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Although many functions have been ascribed to the cerebellum, the uniformity of its synaptic
organization suggests that a single, characteristic computation may be common to all. Computer
simulations are useful in examining this cerebellar computation, as they inherently address function
at the level of information processing. Progress is facilitated by factors that make the cerebellum
particularly amenable to such analysis. We review progress from two contrasting approaches. Top-
down simulations begin with hypotheses about computational mechanisms and then ask how such
mechanisms might operate within the cerebellum. Bottom-up simulations attempt to build a
representation of the cerebellum that reflects known cellular and synaptic components as accurately
as possible. We describe recent advances from these two approaches that are leading to an
understanding of what information the cerebellum processes and how its neurons and synapses

accomplish this task.

The cerebellum is said to do many things. Recording, imaging and
lesion studies indicate that the cerebellum is important for coor-
dination, balance, motor learning and even non-motor tasks!~7.
Yet its synaptic organization is remarkably uniform®-10, suggest-
ing that a single characteristic computation may be accomplished
in each case®. In this sense, it may be more accurate to say that the
cerebellum does one thing: it receives inputs via well-defined affer-
ents and generates outputs according to its internal rules for infor-
mation processing. Diversity of function then stems from
differences in what inputs encode and differences in the down-
stream targets of cerebellar outputs. Thus, an emphasis on what
the cerebellum computes may greatly facilitate our understanding
of how different cerebellar regions contribute to various motor
and cognitive functions. Although we lack the data required to
build useful simulations of many brain systems, several factors
combine to make meaningful simulations of the cerebellum fea-
sible. These simulations help determine whether current knowl-
edge is sufficient to explain cerebellar input/output
transformations, what important information is missing, and what
key experiments can discriminate between competing hypotheses.

Factors that facilitate cerebellar simulations
Simulating a brain system is frequently hindered by incomplete
knowledge about synaptic organization and physiology, how inputs
are engaged by stimuli and what they encode, and how outputs
influence behavior. Owing to the efforts of Eccles, Ito, Szentagothai,
Llinas and others, we largely understand the synaptic organization
and physiology of the cerebellum8-11, Similarly, analysis of cere-
bellar-dependent forms of learning such as Pavlovian eyelid con-
ditioning and adaptation of the vestibulo-ocular reflex has revealed
the types of information carried by cerebellar inputs and details of
input/output transformations213, Together, these advantages are
fundamental to the construction and useful application of cerebel-
lar simulations.

The synaptic organization of the cerebellum is well known and
lends itself well to simulation (Box 1)810, There are an enormous
number of neurons, but a limited number of neuron types. A rela-
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tively simple circuit of these neurons is repeated throughout the
entire cerebellum. Inputs arrive via distinct afferents, the mossy
fibers and climbing fibers, and output is provided by the cerebel-
lar deep nuclei. Inputs modulate the output activity of deep nuclei
cells through two pathways: direct excitatory connections from
mossy fibers onto deep nuclei cells and an indirect pathway in the
cerebellar cortex involving excitation of Purkinje cells by granule
cells and ultimately resulting in inhibition of deep nuclei cells by
Purkinje cells. The synaptic physiology, numerical ratios, conver-
gence and divergence ratios, and geometry of projections for most
of these cells are known8-11,

There is also increasingly detailed information available regard-
ing plasticity at the granule cell to Purkinje (gr - Pkj) synapses in
the cerebellar cortex and plasticity in the deep nuclei, possibly at
the mossy fiber synapses onto the deep nucleus output cells
(mf - nuc)1214-17 Together, these findings provide the informa-
tion and constraints required to build computer simulations com-
posed of detailed representations of cerebellar cells and synapses.

Simulations of the cerebellum also benefit greatly from detailed
information about how cerebellar inputs and outputs act under
different conditions. Much of this knowledge comes from studies of
eyelid conditioning, as its behavioral properties reflect relatively
directly the input/output properties of the cerebellum1213, Eyelid
conditioning involves paired presentations of a neutral stimulus
such as a tone, and a reinforcing stimulus such as an air puff direct-
ed at the eye. Initially, there is only a reflex response to the air puff,
but after approximately 100-200 training trials, the tone acquires
the ability to elicit conditioned eyelid closure. This learning is bidi-
rectional. In ‘extinction’, repeated presentation of the tone without
the air puff makes the conditioned response gradually disappears.
Recording, lesion and stimulation studies show relatively direct
relationships between eyelid conditioning and cerebellar inputs and
outputs. The tone and air puff are conveyed to the cerebellum via
mossy fibers'®22 and climbing fibers23-2° respectively, and output
from one of the cerebellar nuclei drives the expression of learned
responses2®27 (Box 1).

