 3)

Iy

« Note: degree of a node may drop in iteration

« Avoids making arbitrary decisions that make coloring fail

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Register Allocation

What Does Coloring Accomplish?

Done:
» colorable

Stuck (n = 2):
» colorable or not?

» also obtained an assignment (colors correspond to registers)

* One solution: optimistically remove nodes and hope we get lucky...

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Checkpoint

Problems:
« Given n registers in a machine, is spilling avoided?
« Find an assignment for all pseudo-registers, whenever possible.

Solution:

« Abstraction: an interference graph
— nodes: (merged) live ranges
— edges: presence of live range at time of definition

* Register Allocation and Assignment problems
=n-colorability of interference graph
= NP-complete

« Heuristics to find an assignment for n colors
— successful: colorable, and finds assignment
— unsuccessful: colorability unknown & no assignment

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Discussion

What about when we can’t k-color?
* spill to memory: next time

Is the minimum coloring always what we want?
e Hint: no

What about architecture strangeness?
» subword registers (x86, 68k, ColdFire...)
* register pairing (HP PA-RISC, SPARC, x86)
* register classes (x86, 68k, ColdFire...)

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

An Improvement: Move Coalescing

Basic idea:
« eliminate moves by assigning the src and dest to the same register
« copy propagation and dead code elimination can’t eliminate all
unnecessary moves

If we allocate X and Y
to the same register we
can eliminate X =Y

(copy prop couldn't)

X=1 X=Y

How can we modify our interference graph to do this?

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Register Allocation

An Exciting New Example

X = <
0

c
A
1

cC # = € < = < P

First compute live ranges...
...then construct interference graph

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

An Exciting New Example cont.

v <- 1 Want u and v to be
assigned same
w<- v+ 3 color...
X <= W+ Vv ...merge u and
vto forma
_ single node
us<- v ¢ uv
<- u+ X
<- w
<- t
<- u

u and v are special:
A move whose source is not live-out of
the move is a candidate for coalescing

That is, if the src and
dest don't interfere

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Is Coalescing Always Good?

And the winner is?

2 colorable 3 colorable

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

When should we coalesce?

Always
< If we run into trouble start un-coalescing
— no nodes with degree < k, see if breaking up coalesced nodes fixes
¢ yuck
Only if we can prove it won’t cause problems
« Briggs: Conservative Coalescing
« George: Iterated Coalescing

When we simplify the
graph, we remove nodes
of degree <Kk...

want to make sure we will
still be able to simplify
coalesced node, uv

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Registe

r Allocation

Briggs: Conservative Coalescing

*Can coalesce u and v if:
—(# of neighbors of uv with degree > k) < k

*Why?
—Simplify pass removes all nodes with degree < k
—# of remaining nodes < k
—Thus, uv can be simplified

What does Briggs
say about

k=37
k=27

C5745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

George: Iterated Coalescing

Can coalesce u and v if
foreach neighbor t of u Resulting node uv will
— tinterferes with v, or, doesn't change degree (after simplification)
— degree of t <k removed by simplification :IL have degree equal to
degree of v
Why?
* let S be set of neighbors of u with degree < k
» If no coalescing, simplify removes all nodes in S, call that
graph G*
« If we coalesce we can still remove all nodes in S, call that
graph G2
* G?is asubgraph of G

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

George: Iterated Coalescing

No coalescing,
after
simplification

After coalescing and
k=4 simplification

CS745: Register Allocation © Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Why Two Methods?

¢« Why not?

So:

* With Briggs, one needs to look at all neighbors ofa & b
* With George, only need to look at neighbors of a.

+ Use George if one of a & b has very large degree
« Use Briggs otherwise

C5745: Register Allocation

© Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Register Allocation

Where We Are

Coalesce ’

CS745: Register Allocation

© Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 30

Where We're Going

Potential Spill

Actual Spill

plus a bunch of
important details...

CS745: Register Allocation

© Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3

Proto-Professor Algarth Zag, pioneer in fire research

L . Now, Thog,,

next mglgo iﬂth ere and See
where all ‘my other research

students have gotten to.....

CS745: Register Allocation

© Seth Copen Goldstein & Todd C. Mowry & David Ryan Koes 2002-3 32

