
15-859NN Spectral Graph Theory, Spring 2021
Homework 4 Due: Friday May 7th in class

Gary Miller

Instructions. Collaboration is permitted in groups of size at most three. You must write
the names of your collaborators on your solutions and must write your solutions alone.

Question Points Score

1 25

2 25

3 25

4 25

Total: 100

1.(25) Low Stretch Trees

One of the most fundamental types of graphs is the spanning tree. The most well known
class of trees is the maximum/minimum weight spanning tree. In the case when all edges
of the graph have the same weight then all spanning trees have the same weight. The
goal of this problem is to define another class of spanning trees, namely, ones called low
stretch spanning trees. Recall that in a tree there is a unique path connecting any
two nodes and we define the length of this path to be the number of edges on this path.

Let G = (V,E) be a connected, unweighted and undirected graph with n vertices and m
edges and T = (V,E ′) a spanning tree of G. If e = (v, w) is an edge of G we define the
stretch of e in T to be the length of the path in T from v to w, denoted by StrT (e).
The stretch of T in G is:

Str(T,G) =
∑
e∈E

StrT (e)

The average stretch is Str(T,G)/m

1. Construct two spanning trees T1 and T2 for the 2 by n mesh graph with average
stretch Θ(1) and Θ(n), respectively. The 2 by 8 mesh graph is shown below.



2. Show that the recursive “C” construction for the
√
n by

√
n mesh has average

stretch O(log n). Here you may assume that
√
n is a power of 2. Below is an

example of the tree for the 8 by 8 square mesh.

Hint: First bound the diameter if the recursive “C” tree.

2.(25) Recurrent Random Spanning Trees

In class in order to prove Markov Chain Tree Theorem we need to consider a random
walk over rooted (convergent) spanning trees in a strongly connected direct graph G.
In particular, we defined a random walk on trees given a random walk on the vertices
of G. In particular, Given a CST Tc rooted at c in one step we can go to the tree
Ta = (Tc ∪ (c, a)) \ (a, b) where (c, a) is an edge out-edge of c and (a, b) is an edge in Tc,
the Last Visited tree.

Show that the last visit walk has a single recurrent class. Namely, given a CST T there
is walk where T is it’s last visit tree.

I see how to construct a path of length O(|V |2). Can you do better or find an example
requiring Ω(|V |2) length path?

3.(25) Leverage Scores and Resistors

Recall that much of this class has focused on the theorems regrading effective resistance
of graphs. The goal of this problem is to determine if we can generalized these theorems
to arbitrary matrices. Let B be the edge-by-vertex matrix of a connected graph G with
a diagonal conductance matrix C then the Laplacian of G is BTCB. If bi is the ith
row of B corresponding to the ith edge ei of G then the effective resistance from one
end of ei to the other is bi(B

TCB)+bTi . If we define B̄ = C1/2B then the resistance is
bi(B̄

T B̄)+bTi . This motivates to following definition. Let Am×n be a matrix of rank n.

Definition 1. The Leverage Score σ(A, a) where a is a column vector of size n is
aT (ATA)+a where + is the pseudoinverse. If ai is the ith row of A the σi(A) = σ(A, aTi ).

The goal of this problem is to determine what if any of the properties of effective resis-
tance carry over the leverage scores.

1. Show that the leverage score of a nonzero row vector with itself is one.
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2. Show that the column space Col(A) of A and the left null space NullL(A) of A form
an orthogonal bases of Rm. We will think of these vectors in f ∈ Rm as the flows.
In the case when A =

√
CB what kind of flows are the Col(A) and the NullL(A)?

3. We next prove a generalization of Foster’s Theorem. Show that the sum of the row
leverage scores of A is rank(A). In this problem assume that A is not of full rank.

4. We next prove a generalization of Thomson’s Principle. Suppose that x is a solution
to the system ATAx = b were b is in the column space of AT . Show that the flow
f = Ax is the unique minimum energy flow such that ATf = b. We define the
energy of f to be fTf .