These findings are important in three ways. First, they provide
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Box 1. Synaptic organization of the cerebellum and its relationship to
eyelid conditioning.

Purkinje cells of the cerebellar cortex (dashed box) project to the deep nuclei (black),
which transmit cerebellar output to other brain regions. Input reaches the cerebellum via
two excitatory pathways: mossy fibers (blue) and climbing fibers (red). Mossy fibers
originate from various brain stem nuclei that receive information from cerebral cortex
and spinal cord. They influence cerebellar output through direct excitatory connections
onto the deep nuclei cells (mf - nuc synapses) and through a more complex pathway in
the cerebellar cortex that culminates in Purkinje cell inhibition of deep nuclei neurons.
This pathway begins with mossy fiber excitation of both granule and Golgi cells, includes
three types of inhibitory interneurons (Golgi, basket and stellate cells), and involves the
abundant excitatory synapses that granule cells make onto Purkinje cells (gr — Pkj synaps-
es; there are about 200,000 for each Purkinje cell, and given that Purkinje cells converge
onto deep nucleus cells, (1100 million gr — Pkj synapses contribute to the output of a sin-
gle nucleus cell). The other input pathway, the climbing fibers, is strikingly different.
Climbing fibers originate in the inferior olive and make direct excitatory connections
onto Purkinje cells. Individual climbing fibers contact about 10 Purkinje neurons, and
in sharp contrast to the granule cell input, each Purkinje cell receives synaptic connections
from a single climbing fiber. This synapse is exceptional for its extensive spatial distri-
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bution over the Purkinje cell dendrite, which makes the climbing fiber response in Purkinje cells all-or-none.

During eyelid conditioning, these pathways lead to learning through the modification of synaptic strength at two different cerebellar
sites. Eyelid conditioning involves paired presentation of a conditioned stimulus (CS; for example, a tone) and an unconditioned
stimulus (US; for example, a puff of air to the eye). Whereas the CS does not initially cause a response, after repeated CS+US pre-
sentations, the animal learns a conditioned response: the eyelid closes in response to the CS. Lesion, stimulating and recording evidence
from many laboratories suggests that, first, the CS is conveyed to the cerebellum via activation of the mossy fiber input!® (histograms
in blue box; note the minimal temporal variation because mossy fibers are activated either throughout tone presentation or just at
its onset). Second, the US is conveyed by activating the climbing fiber input?® (histogram in red box). Third, increases in the activity
of cerebellar output cells in the anterior interpositus nucleus (histogram in black box) drive the expression of the learned eyelid
response?’ (line above histogram). Learning this conditioned response involves two sites of plasticity: gr — Pkj synapses in the cerebellar

cortex, and in the cerebellar nucleus, possibly at mf - nuc synapses.

some clues about what the cerebellum computes. Essentially, eye-
lid conditioning shows that repeated presentation of certain pat-
terns of mossy fiber and climbing fiber inputs induces changes in
the cerebellar output elicited by the mossy fiber inputs. The uni-
formity of cerebellar circuitry suggests that these input/output
properties may apply generally to all cerebellar tasks. Thus, analy-
sis and simulation of eyelid conditioning can be used as tools to
understand how the cerebellum processes information. Second,
actual tone-activated mossy fiberl® and air puff-activated climb-
ing fiber23 responses can provide meaningful inputs to simula-
tions. Third, comparing the output of a simulation with the
behavioral properties of eyelid responses under different condi-
tions provides a simple measure of how well the simulation cap-
tures cerebellar input/output transformations.

