Lecture 24

Domain Specific Languages

. Overview
. Delite
l1l. Halide

Phillip B. Gibbons 15-745: Domain Specific Languages 1

|. Overview: What are Domain Specific Languages (DSLs)?

Abstraction Gap

Problem Solution
Domain Domain

Languages designed to close the abstraction gap
between a problem domain and the code to express the solution

Carnegie Mellon -

15-745: DSL 2

Some Popular DSLs

« SQL « CSS

CREATE TABLE Employee | body {
id INT NOT NULL IDENTITY (1,1) PRIMARY KEY text-align: left;
name VARCHAR(5@), font-family: helvetica, sans-serif;
surname VARCHAR 52 }
address VARCHAR(255), h1 {
city VARCHAR(60 border: 1px solid #babobf;
telephone VARCHAR(15) font-size: 35px;}

« HTML LaTeX

\ifthenelse{\boolean{showcomments}}

{\newcammand{\nb}[2]{
<html> \fcolorbox{gray}{yellow}{
<head> \bfseries\sffamily\scriptsize#l
<title>Example< title> }
< head> {\sf\small\textit{#2}}
<body>)
;:; Example< p> \newcammand{ \version}{\scriptsize$-$workings$-$}
< > }
</html> {\newcammand{\nb}[2]{}
\newcammand{\version}{}

}

What was the first DSL you ever used?

15-745: DSL 3

Some More Recent DSLs

 MapReduce for big data processing
* Halide for image processing

e GraphLab [CMU] / Pregel for graph processing
— “Think like a vertex”

e Ligra [CMU] for shared memory graph processing
— edgeMap & vertexMap

* Tensor Flow for deep neural networks

15-745: DSL 4

MapReduce

; =[a[a]a]a)

* Popularized by Google
* Open source implementation called Hadoop MapReduce

Pre-loaded local
input data

Intermediate data
from mappers

Values exchanged
by shuffle process

Reducing process
generates outputs

Outputs stored
locally

Node 1

EETar

Mapping process

(0000

Node 2

TLLITL7

Mapping process

(000

Node 3

peEra

Mapping process

(OO0

Node 1

35l

Reducing process

T

Node 2

PR

Reducing process

T

Node 3

AN

Reducing process

—

Image from: developer.yahoo.com/hadoop/tutorial/module4.html

N G- rregc Melon R

GraphlLab

Graph Parallel: “Think like a vertex”

Graph Based
Data Representation

LR

"ty
Graph Lab'

Update Functions
User Computation

Scheduler Consistency Model

oooo>

Slide courtesy of Carlos Guestrin

-
Advantages/Goals of DSLs

» Offer pre-defined abstractions to represent concepts from the
application domain
— Programming accessibility
* Domain experts can readily write effective programs
* More clear and intuitive
— Programmer productivity

* Fewer lines of code
* Domain-specific tool support

* DSL compilers optimize the code written for the specific domain

— High-performance

* Higher-level (often declarative) abstraction and restrictive language constructs
enable more optimizations

— Portability
* Across a range of hardware platforms

15-745: DSL 7

Design Guidelines for Domain Specific Languages
[Karsai et al, DSM’09]

* Language Purpose
1. Identify language uses early
2. Ask questions
3. Make your language consistent

* Language Realization
4. Decide carefully whether to use graphical or textual realization
5. Compose existing languages where possible
6. Reuse existing language definitions
7. Reuse existing type systems

* Language Content
8. Reflect only the necessary domain concepts
9. Keep it simple

15-745: DSL 8

Design Guidelines for Domain Specific Languages

* Language Content (cont.)
10. Avoid unnecessary generality
11. Limit the number of language elements
12. Avoid conceptual redundancy
13. Avoid inefficient language elements

* Concrete Syntax
14. Adopt existing notations domain experts use
15. Use descriptive notations
16. Make elements distinguishable
17. Use syntactic sugar appropriately
18. Permit comments
19. Provide organizational structures for models
20. Balance compactness and comprehensibility

15-745: DSL 9

Design Guidelines for Domain Specific Languages

e Concrete Syntax (cont.)
21. Use the same style everywhere
22. Identify usage conventions

e Abstract Syntax
23. Align abstract and concrete syntax

24. Prefer layout which does not affect translation from concrete to abstract syntax
25. Enable modularity

26. Introduce interfaces

15-745: DSL 10

-
. B tal., PACT'11
II. Delite [Brown et a]