5. We next prove a generalization of Rayleigh’s Monotonicity Law. If we increase a
row of A by scaling it by 1 + c for c > 0 or add a new row then no leverage score
except the changed one will increase.

6. We next prove a generalization of Spielman-Srivastava Graph Sparsification The-
orem. We say that ATA ≈ε BTB if (1 − ε)ATA 4 BTB 4 (1 + ε)ATA. Prove
that that there exist a matrix QB where B is a subset of m′ rows of A and Q
is a nonnegative diagonal matrix where m′ = cn log n for some constant c and
ATA ≈ε BTQTQB.

7. Prove a variant of the fact that conductors add when placed in parallel. In particular
prove a relationship between σ(a, a), σ(A, a), and σ(Ā, a) where Ā is the matrix A
with row a appended.

Hint: Consider the Sherman-Morrison formula.

Can you find a more general formula?

Research questions:

1. We also showed that the effective resistance forms a metric over the vertices.
Thus in our generalization we should be looking for a metric on the columns of A.
Suppose we define the score between two columns as Dij = χTij(A

TA)−1χij where
χij is the column vector with a 1 and −1 at i and j respectively. Does our score
say anything interesting about the relationship of two columns? Is Dij a metric on
the columns of A.

2. Is there theory of random walks for leverage scores, either on the columns or rows
of A?

3. If there in such a theory as randoms walks does commute time make sense and is
related to leverage score?

4.(25) Hardy Inequality and Path Embeddings

In this problem we will prove one of the famous inequalities of Hardy using path embed-
ding method from class.

Let a1, . . . , an. . . . be a sequence of nonnegative real numbers. then.

Page 3



Theorem 0.1 (Hardy).
∞∑
k=1

(
1

k

k∑
i=1

ai

)2

≤ 4
∞∑
k=1

a2k

We will prove the Hardy inequality in stages.

1. Show that if we prove a finite version of Hardy we will get a proof of Hardy. In
particular show that

n∑
k=1

(
1

k

k∑
i=1

ai

)2

≤ (4 + δ(n))
n∑
k=1

a2k (1)

,where δ(n) goes to zero with n, implies theorem 0.1.

2. Let Pn be the path graph, with vertices {V0, . . . , Vn} and unit conductances. The
weight of vertex Vi is mi = 1/i2 for i ≥ 1. We consider the Dirichlet boundary
problem of minimizing the Rayleigh quotient:

Ray = min
f(0)=0

∑n
i=1(f(i)− f(i− 1))2∑n

i=1mif 2(i)

Show that proving that 1/4 ≤ Ray implies equation 1.

3. At this point in the proof will use the path embedding lemma from class. We
generalize the proof to handle non-uniform node weights. Let Sn be the star graph
with n leaves. Let leaf vertex Li have mass mi and the edge from the center node
C to Li have conductance mi.

Show that all Rayleigh quotients that set the value at C to zero have value 1.

4. We next consider a path embedding of Sn into Pn where the center vertex of Sn
is mapped to V0. We first consider the allocation of conductance in proportion to
the mass mi for all path using an edge. Using this allocation show the effective
resistance from Vn to V0 is

n∑
i=1

imi.

per unit of mass. Use this bound to show that 1
lnn

= Ω(Ray).

5. In order to improve our lower bound we will need a more careful allocation of
conductances. Suppose we allocate with a priority given to longer path. Suppose
Pi from Vi to V0 is given a priority pi. Thus is given conductance propositional to
pimi. Using this allocation show the effective resistance from Vn to V0 is:∑n

i=1 ipimi.

pn
per unit of mass. While the effective resistance from Vk to V0 is:∑k

i=1 ipimi + k
∑n

i=k pimi

pk
(2)
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6. Use equation 2 to show that 1
4+o(1)

≤ Ray.

Hint: Equations 2 takes on a maximum value for k about n/2.
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