Temporally specific learning
Eyelid conditioning studies show that the fundamental computa-
tion carried out by the cerebellum involves not only changing its
output when there is a motor error (signaled by the climbing fiber
pathway), but delaying such changes in output to the time when
the error is expected. The key behavioral feature in this regard is
the extraordinary sensitivity of eyelid conditioning to the interval
of time between the onsets of the tone and air puff (the interstim-
ulus interval or ISI; Fig. 1). There is no learning with ISIs less than
100 ms; learning is best for 1SIs of 150-500 ms, and gradually wors-
ens for longer 1SIs (Fig. 1a)%2%, Moreover, conditioned responses
are precisely timed; they begin before, and always peak at, the time
when the air puff is expected (Fig. 1b)30:31,

Eyelid conditioning thus reveals that a mossy fiber input that
repeatedly predicts a climbing fiber input causes the cerebellar out-
put to increase. This increase is delayed with respect to the mossy
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fiber input so that it peaks about when the climbing fiber input is
expected (Fig. 1c). This is when cerebellar output was faulty, lead-
ing to a motor error and generation of the climbing fiber input,
and so the cerebellum has solved a temporal version of the credit
assignment problem: that is, when there is a motor error, how
should cerebellar output change? The answer is to time the out-
put change to influence the motor commands responsible for the
error encoded by the climbing fiber input, so that subsequent
motor performance will be improved.

Although the varied behavioral properties of eyelid condition-
ing reveal other interesting components of cerebellar processing,
this capacity for temporally specific learning seems to be the fun-
damental aspect of cerebellar information processing. Thus, we
focus on computational attempts to understand the ISI effect and
the learned timing of conditioned eyelid responses.

Top-down simulations of timing and ISI effects

The goals of attempts to understand temporally specific learning
using top-down simulations of eyelid conditioning have been stat-
ed clearly®2. First, devise real-time computational models that
describe as much of the known behavioral and physiological evi-
dence as possible. Second, devise an implementation scheme that
aligns features of the model with the neural circuits involved. Third,
test implications of the model and its implementation in experi-
ments. Although different in their details, most top-down simula-
tions of eyelid conditioning accomplish temporally specific learning
with three common features.

First, they incorporate the finding that gr — Pkj synapses decrease
in strength (long-term depression or LTD) when they are active
during a climbing fiber input to the Purkinje cell'>16, In this way, the
air puff-activated climbing fiber serves as a signal to decrease the
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strength of tone-activated synapses, causing Purkinje cell activity
during the tone to decrease. Because Purkinje cells are inhibitory,
the increase in cerebellar output associated with the conditioned
response is generated by the transient pause in Purkinje cell firing
through disinhibition of cerebellar nucleus cells. In support of this
hypothesis, Purkinje cell recordings from identified eyelid regions of
the cerebellar cortex in conditioned animals demonstrate Purkinje
cells that learn to decrease their firing during the tone®.

Second, the activity of granule cells in top-down models is
assumed to vary in time such that different gr — Pkj synapses are
active at different times during the tone. This feature is crucial for
generating appropriately timed conditioned responses because it
allows LTD to occur strictly for those gr — Pkj synapses that are active
when the air puff is presented. Although the activity of individual
granule cells in vivo remains unknown, top-down simulations pro-
pose three different patterns of granule cell activity that could pro-
duce temporally specific learning (Fig. 2). Tapped-delay-line models
(Fig. 2a) from Moore and colleagues assume that the tone sequen-
tially engages different input elements (for example, mossy
fibers)3234, In contrast, Grossberg’s spectrum models assume that
granule cells have a variety of time constants so that gr — Pkj synaps-
es are activated at different times after the tone (Fig. 2b)3°. The most
recent variant of this kind of model (Fig. 2b) assumes that an array
of differently timed calcium responses occur in Purkinje cells because
of variations in the number of metabotropic glutamate receptors3s,
A third type of model assumes that granule cells activated by the
tone oscillate with different frequencies and phases (Fig. 2¢)%". Thus,
in each model, any given Purkinje cell is receiving a barrage of inputs
from many granule cells. However, some of those granule cells fire at
a specific time relative to the onset of the tone. Those gr — Pkj synaps-
es that become active at the time of the air puff-activated climbing
fiber input are weakened by LTD, resulting in a sudden drop in
synaptic input (and a transient pause in Purkinje cell activity) specific
to the time when the air puff is expected.

