15-745

Register Allocation
Spilling & Stuff

STUPLD SOFTWARE! ' WE CALL IT “CODE
WON'T COMPILE;

RAGE." I'M SEEING
A LOT OF IT LATELY

Syndics:

GjqH 1998 Unid Famture

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3 1

Register Allocation

Review

Potential Spill

Actual Spill

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Review: Build

First compute live ranges:

Vo< - use both reach defs and liveness
wos- - live range defined by definition point
X <-

- ends when variable dies

- merge overlapping ranges of same var

c
A
1
c * = € < =2 < P

t <-
<— E
<- [=3]
<—
CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3 3

Review: Build

Construct interference graph:
- each node represents a live range

- edges represent live ranges that overlap

- put in move edges between move operands

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Register Allocation

Review: Simplify

Reduce the graph: k=4
- remove non-move related, easy to color, nodes o
- easy to color: degree < k -

- place on stack

GIE

C5745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Review: Coalesce

Coalesce moves:
- conservatively combine operands of a move

- Briggs, George heuristics for being conservative

Repeat Simplify

-Detail: If both Simplify and Coalesce get
stuck, start simplifying move related nodes

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Transition Slide!

Coalesce

Potential Spill

Actual Spill

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

What if we can’t simplify?

Now what?

Be optimistic:
- Put a node with degree 2 k on stack o

- Lose guarantee that anything we

colorable when popped from stack
Be realistic:

- If unlucky, this node will have to be o
spilled (allocated to memory)

- Mark as potential spill to avoid
recomputation later o

put on stack is colorable
- If we're lucky this node will still be ° o

CS745; Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Select

Pop a node from the stack

Assign it a color that does not

conflict with neighbors in
interference graph

This will always be possible,
unless the node is a potential spill

If it is not possible must spill

C5745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Register Allocation

Spilling to Memory

RISC Architectures
* Only load and store can access memory
— every use requires load
— every def requires store
— create new temporary for each location

CISC Architectures
« can operate on data in memory directly
— makes writing compiler easier(?), but isn’t necessarily faster
» pseudo-registers inside memory operands still have to be handled

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Spilling
Vv <-
Allocate w to memory
<— .
W location M,
M, [1<-
W, <— Spilled variables are allocated to
2 the stack in an area completely
X <- controlled by the compiler.
These memory locations are
u <- special in that they can be
optimized without concern for
t <- memory aliasing issues.
wy <-
<—
<-
- Now Start Over...
...compute live ranges...

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Build Take Two

Vv <- 1
w, <- Vv + 3
M, <- w,
w, <= M,[1
X <- W, + VvV
u <- Vv
t <- u+ X
wy <- M,[]

<= Wy

<~ t

<- u

Recalculate interference graph

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Simplify->Coalesce->Select

C5745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

What to Spill?

When choosing potential spill node want:

* A node that makes graph easier to color
— Fewer spills later
* Anode thatisn’t “expensive” to spill
— First nodes pushed on stack are last to be colored
» more likely to be spilled
— An expensive node would slow down the program if spilled

* We can apply heuristics both when choosing potential spill nodes
and when choosing actual spill nodes
— not required to spill node that we popped off stack and can’t color

Register Allocation

Spilling

We have to start from scratch every time we spill

* Suggestions?
— Fewer iterations?
— Faster iterations?

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

A Spill Heuristic

Pick node (live range) n that minimizes:

ZlO depth(def) n Zlodepth(use)

def en use en
degree(n)

This heuristic prefers nodes that:

« Are used infrequently
» Aren’t used inside of loops
* Have alarge degree

Could use any one of several other heuristics as well...

© David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

© David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

CS745: Register Allocation

CS745: Register Allocation

Register Allocation

Reducing Stack Frame Size

» How do you allocate spilled live ranges?
- every live range gets its own location on the stack frame
- or we can be smarter...
* What about mov a,b where both a & b have been spilled?

» Use graph-coloring with aggressive coalescing!

» Use liveness info to create an interference graph of the
spilled nodes

» Always coalesce

+ Simplify/Select

» Colors map to frame locations

Is it worth it?

C5745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Rematerialization
An alternative to spilling
* Recompute value of variable instead of store/load to memory
* Example:
v <- 1 v <- 1
w<- Vv+3 w<- Vv +3
X <- W+ Vv X <- W+ vV
u<- v uc<- v
<- W w<- 4
<- t <- W
<- u <- t
<- u

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Checkpoint

Talk about projects

Potential Spill

Actual Spill

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Special Registers

Which registers can be used?
* Some registers have special uses.
— Register 0 or 31 is often hardwired to contain 0.
— Special registers to hold return address, stack pointer, frame pointer, etc.
— Reserved registers for operating system.
Typically, leaves about 20 or so registers for other general uses.
Impact on register allocation:
Temps should be assigned only to the non-reserved registers (allocable).