- Pthread *E‘;
Performance Openttp [
= '\eterogeneous :
+ Dara”el CUDA Nvidia
OpenCL | =l Fermi
COmp”erS have Verilog ”"J %= - Altera

VHDL FPGA

MPI
Cray
Jaguar

11

often not kept pace

Programmability Chasm

Applications

Scientific
Engineering

Virtual
Worlds

Personal
Robotics

Data

informatics

Pthreads
OpenMP

CUDA Nvidia
OpenCL |} Fermi

Verilog Altera
VHDL FPGA
MPI

Cray

Too many different programming models

Jaguar

12

Benefits of Using DSLs for
Parallelism

e Focus on developing algorithms and applications and not on low

Productivity

e Shield most programmers from the difficulty of parallel
programming

level implementation details

Performance

e Match high level domain abstraction to generic parallel execution
patterns

e Restrict expressiveness to more easily and fully extract available
parallelism

e Use domain knowledge for static/dynamic optimizations

15000000

e Allows innovative HW without worrying about application portability

Portability and forward scalability

eDSL & Runtime can be evolved to take advantage of latest
hardware features

e Applications remain unchanged

13

DSLs: Compiler vs. Library

m A Domain-Specific Approach to Heterogeneous
Parallelism, Chafi et al.
= A framework for parallel DSL libraries

s Used data-parallel patterns and deferred execution
(transparent futures) to execute tasks in parallel

= Why write a compiler?
= Static optimizations (both generic and domain-specific)

= All DSL abstractions can be removed from the generated
code

= Generate code for hardware not supported by the host
language

= Full-program analysis

14

-
Common DSL Framework

= Building a new DSL

Design the language (syntax, operations, abstractions, etc.)
Implement compiler (parsing, type checking, optimizations, etc.)
Discover parallelism (understand parallel patterns)

Emit parallel code for different hardware (optimize for low-level
architectural details)

= Handle synchronization, multiple address spaces, etc.

= Need a DSL infrastructure
= Embed DSLs in a common host language

= Provide building blocks for common DSL compiler & runtime
functionality

1N
Need to simplify the process of developing DSLs for parallelism
* Delite provides a framework for creating heterogeneous parallel DSLs
* Performs generic, parallel, and domain-specific optimizations in a single system

15

- /7]
Delite Ops

= Encode known parallel execution patterns
= Map, filter, reduce, ...
= Bulk-synchronous foreach
= Divide & conquer

m Delite provides implementations of these
patterns for multiple hardware targets
= e.g., multi-core, GPU

= DSL author maps each domain operation to the

appropriate pattern

= Delite handles parallel optimization, code generation, and
execution for all DSLs

16

Delite DSL Compiler

Liszt OptiML
program program

Scala Embedding Delite Parallelism
Framework Framework

Intermediate Representation (IR)

Domain
Analysis & Opt.

Base IR Delite IR
o/

Generic
Analysis & Opt.

Code Generation

Kernels

Delite Data Structures

(Scala, C,
Cuda, MPI
Verilog, ...)

Execution
Graph

(arrays, trees,
graphs, ...)

17

Generic IR

= Optimizations
= Common subexpression elimination (CSE)
= Dead code elimination (DCE)
= Constant folding
= Code motion (e.qg., loop hoisting)

= Side effects and alias tracking

= All performed at the granularity of DSL
operations
= e.g., MatrixMultiply

18

Delite Runtime

Delite Kernels
Execution (Scala, C,
Graph Cuda)

Local System

DSL Data
Structures

¥

SMP GPU

Machine Inputs

Application Inputs

Walk-Time

Code Generator

Scheduler JIT Kernel Fusion, Specialization, Synchronization

Partial schedules, Fused, specialized kernels

Execution-Time

Schedule Dispatch, Memory Management, Lazy Data Transfers

19

Experiments on ML kernels

m OptiML m Parallelized MATLAB mMATLAB + Jacket

GDA Naive Bayes K-means .

o 110.0 | S35 m . s M
£ . . N C < (=]
H 10.0 2.5
£} 8.0 2.0
g 6.0 1.5
3 4.0 1.0
N 2.0 0.5