Third, the ISI effect in top-down models is produced by a fea-
ture, initially derived from Hull’s influential stimulus trace idea38,
that prevents learning at ISls shorter than 100 ms or longer than 3
seconds. According to this hypothesis, the strength or some ener-
getic aspect of the tone’s neural representation has a time course
that parallels the ISI function (Fig. 1a). The air puff is then assumed
to promote learning on each trial according to the strength of the
tone representation. For example, the tapped delay line model
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Fig. 1. Time-dependent properties of eyelid conditioning. (a) Learning is
possible only for a limited range of interstimulus intervals (ISI) between CS
and US onset (1100 ms to 3 s). As suggested by Hull8, this effect can be
explained by considering a hypothetical stimulus trace curve with the time
course of the ISI function. (b) When an effective ISI is used, learned
responses are precisely timed so that maximum eyelid closure occurs near
the US onset®0, Bottom, sample eyelid responses (upward deflection
means eye is closing) illustrate response timing for six different ISs. In each
case, the small rectangle indicates when the US is presented during train-
ing, with its associated learned response in the same color. Simultaneous
presentation of CS and US (ISI = 0) produces no learning (orange). (c) The
same eyelid responses as in (b) aligned with respect to the climbing fiber
input (US). The timing of the learned responses shows how, regardless of
the time of the onset of the CS, the learned increases in cerebellar output
always peak about 100 ms before the arrival of the climbing fiber input
(pink box). Because the errant movement that elicited the climbing fiber
input was produced by motor commands near this time, this timing capa-
bility ensures that the correct component of the movement is adjusted;
note that all responses are timed to peak just before the error.

(Fig. 2a) assumes that the tone initiates an eligibility signal with the
time course of the ISI function, which determines whether gr —
Pkj synapses undergo plasticity34. In models of this kind, learning is
not possible with certain tone—air puff intervals because although
there are active gr — Pkj synapses at the time of the air puff-activat-
ed climbing fiber input, the value of the hypothetical eligibility sig-
nal that is associated with active gr — Pkj synapses at those times is
too small to cause LTD induction. In spectrum models (Fig. 2b),
the differently timed granule cells responses accomplish the same
task®>36, In these models, ineffective ISIs cannot support learning
simply because there are no gr — Pkj synapses active at those times.

Fig. 2. Top-down
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active at the time of reinforcement by the US. (b) Spectrum models
assume that neurons can respond to the CS with a broad range of time
constants. Thus, if the US is presented shortly after the CS, learning is
restricted to neurons with fast dynamics (top green cells). Similarly, the
activity of neurons with slower membrane dynamics (bottom green cells)
is delayed and thus contributes to response timing for longer CS-US
intervals. (c) Oscillation models. A pool of pacemaker neurons oscillating
at different frequencies can also be used to encode time. Different times
during presentation of a CS can be distinguished from each other because
the combination of neurons active at any point is unique to that particular
time. Thus, response timing arises because a particular combination of
cells is weakened through LTD by the US-activated climbing fiber.
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Box 2. Building a bottom-up computer
simulation of cerebellar cortex.

(a) Integrate-and-fire representations of neurons.
Activity of a nucleus cell (top) and an expanded view
of its membrane potential (bottom) during a sim-
ulation. The integrate-and-fire model does not, as
commonly assumed, sum inputs until a threshold
is reached. Instead, it uses the Goldman-Katz equa-
tion to solve for membrane potential (blue line)
given leak and synaptic conductances (note EPSPs
and IPSPs). The main simplification is that because
there are no active conductances, action potentials
are assumed to occur when membrane potential
reaches threshold (yellow line). Even without active
conductances, absolute and relative refractory peri-
ods can be implemented via spike-activated changes
in threshold. For example, when a spike occurs,
threshold is increased and then decays back to its
normal level. Similarly, afterhyperpolarizations can
be implemented by having each spike transiently
increase a potassium conductance. (b, ¢) Wiring the
network. The goal of building a bottom-up simu-
lation is to duplicate the numerical, divergence and
convergence ratios of cells and the geometry of their