Hard registers are pre-colored in the interference graph. II

movl foo.a,%eax

cltd (eax,edx) <- eax

idivl foo.b (eax,edx)<- (eax,edx)/foo.b
movl %eax,$vro

movl $vro,%eax

ret

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

C5745: Register Allocation

Register Usage Conventions

Certain registers are used for specific purposes defined by the
standard calling convention.
* 4-6 argument registers.

— The first 4-6 arguments to procedures/functions are always passed in these
registers.
+ ~8callee-save registers.
— These registers must be preserved across procedure calls. Thus, if a

procedure wants to use a callee-save register, it must first save the old value
and then restore it before returning.

The remainder are caller-save registers.

— These are not preserved across procedure calls. Thus, a procedure is free to
use them without saving first.

— Includes the argument registers.

How do we support these?

» neat trick for handling callee save
+ call instruction

© David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Allocating to callee-save registers

CALL instruction “defines” all caller-save regs
entry:define r,
ti<-r,
X <-

call

< X
<X

exit: r, < t;
user,

CS745: Register Allocation

© David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Register Allocation

Allocating Callee-Save Registers

Move callee-save reg to temp at start of procedure
Move it back at end of procedure

What happens if there is no register pressure?
What happens if there is a lot of register pressure?

entry:define r
temp RN r

exit: r RN ftemp

user

CS745: Register Allocation

© David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Reducing Register Pressure

Recall: Split pseudo-registers into live ranges
to create an interference graph that is easier to color

Eliminate interference in a variable’'s “dead” zones.
« Increase flexibility in allocation:
can allocate same variable to different registers

o 0

w >
=
[
o O

o nn
o >

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Register Allocation

Insight

Split a live range into smaller regions (by paying a small cost)
to create an interference graph that is easier to color
« Eliminate interference in a variable's “nearly dead” zones.

— Cost: Memory loads and stores
Load and store at boundaries of regions with no activity

— # active live ranges at a program point can be > # registers

« Can allocate same variable to different registers

— Cost: Register operations
a register copy between regions of different assignments

— # active live ranges cannot be > # registers

C5745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Examples

Example 1:

FOR i = 0 TO 10
FOR j = 0 TO 10000
A=A+ ...
(does not use B)
FOR j = 0 TO 10000
B=B+ ...
(does not use A)

Example 2:
b= c=
=a+b =a+c
c= =
CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3 26

Live-Range Splitting

When do we apply live range splitting?
Which live range to split?
Where should the live range be split?

How to apply live-range splitting with coloring?
+ Advantage of coloring:
— defers arbitrary assignment decisions until later
+ When coloring fails to proceed, may not need to split live range

— degree of a node >= n does not mean that the graph
definitely is not colorable

« Interference graph does not capture positions of a live range

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

One Algorithm

Observation: Spilling is absolutely necessary if
« number of live ranges active at a program point > n not degree in graph

Apply live-range splitting before coloring
« lIdentify a point where number of live ranges >n
« For each live range active around that point
— find the outermost “block construct” that does not access the variable
+ Choose alive range with the largest inactive region

+ Split the inactive region from the live range

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Alternative Allocators

Graph allocator, as described, has issues
* What are they?
Alternative: Single pass graph coloring
* Build, Simplify, Coalesce as before
* In select, if can’t color with register, color with stack location
— Keep going
* Requires second, reload phase
— “fixes” spilled variables
— Requires that we reserve a register
— Can get messy
Claim: Does a pretty good job
* Why?
— Key is order nodes are colored...

Advantages? Disadvantages?

C5745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Register Allocation

Alternative Allocators

Local/Global Allocation
» Allocate “local” pseudo-registers
— Lifetime contained within basic block
— No longer NP-Complete!
» Allocate global pseudo-registers
— Single pass global coloring
* Reload pass to fix spills (allocator does not generate spill code)

gcc's approach,
unless -fnew-ra

» Can also do global then local (Morgan)

« Advantages? Disadvantages?

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

Summary

Spilling
Spill Selection

Special Registers

Coalesce Live Range Splitting

Alternative Algorithms

Potential Spill

Select

Actual Spill

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

What's Next

Project Proposals

Instruction Scheduling
* Compiling for multi-issue processors

AS YOU CAN
CLEARLY SEE
IN SLIDE

"POWERPOINT”
POISONING.

re Byndicate, Inc

www.dilbert.com scottsdsma@sol.com

o ©2000 United Featu

CS745: Register Allocation © David Ryan Koes & Seth Copen Goldstein & Todd C. Mowry 2002-3

