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Unsupervised Learning: Discovering
Structure in the World

� Start with a set of input patterns, or �observations�.

� Try to �explain� them by inferring some structure by
which they can be described.

� Examples:

� Clustering models: competitive learning or k-means

� Assign each point to one of k clusters (classification)

� What's learned: an �optimal� clustering

� Mixture models: Expectation-Maximization

� Gaussian mixtures: parameters α
i
, µ

i
, σ

i

� What's learned: mixture parameters to maximize likelihood of data

� Generative models (this lecture)
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Hermann von Helmholtz

� Helmholtz' theory of perception:
analysis by synthesis.

� The brain �understands� sensory input
by figuring out what process could
have generated that input.

� Machine learning implementation: construct a
stochastic parameterized generative model that can
mimic the distribution of observed input patterns.

� Then we can describe/explain/transmit a pattern by
giving the parameter settings that generate it.
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Generative Models

� Build a generator that reproduces the input distribution.

� The generator's variables α serve as a description of the

output pattern: an �explanation�.

� Recognition: map input pattern d to �explanation� α.

� Generation: map variable values α to pattern d'.

� Can transmit d efficiently by transmitting α plus an

error term: the difference between d and d'.

α d'
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Generative Model Example

� d = 64x64 bit image

α = �cat�, �dog�, �bird�, �fish�

� Dog's ears can be up or down.

� Transmit �dog� plus correction for ears. Cost?

C(α,d|θ) = C(α) + C(d|α,θ)

� Learning: train generator θ so as to minimize C(d|α,θ).

Cost to

transmit α

Cost to transmit correction

given α and a known

generative model θ
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Review of Information Theory

Want to transmit 1 of N symbols with uniform prob.

Message x has probability p(x) = 1/N.

# bits required to transmit x is the entropy:
H(x) = � log p(x) = � log(1/N) = log N

Let X be a random variable distributed as p(x).

Entropy H �X � = E
p [H�x � ]

= E
p [�logp �x � ]

= ��
x

p �x� logp �x �
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Example: 8-Sided Die

x � {1,2,3,4,5,6,7,8}, p �x� =
1

8

H�5� = �logp�5� = �log
1

8
= 3 bits.

H�X� = ��
x

p �x �logp �x �

= ��
x=1

8
1

8
log

1

8

= �
1

8
�
x=1

8

log
1

8

= �
1

8
� 8 � �3 = 3 bits
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Entropy of Binary Random Variables

x � {0,1}, x=1 with probability p

So x=0 with probability �1�p�

H�x � = H �1� � H �0�

= �plogp � ��1�p�log �1�p�
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Entropy of a Biased Coin

p �1� =
1

4
, p �0� =

3

4

H�x � = �
1

4
log

1

4
� �

3

4
log

3

4

= �
1

4
��2� � �

3

4
��0.415�

= 0.5 � 0.31

= 0.81 bits

Biased coins generate less information than a fair coin (1 bit).
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Cost of Transmitting a Binary Variable

If bit s j is 1, the cost is �logp j

If bit s j is 0, the cost is �log�1�p j�

Can combine these cases and write the cost as:

C �s j� = s jlogp j � �1�s j� log�1�p j�
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Kullback-Leibler Divergence

Difference between true distribution P and approximation Q.

KL [Q,P ] = �
	

Q�	�log
Q �	�

P �	�

= �
	

Q�	�logQ �	� � �
	

Q �	�logP �	�

= EQ [logQ ] � EQ [logP ]

Always non-negative. Zero iff P
Q. Not symmetric.
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KL Divergence for Binary Distributions

KL [q,p ] = qlog
q

p
� �1�q � log

1�q

1�p

Suppose p �1�=
1

3
and p �0�=

2

3

While q �1�=
1

4
and q �0�=

3

4

KL [q ,p ] =
1

4
log�1 /4

1 /3 � �
3

4
log �3 /4

2 /3 �

=
1

4
log �3 /4� �

3

4
log �9 /8�

= 0.0237

KL [p,q ] = 0.0251
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Generative Distribution P

logp �d��� = log��	 p �	���p �d�	 ,���
Define the energy of explanation 	 for d as:

E	 = �logp �	���p �d�	 ,�� = �logp �	 , d���

By Boltzmann, P	 =

exp��E	�

�


exp ��E�
=

p �	 , d���

�


p � , d���

logp �d��� = �
[�	

P	E	 � ���	 P	 logP	� ]

Helmholtz free energy F(d; θ,P)
14

Helmholtz Free Energy

� Helmholtz free energy is the difference between

� the expected energy of the explanations for d, and

� the entropy of the probability distribution across explanations.

� Analogy from statistical mechanics:

As a hot gas expands and pushes a cylinder, a certain
amount of energy is required to reconfigure the gas
molecules.

What's left, the free energy, is available to do work such
as moving the cylinder.

15

Problem Estimating P
α

� Computing P
α
may be intractable: there can be an

exponential number of states.

� Solution: pick a distribution Q that is tractable to
compute. If Q is close to P, we may be okay.

logp �d��� = ��
	

Q	E	 � �
	

Q	 logQ	 � �
	

Q	 log[Q	 /P	 ]

= �F �d;� ,Q� � KL [Q,P ]

Helmholtz free energy
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Recognition Distribution Q

� Goal is to train a generative model to mimic the

distribution of patterns d, then use its variable values α
to transmit d efficiently.

� But we can't compute the probability distribution P, so
we pick a simpler distribution Q that we can compute.

� We will learn Q using a recognition model trained on the
input patterns d.