Nucleus cell activity

JITTI

projections. This requires a simulation with a very large number of granule cells (here 10,000, blue layer). There are 900 Golgi cells
(yellow), 600 mossy fibers (purple), 20 Purkinje cells (green, only one shown) and 6 nucleus cells (white, one shown). Because there are
over 300,000 synapses in this network, it is not possible to specify each by hand; instead, the network is built by specifying appropriate rules
of connectivity. (b) An example of how the connections of one granule cell onto its target Golgi cells are determined. The geometry of pro-
jections is determined by limiting possible connections to a defined region (bright yellow Golgi cells), with its shape and size determined
by the length of the granule cell axon (parallel fiber, light blue) and the diameter of the Golgi cell dendritic trees (yellow cones). The
Golgi cells within this region that actually receive a synapse (white Golgi cells) are determined by specifying divergence (how many Golgi
cells a single granule cell contacts) and convergence ratios (how many granule cell synapses each Golgi cell receives). (c) This processes is
then repeated for all cells and all cell types in the network. This includes a large number of gr — Pkj synapses (gray), mf — nuc synapses (also
gray), Purkinje cell inhibitory synapses onto nucleus cells and nucleus cell synapses onto the climbing fiber.

How these models accomplish response timing and the ISI effect
is instructive, but the built-in nature of the mechanisms means that
the utility of these models arises mostly from the specificity of their
predictions, which can be used to guide research. In this context,
tapped-delay lines, neurons with a broad range of membrane
dynamics, and oscillatory cells all are possible candidates capable
of generating and making use of temporal information. Because
granule cells are too small and densely packed to be recorded indi-
vidually in vivo by conventional physiological techniques, whether
or not the cerebellum uses any of these mechanisms to encode time
remains an intriguing question whose resolution awaits further
technological advances.

Bottom-up simulations

Following the initial success of top-down models in proposing
hypothetical mechanisms and identifying key features of tempo-
rally specific learning by the cerebellum, recent studies using a dif-
ferent modeling approach have provided further insights into how
the cerebellum processes information. In contrast to the funda-
mentally hypothetical nature of top-down models, bottom-up
approaches begin by building computer simulations that are con-
strained by cerebellar anatomy and physiology. The point is to avoid
building in assumptions about how certain components function.
For example, rather than assuming that all cells of a particular type
are similar and so only a few will suffice, a bottom-up approach
tries to adhere to numerical cell ratios as well as to divergence/con-
vergence ratios and connection geometry, making bottom-up sim-
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ulations large and computationally intensive. They also require
extremely large numbers of synapses (more than 250,000 in our
smallest simulations), precluding the possibility of specifying con-
nections by hand. Instead, in a way that somewhat parallels devel-
opment, simulations are built by using empirically determined
constraints to guide formation of connections (Box 2).

Building bottom-up simulations requires knowledge not only
about how the cerebellum is wired, but also about the strengths of
different synapse types and how the postsynaptic cell integrates
their conductances. Fortunately, many important details of cere-
bellar connectivity are known from in vitro studies®. However, as
discussed in another review in this collection?, dendritic process-
ing is very complex and includes many nonlinear effects. Given the
amount of computer power available today, many of these impor-
tant details cannot be incorporated in large-scale computer simu-
lations. Thus, bottom-up simulations undoubtedly contain errors
of omission. The point is to avoid building in assumptions and thus
to minimize errors of commission.

One disadvantage of bottom-up simulations is that they often
fail to reproduce some of the behavioral properties of eyelid con-
ditioning (for example, generating poorly timed responses or allow-
ing learning for tone—air puff intervals that are known to be
ineffective). Because bottom-up simulations do not address these
failures by incorporating hypothetical mechanisms that ensure suc-
cess, they may initially lack the ability to make testable predictions.
Yet, even failures can indicate the need for more information and
can guide empirical studies by providing hints about what is
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Fig. 3. Factors contributing to response timing in the simulations.
(a) Example histograms for 16 of the 10,000 simulated granule cells during
500 presentations of a 1-s CS (black). For reference, the activity of each
cell during 100-ms periods before and after the CS is shown (white).
Simulated granule cells showed both increased activity (top three rows)
and decreased activity (bottom row) at some point during CS presenta-
tion. The ability of simulated granule cells to fire at different times during
the CS arises naturally as a consequence of the complex patterns of gran-
ule cell excitation and inhibition that result from dynamic interactions
among mossy fibers, granule cells and Golgi cells. (b) Activity of simulated
nucleus and Purkinje cell in test trials (CS presented without US) at differ-
ent times during acquisition training. Numbers at left, training session
from which the response was taken. Simulated Purkinje cell spontaneous
activity is approximately 60 Hz, and before training (pre), it is relatively
unchanged by CS presentation (blue). As training proceeds and LTD is
induced at gr — Pkj synapses during presentation of the US (red bar), the
Purkinje cells learn to decrease their activity late in the CS. In addition,
LTP induction during the unreinforced portions of the CS (green bar)
results in increased Purkinje cell activity during the early parts of the CS.
Bottom, both these changes in Purkinje cell activity contribute to
response timing by suppressing nucleus cell responding early in the CS and
disinhibiting responding later in the CS. (c) When LTP at the gr - Pkj
synapses is artificially disengaged during the CS, the simulation learns to
respond, but the timing of the nucleus cell responses (bottom) is inappro-
priately broad. This reflects Purkinje cell activity (top) decreasing late in
the CS without being able to increase early in the CS.

