
Optimizing Compilers: Introduction 1 T. Mowry

Carnegie Mellon

Lecture 1

Introduction

I What would you get out of this course?

II Structure of a Compiler

III Optimization Example

Reference: Muchnick 1.3-1.5

Optimizing Compilers: Introduction 2 T. Mowry

Carnegie Mellon

What Do Compilers Do?

1. Translate one language into another
• e.g., convert C++ into SPARC object code
• difficult for “natural” languages, but feasible for computer lan-

guages

2. Improve (i.e. “optimize”) the code
• e.g, make the code run 3 times faster
• driving force behind modern RISC microprocessors

Optimizing Compilers: Introduction 3 T. Mowry

Carnegie Mellon

What Do We Mean By “Optimization”?

• Informal Definition:

• transform a computation to an equivalent but “better” form

• in what way is it equivalent?

• in what way is it better?

• “Optimize” is a bit of a misnomer

• the result is not actually optimal

• Full Employment Theorem

Optimizing Compilers: Introduction 4 T. Mowry

Carnegie Mellon

How Can the Compiler Improve Performance?

Execution time = Operation count * Machine cycles per operation

• Minimize the number of operations

• arithmetic operations, memory acesses

• Replace expensive operations with simpler ones

• e.g., replace 4-cycle multiplication with 1-cycle shift

• Minimize cache misses

• both data and instruction accesses

• Related issue: minimize object code size

• more important on special-purpose processors (e.g. DSPs)

Processor

memory

cache

Optimizing Compilers: Introduction 5 T. Mowry

Carnegie Mellon

Why Study Compilers?

• Crucial for anyone who cares about performance

• speed of system = hardware + compilers

• Key ingredient in modern processor architecture development

• Compilation: heart of computing

• maps a high-level abstract machine to a lower level one

• An example of a large software program

• Problem solving
• find common cases, formulate problem mathematically,

develop algorithm, implement, evaluate on real data

• Software engineering
• build layers of abstraction (based on theory)

and support with tools

• “Silicon Compilers”

• CAD tools increasingly rely on optimization

• optimizing a hardware design is similar to optimizing a program

Optimizing Compilers: Introduction 6 T. Mowry

Carnegie Mellon

What Would You Get Out of This Course?

• Basic knowledge of existing compiler optimizations

• Hands-on experience in constructing optimizations within a fully func-
tional research compiler

• Basic principles and theory for the development of new
optimizations

• Understanding of the use of theory and abstraction to solve
future problems

Optimizing Compilers: Introduction 7 T. Mowry

Carnegie Mellon

II. Structure of a Compiler

• Optimizations are performed on an “intermediate form”

• similar to a generic RISC instruction set

• Allows easy portability to multiple source languages, target machines

Source Code Intermediate Form Object Code

C

C++

Java

Verilog

Front
End

Back
End

Optimizer

Alpha

SPARC

x86

IA-64

Optimizing Compilers: Introduction 8 T. Mowry

Carnegie Mellon

Ingredients in a Compiler Optimization

• Formulate optimization problem

• Identify opportunities of optimization
• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation

• Must abstract essential details relevant to optimization

• Analysis

• Detect when it is legal and desirable to apply transformation

• Code Transformation

• Experimental Evaluation (and repeat process)

Optimizing Compilers: Introduction 9 T. Mowry

Carnegie Mellon

Representation: Instructions

• Three-address code

A := B op C

• LHS: name of variable e.g. x, A[t] (address of A + contents of t)

• RHS: value

• Typical instructions
A := B op C
A := unaryop B
A := B
GOTO s
IF A relop B GOTO s
CALL f
RETURN

Optimizing Compilers: Introduction 10 T. Mowry

Carnegie Mellon

III. Optimization Example

• Bubblesort program that sorts an array A that is allocated in static
storage:

• an element of A requires four bytes of a byte-addressed machine

• elements of A are numbered 1 through n (n is a variable)

• A[j] is in location &A+4*(j-1)

FOR i := n-1 DOWNTO 1 DO
FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN
temp := A[j];
A[j] := A[j+1];
A[j+1] := temp

END

Optimizing Compilers: Introduction 11 T. Mowry

Carnegie Mellon

Translated Code

i := n-1
S5: if i<1 goto s1

j := 1
s4: if j>i goto s2

t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t4 := j+1
t5 := t4-1
t6 := 4*t5
t7 := A[t6] ;A[j+1]
if t3<=t7 goto s3

 t8 :=j-1
 t9 := 4*t8
 temp := A[t9] ;A[j]
 t10 := j+1
 t11:= t10-1
 t12:= 4*t11
 t13 := A[t12] ;A[j+1]
 t14 := j-1
 t15 := 4*t14
 A[t15] := t13 ;A[j]:=A[j+1]
 t16 := j+1
 t17 := t16-1
 t18 := 4*t17
 A[t18]:=temp ;A[j+1]:=temp

s3:j := j+1
 goto S4

S2:i := i-1
 goto s5

s1:

Optimizing Compilers: Introduction 12 T. Mowry

Carnegie Mellon

Representation: a Basic Block

• Basic block = a sequence of 3-address statements

• only the first statement can be reached from outside the block
(no branches into middle of block)

• all the statements are executed consecutively if the first one is
(no branches out or halts except perhaps at end of block)

• We require basic blocks to be maximal

• they cannot be made larger without violating the conditions

• Optimizations within a basic block are local optimizations

Optimizing Compilers: Introduction 13 T. Mowry

Carnegie Mellon

Flow Graphs

• Nodes: basic blocks

• Edges: Bi -> Bj, iff Bj can follow Bi immediately in some execution

• Either first instruction of Bj is target of a goto at end of Bi

• Or, Bj physically follows Bi, which does not end in an
unconditional goto.