£ 0.0 0.0

5 1 CPU 2 CPU 4 CPU 8 CPU CPU + 1 CPU 2 CPU 4 CPU 8 CPU CPU + 1 CPU 2 CPU 4 CPU 8 CPU CPU +
z GPU GPU GPU

SVM o Linear RBM
o

15.0 = i

odl : Regression

2.0 - | 4.0

1.5 3.0

1.0 2.0

0.5 1.0

0.0 0.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

1CPU 2CPU 4CPU 8CPU CPU +
GPU

1CPU 2CPU 4CPU 8CPU CPU +
GPU

OptiML+Delite outperforms MATLAB

20

-0/
_ [Ragan-Kelly et al., PLDI’13]
lll. Halide

* Open-source DSL for the complex image processing pipelines
found in modern computational photography and vision applications

 Asystematic model of the tradeoffs between locality, parallelism, and redundant
recomputation in stencil pipelines;

* ascheduling representation that spans this space of choices;

 a DSL compiler based on this representation that combines Halide programs and
schedule descriptions to synthesize points anywhere in this space, using a design
where the choices for how to execute a program are separated not just from the
definition of what to compute, but are pulled all the way outside the black box of
the compiler;

* aloop synthesizer for data parallel pipelines based on simple interval analysis,
which is simpler and less expressive than polyhedral model, but more general in
the class of expressions it can analyze;

* acode generator that produces high quality vector code for image processing
pipelines, using machinery much simpler than the polyhedral model;

e an autotuner that can infer high performance schedules—up to 5 faster than
hand-optimized programs written by experts—for complex image processing
pipelines using stochastic search.

15-745: DSL 21

We are surrounded by computational cameras

Enormous opportunity,
demands extreme optimization
parallelism & locality limit
performance and energy

Camera: 8 Mpixels
(96MB/frame as float)
CPUs: 15 GFLOP/sec
GPU: 115 GFLOP/sec
Required

arithmetic > 40-1
intensity

Methodology Prior to Halide

C++ w/multithreading, SIMD
CUDA/OpenCL
OpenGL/RenderScript

Optimization requires manually
transforming program & data structure
for locality and parallelism.

libraries don’t solve this:
BLAS, IPP, MKL, OpenCV

optimized kernels compose into
inefficient pipelines (no fusion)

Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom

Histogram v

A A
h |

oo
150400 20 mm /1.7 1/20sec

oolmE—

1500 lines of expert-
optimized C++
multi-threaded, SSE

3 months of work

10x faster than reference C++ e
Halide: 60 lines 4 L Sy]
1 intern-day ;
20x faster (vs. reference) T ——
2x faster (vs. Adobe) T =—= g

Vibrance ———a&
Saturation

&

GPU: 70x faster (vs. reference)
7x faster (vs. Adobe)

Previous Reset

A simple example: 3x3 blur

void box_filter_3x3(const Image &in, Image &blury) {
Image blurx(in.width(), in.height());

(int x = ; x < in.width(); x++)

(int y = 75 y < in.height(); y++)
blurx(x, y) = (in(x-', y) + in(x, y) + in(x+7, y))/7;

(int y = 0; y < in.height(); y++)
(int x = U; x < in.width(); x++)

blury(x, y) = (blurx(x, y-7) + blurx(x, y) + blurx(x, y+7))/3;

Hand-optimized C++ 11x faster

9.9 — 0.9 ms/megapixel (quad core x86)

T = 1 g @ TR, S o 7 § Tiled, fused

__m128i blurx[(- °0/2)*(“+)]; // allocate tile blurx array
(int xTile = 0; xTile < in.width(); xTile +=) { .
_ m128i *blurxPtr = blurx; V t d
128 ot = bunx; ectorize
const uintl6_t *inPtr = &(in[yTile+y][xTile]);

a (ijlrim_xlozadu;_;i;ZS((ir:(ﬂ;;i*))(i{nptr—)); M u Itith read ed

b = _mm_loadu_sil28((_m128i*) (inPtr+'));

¢ = _mm_load_si128((_m128i*)(inPtr));
sum = _mm_add_epil6e(_mm_add_epil6(a, b), c);
avg = _mm_mulhi_epilé(sum, one_third); I aed U nd a nt

_mm_store_sil28(blurxPtr++, avg); "
T computation

blurxPtr = blurx;

(int y = ©; 3oy o .
m;128)i/ *Q%B;QZ (::28i *)(g;,(%lm[m] BT Near rOOf_IIne
int x = 7; x < 5 X +=

_mm_load_sil28(blurxPtr+(* ")/); Optimum

b = mm _load sil28(blurxPtr+ /8);
= mm_load sil28(blurxPtr++);
_mm_add_epil6é(mm_add epilé6(a, b), c);

i wn

i c
=

|

_mm_store_sil28(outPtr++, avg);