� Train recognition and generative models in parallel.
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Training the Generative Weights
To Minimize the Free Energy
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The Helmholtz Machine:
Hinton, Dayan, Zemel, Frey, and Neal

s j

sk

wjk

netk = �
j

s jwjk

p �sk=1� =
1

1�exp��netk �

19

Helmholtz Machine

Generative weights θ are feed-backward. Given α, generate d'.

Generative biases θ
k
correspond to class priors.

Any number of layers allowed.
No recurrence: strictly feed-forward and feed-back. 20

Cost Function

Description length (cost) of unit j in state 	 :

C �s j
	
� = �s j

	
logp j

	
� �1�s j

	
� log �1�p j

	
�

Description length for input vector d using the

representation 	 is cost of describing hidden states

plus cost of describing d given those hiddens.

C �	 , d� = C �	� � C �d�	�

= �
j

C�s j

	
� � �

i

C �si
d�	�

From recognition
model

Based on output of generative

model given state α
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Training the Generative Model

� Start with input pattern d.

� Recognition model with weights φ generates

an explanation α.

� Adjust generative model weights θ to minimize cost

C�	 ,d� = C�	� � C�d�	�

Explanation from
recognition model

Difference between d and output

d' of generative model given α

22

Learning to Reduce Generator Cost

sk
	

s j

d

wkj��wjk��

�
�wkj

C �	 , d� =
�

�wkj

[C�	� � C�d�	� ]

=
�

�wkj

C �s j

d
�	�

=
�

�wkj

[�s j
d
logp j

	
� �1�s j

d
�log �1�p j

	
� ]

Doesn't depend on w
kj

From recognition model
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p j

	
= � ���

k

sk
	
wkj� = � �net j

	
�

Interesting property of the sigmoid:

��x � =
1

1�exp��x �

� ' �x � = � �x � � �1���x ��

So
�

�wkj

logp j

	
=

1

p j

	
� �
�wkj

p j

	

=
1

p j

	
� p j

	
� �1�p j

	
� � �

�wkj

netk
	

= �1�pj

	
��sk
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�

�wkj

C�	 , d� =
�

�wkj

[�s j

d
logp j

	
� �1�s j

d
� log �1�p j

	
�]

= sk
	
�s j

d
�p j

	
�

So the weight update rule for the generative weights is:

�wkj = ��sk
	
�s j

d
�p j

	
�

Learning Rule for Generative Weights
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What About the Recognition Model?

� Given a fixed generative model, so that C(α,d) is known,
what is the best way to select an α for a given d?

� Should use a Boltzmann distribution

because it minimizes the cost C(d):

P �	�d� =
exp ��C �	 , d��

�


exp��C � , d��

C �d� = �
	

Q�	�d�C�	 , d� � ���
	

Q �	�d� logQ �	�d��

Expected cost to
transmit d

Entropy of the
distribution Q

Q�	�d� = prob. of choosing explanation 	 to describe d
26

Where Does Q Come From?

� Run the generative model to produce explanation γ.

� Train the recognition weights φ to minimize the cost of

transmitting γ given d', the generated pattern.

� So we adjust Q to match the generator's distribution
rather than the real distribution.

Ideally, Q�	�d� 
 P �	�d�

But we can't afford to measure P �	�d�.

So we can't train Q to match P. What can we do instead?

27

Training the Recognition Weights
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Wake-Sleep Algorithm

�wkj = � sk
	
�s j

	
�p j

	
�

� Wake phase: recognition weights determine

explanation α. Train the generative weights:

� Sleep phase: generative weights drive the network and

produce a generated state γ. Train the recognition

weights:

�wjk = � sk
�
�sk

�
�qk

�
�

where � is the generated state and qk

�
is the probability

that unit k would be turned on by the recognition weights

in layer j given s
j

�.
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Four Sets of Numbers

	 is generated in wake mode by supplying input pattern d

� is generated in sleep mode by generating a pattern d'

q j

	
recognition probability, determines s j

	
from d

pj

	
generative probability for recognition state 	

train generator weights wkj using p j

	

pk

�
generative probability, determines sk

�

qk

�
recognition probability for generative state �

train recognizer weights wjk using qk

�
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Big Picture
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Independence Assumption

� We approximate P using Q to train the recognizer:

� We generate states γ and then use the recognition

weights to estimate the probabilities qγ.

� Problem: this assumes all the bits in each hidden layer
are independent.

� In general, they're not.

32

Experiment: The Shifter Problem

� Four rows of 8 inputs:
each of two rows is
copied twice.

� 24 hidden units

� 2 top level units: L and R

...
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Learned Weights

Recognition Generative
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Vertical/Horizontal Bar Task

Every pixel appears in an equal number of vertical and
horizontal bars.

Correct classification requires detecting co-occurrence
of several pixels.
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Digit Recognition Task

Sample Training
Patterns

Generated Patterns
`

700 examples of each digit from MNIST dataset.
Separate network for each digit class.
Classification by measuring C(α,d) over 10 runs.

Error rates:
Nearest neighbor 6.7%
Backprop 5.6%
Helmholtz 4.8%
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Lewicki & Sejnowski:
Learning Higher Order Structure

Generate patterns that are mixtures of four higher order shapes
(plus, squars, equals, and parallels) plus random single lines.

Can the network recover the underlying structure?
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Results of Learning

|| + bias = �
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Helmholtz Machine: Summary

� Helmholtz machines are stochastic, like Boltzmann.

� They do not use annealing, so they learn much faster.

� Rely on an approximation Q to the true generative
distribution P, so they don't always work.

� Are part of a family of MDL (Minimum Description
Length) models that try to optimize a cost function
based on description of the data set.