• The block led by first statement of the program is the start, or entry node.

Optimizing Compilers: Introduction 14 T. Mowry

Carnegie Mellon

Example

i := n-1

if i<1 goto out

j := 1

if j>i goto B5

i := i-1
goto B2

t1 := j-1
...
if t3<=t7 goto B8

t8 :=j-1
...
A[t18]=temp

j := j+1
goto B4

B1

B2

B3

B4

B5

B6

B7

B8

in

out

Optimizing Compilers: Introduction 15 T. Mowry

Carnegie Mellon

Sources of Optimization

• Algorithm optimization

• Algebraic optimization

A := B+0 => A := B

• Local optimizations

• within a basic block -- across instructions

• Global optimizations

• within a flow graph -- across basic blocks

• Interprocedural analysis

• within a program -- across procedures (flow graphs)

Optimizing Compilers: Introduction 16 T. Mowry

Carnegie Mellon

Local Optimizations

• Analysis & transformation performed within a basic block

• No control flow information is considered

• Examples of local optimizations:

• local common subexpression elimination
analysis: same expression evaluated more than once in b.
transformation: replace with single calculation

• local constant folding or elimination
analysis: expression can be evaluated at compile time
transformation: replace by constant, compile-time value

• dead code elimination

Optimizing Compilers: Introduction 17 T. Mowry

Carnegie Mellon

Example

B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1

t2 := 4*t1
t3 := A[t2] ;A[j]
t6 := 4*j
t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

B7:t8 :=j-1
 t9 := 4*t8
 temp := A[t9] ;temp:=A[j]
 t12:= 4*j
 t13 := A[t12] ;A[j+1]
 A[t9]:= t13 ;A[j]:=A[j+1]
 t18 := 4*j
 A[t18]:=temp ;A[j+1]:=temp

B8:j := j+1
 goto B4

B5:i := i-1
 goto B2

out:

Optimizing Compilers: Introduction 18 T. Mowry

Carnegie Mellon

(Intraprocedural) Global Optimizations

• Global versions of local optimizations

• global common subexpression elimination

• global constant propagation

• dead code elimination

• Loop optimizations

• reduce code to be executed in each iteration

• code motion

• induction variable elimination

• Other control structures

• Code hoisting: eliminates copies of identical code on parallel paths in a
flow graph to reduce code size.

Optimizing Compilers: Introduction 19 T. Mowry

Carnegie Mellon

Global Common Subexpression Elimination

B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1

t2 := 4*t1
t3 := A[t2] ;A[j]
t6 := 4*j
t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

B7: t8 :=j-1
t9 := 4*t8
temp:= A[t9] ;temp:=A[j]
t12:= 4*j
t13 := A[t12] ;A[j+1]
A[t9] := t13
A[t12]:=temp

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

Optimizing Compilers: Introduction 20 T. Mowry

Carnegie Mellon

Induction Variable Elimination

• Intuitively

• Loop indices are induction variables
(counting iterations)

• Linear functions of the loop indices are also induction variables
(for accessing arrays)

• Analysis: detection of induction variable

• Optimizations

• strength reduction: replace multiplication by additions

• elimination of loop index -- replace termination by tests on other induc-
tion variables

Optimizing Compilers: Introduction 21 T. Mowry

Carnegie Mellon

Example (after cse)

B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1

t2 := 4*t1
t3 := A[t2] ;A[j]
t6 := 4*j
t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

B7: A[t2] := t7
A[t6] := t3

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

Optimizing Compilers: Introduction 22 T. Mowry

Carnegie Mellon

Example (after iv)

B1: i := n-1
B2: if i<1 goto out
B3: t2 := 0

t6 := 4
B4: t19 := 4*i

if t6>t19 goto B5
B6: t3 := A[t2]

t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

B7: A[t2] := t7
A[t6] := t3

B8: t2 := t2+4
t6 := t6+4
goto B4

B5: i := i-1
goto B2

out:

Optimizing Compilers: Introduction 23 T. Mowry

Carnegie Mellon

Loop Invariant Code Motion

• Analysis

• a computation is done within a loop and

• result of the computation is the same as long as we keep going around
the loop

• Transformation

• move the computation outside the loop

Optimizing Compilers: Introduction 24 T. Mowry

Carnegie Mellon

Machine Dependent Optimizations

• Register allocation
• Instruction scheduling
• Memory hierarchy optimizations
• etc.