Halide’s answer: decouple algorithm from schedule

Algorithm: what is computed
Schedule: where and when it's computed

Easy for programmers to build pipelines
simplifies algorithm code
improves modularity

Easy for programmers to specify & explore optimizations
fusion, tiling, parallelism, vectorization
can’'t break the algorithm

Easy for the compiler to generate fast code

The algorithm defines pipelines as pure functions

Pipeline stages are functions from coordinates to values

Execution order and storage are unspecified

3x3 blur as a Halide algorithm:

Var x, y; Func blurx, blury;

blurx(x, y) = (in(x-7, y) + in(x, y) + in(x+7, y))/3;

blury(x, y) = (blurx(x, y-7) + blurx(x, y) + blurx(x, y+7))/3;

Domain scope
of the programming model

All computation is over regular grids.

not | Only feed-forward pipelines
Turing Recursive/reduction computations are a (partial) escape hatch.

complete
Recursion must have bounded depth.

The Halide Compiler

Parallelism vs. Locality

Breadth-first execution sacrifices locality

input OO0f

¥
blurx . EEE locality is a

{ function of
blury ‘miie reuse distance

locality

paralleliSm

Interleaved execution (fusion) improves locality

input ...0Of0 ... reducereuse
T distance from
fusion C blurx | -+ FE38E - producer
globally - i / to
T ClEEVES (blury) - pmpm - consumer

computation

locality

parallelism

Stencils have overlapping dependencies

Decoupled tiles optimize parallelism & locality

iInput

plurx | B e

v
blury | / [] =]=
short reuse distance \independence
locality

parallelism

Breaking dependencies introduces redundant work

iInput

blurx | 1LY

blury Gﬂ min
redundant <N locality

work

paralleliSm

Stencll pipelines require tradeoffs
determined by organization of computation

trade off with
granularity of fusion

7\

redundant

localit
work 4

tradeoff

paralleliSm

trade off by
constraining order

blur_x.compute_root();

blur_x.compute_at(blur_y, x)
.vectorize(x, 4);
blur_y.tile(x, y, xi, yi, 8, 8)
.parallel(y)
.vectorize(xi, 4);

blur_x.compute_at(blur_y, x);

blur_x.store_root()
.compute_at(blur_y, y)
.split(x, x, xi, 8)
.vectorize(xi, 4).parallel(x);

blur_y.split(x, x, xi, 8)
.vectorize(xi, 4).parallel(x);

blur_x.store_root().compute_at(blur_y, x);

blur_x.store_at(blur_y, y)
.compute_at(blur_y, yi)
.vectorize(x, 4);

blur_y.split(y, v, yi, 8)
.vectorize(x, 4)
.parallel(y);

37

Halide’s Autotuner Stochastically Searches
for High-Performance Code

/HFIJﬁ ized

J allocations |
n & L benchmark

and iterate

autotuner

/(er
X0
arith QCE/AN/ YD)
(WIth SSE/AVK)

*a tiny sample.
Thousands have

Prior work* come before us.

Streaming languages
Ptolemy [Buck et al. 1993]
Streamlt [Thies et al. 2002]
Brook [Buck et al. 2004]

Loop transformation

Systolic arrays [Gross & Lam 1984]
Polyhedral model [Ancourt & Irigoin 1991,
Amarasinghe & Lam 1993]

Parallel work scheduling
Cilk [Blumhofe et al. 19935]
NESL [Blelloch et al. 1993]

Region-based languages
ZPL [Chamberlain et al. 1998]
Chapel [Callahan et al. 2004]

Stencil optimization & DSLs
[Frigo & Strumpen 2005]
[Krishnamoorthy et al. 2007]

[Kamil et al. 2010]

Mapping-based languages & DSLs
SPL/SPIRAL [Puschel et al. 2005]
Sequoia [Fatahalian et al. 20006]

Shading languages
RSL [Hanrahan & Lawson 1990]
Cg, HLSL [Mark et al. 2003; Blythe 2006]

Image processing systems
[Shantzis 1994], [Levoy 1994]
PixelBender, Corelmage

Today’s Class: Domain Specific Languages

. Overview
. Delite
l1l. Halide

®.9

* No more lectures!

Coming Attractions E;

 Wednesday 4/11: Exam topics posted on Piazza
* Friday 4/13: Project Milestone Report due midnight
* Wednesday 4/18: In-class Exam

Carnegie Mellon -

15-745: DSL 40

