15-859NN Spectral Graph Theory, Spring 2021Homework 3Due: Friday Apr 9th in class

Gary Miller

Instructions. Collaboration is permitted in groups of size at most three. You must write the names of your collaborators on your solutions and must write your solutions alone.

Question	Points	Score
1	25	
2	15	
3	25	
4	25	
Total:	90	

(25) 1. Weyl's Inequality

In class we proved the following inequality:

Theorem 0.1. Let $A \in \mathbb{R}^{nxn}$ matrix with singular values $\sigma_1 \geq \cdots \geq \sigma_n \geq 0$ and eignvalues $|\lambda_1| \geq \cdots \geq |\lambda_n|$ then

$$\prod_{i=1}^{k} |\lambda_i| \le \prod_{i=1}^{k} \sigma_i \quad 1 \le k \le n \tag{1}$$

In class we claimed the following Corollary to Weyl:

Corollary 1. If A, σ , and λ is on the theorem above then

$$\sum_{i=1}^{k} |\lambda_i| \le \sum_{i=1}^{k} \sigma_i \quad 1 \le k \le n$$
(2)

By applying the logarithm function to both sides of equation 1 we get

$$\sum_{i=1}^{k} \log |\lambda_i| \le \sum_{i=1}^{k} \log(\sigma_i) \quad 1 \le k \le n$$
(3)

Prove the following theorem and use it to prove the corollary.

Theorem 0.2. Given two sequences $a_1 \ge \cdots \ge a_n \ge 0$ and $b_1 \ge \cdots \ge b_n \ge 0$ such that

$$\sum_{i=1}^{k} a_i \le \sum_{i=1}^{k} b_i \quad 1 \le k \le n \tag{4}$$

and f(0) = 0, is convex, and non-decreasing then

$$\sum_{i=1}^{k} f(a_i) \le \sum_{i=1}^{k} f(b_i) \quad 1 \le k \le n$$
(5)

Hints:

- 1. Try induction on *n*. Suppose for some $1 \le k < n$ we have $\sum_{i=1}^{k} f(a_i) = \sum_{i=1}^{k} f(b_i)$ what can you say?
- 2. Assuming $0 < \alpha \leq \beta$ show that

$$f(\alpha) + f(\beta) \le f(\alpha - \epsilon) + f(\beta + \epsilon)$$

for $\epsilon \leq \alpha$.

(15) 2. λ_2 of Balanced Binary Tree

Let T_n be a rooted balanced binary tree with n vertices (i.e. the depth of the left and right subtrees of every node differ by 1 or less). Show that λ_2 of its Laplacian is $\Theta(1/n)$. Hint: It should be easy, using methods from class, to see that $1/(n \log n) = O(\lambda_2)$ and $\lambda_2 = O(1/n)$. You will need to tune our lower bound method.

(25) 3. Eigenvalues of Cartesian Products

Let G = (V, E, w) and H = (V', E', w') be two non-negatively weighted simple graphs. Let $G \otimes H = (\bar{V}, \bar{E}, \bar{w})$ be their Cartesian product, where:

• The vertices are $\bar{V} = V \times V'$

• The edges are
$$\overline{E} = \{((x, x'), (y, y')) \mid [x = y \land (x', y') \in E'] \lor [x' = y' \land (x, y) \in E]\}$$

- $\bar{w}((x, x'), (x, y')) = w'(x', y')$ and $\bar{w}((x, x'), (y, x')) = w(x, y)$.
- 1. Show that the eigenvalues of $L_{G\otimes H}$ are the direct sum of those of L_G and L_H . That is if the eigenvalues of L_G are $\{\lambda_1, \ldots, \lambda_n\}$ and those of L_H are $\{\mu_1, \ldots, \mu_m\}$ the those of $L_{G\otimes H}$ are $\{\lambda_i + \mu_j \mid 1 \leq i \leq n, 1 \leq j \leq m\}$
- 2. Show that the eigenvectors of $L_{G\otimes H}$ are the direct product of those of L_G and L_H . The direct product of column vectors \bar{a} and \bar{b} is the matrix ab^T , reformatted (flattened) as a vector.

(25) 4. A Bad Example for Spectral Partitioning

Define **threshold spectral partitioning** of a possibly weighted graph G = (V, E) to be the vertex partition one gets by; 1) Finding the eigenvector x for λ_2 , 2) Sorting the vertices by their value in x, and 3) Returning the best threshold cut.

Let P_n^{ϵ} , for *n* even, be the weighted path graph on *n* vertices where all the edges have unit weight except the middle one which has weight ϵ .

Consider the Cartesian product $M_{cn}^{\epsilon} = P_{c\sqrt{n}} \otimes P_{\sqrt{n}}^{\epsilon}$

- 1. Show that threshold spectral partitioning on the graph M_{cn}^{ϵ} will generate a quotient cut of size $\Omega(1/\sqrt{n})$ for c sufficiently large and $\epsilon = 1/\sqrt{n}$ while the best cut is of size O(1/n).
- 2. How big does c need to be for this to happen?