missing. Then when (if) bottom-up simulations are successful in
generating some aspect of eyelid conditioning, it can be relatively
straightforward to determine how they do so, generating specific
empirically testable predictions.

Our initial simulations illustrate how failures can provide
insights*L. Top-down models had suggested that temporally specif-
ic learning requires different gr — Pkj synapses to be active at differ-
ent times during the tone. Our initial bottom-up simulations
revealed that the intrinsic circuitry of the cerebellar cortex natural-
ly produces this time-varying activity during the tone in a subset of
granule cells (Fig. 3a, peri-stimulus histograms). However, this same
simulation revealed that during realistic tone-like inputs (which
include mossy fibers that fire tonically throughout the entire tone;
Box 1), the geometry of cerebellar cortical connections caused many
granule cells to become activated through large portions of the tone
(Fig. 3a). This coarse temporal coding, in contrast to the sharp tem-
poral specificity of granule cells proposed in top-

Purkinje cell activity) at other times during the same tone that were
not reinforced by the climbing fiber input associated with the air
puff (Fig. 3b). After learning, the net effect of these synaptic modi-
fications was a temporally sharp Purkinje cell response, with a char-
acteristic pause in activity around the time of the air puff that had
been sharpened by a preceding increase in activity (Fig. 3b, Purk-
inje cell activity at training day 10). This biphasic pattern of Purkinje
cell activity had been recorded from the cerebellar cortex of condi-
tioned animals® and may be ideally suited to generate precisely
timed responses because the deep cerebellar nuclei cells responsible
for generating the conditioned response are inhibited by Purkinje
cells and respond with a pronounced rebound depolarization and
a burst of spikes when released from inhibition*2. Thus, the simu-
lation suggests that in contrast to the proposals of top-down mod-
els, the cerebellum may not require a high degree of temporal
specificity in granule cn;.)ll activity to accomplish temporally specific
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down models, resulted in abnormally broad  Simulation Rabbit
responses and thus failed to generate temporally spe- et LR - 2§ [Seam
cific learning. We sought to address this serious defi- ¥ =2 Post E — 2 Post
ciency with a more complete representation of the z — 1 Post 5 it
cerebellum and, as information became available,by £ 751 = -7
adding quantitative details about synaptic conduc- < 2
tances and conditions for plasticity. 2 %

Perhaps the most surprising result from these § w g ;
more complete simulations was that broad respons- 0 m—CS T —)

es could be sharpened by incorporating evidence that  Fig. 4. Partial lesions of the cerebellar cortex. Simulations (left) and rabbits (right) display

in addition to LTD, gr — Pkj synapses can also under-
go LTP when active without a climbing fiber input
(Fig. 30)%. When this evidence for bidirectional plas-
ticity of gr — Pkj synapses was included, the simula-
tion still acquired responses (through LTD at gr — Pkj
synapses and resulting decreases in Purkinje cell activ-
ity) about when the air puff-activated climbing fiber
input occurred. Unexpectedly, however, the simula-
tion also learned to suppress responses (through LTP
at other gr — Pkj synapses and resulting increases in

a similar pattern of responding following a partial lesion of the cerebellar cortex. Each
trace represents the average output of the simulated nucleus cells (left) or the average eye-
lid response (right) over 12 CS test trials. Colors indicate how many sessions after the
lesion each trace was measured. Both simulations and rabbits were trained before the
lesion and the ‘pre’ sweep shows responses given over the two sessions (240 trials for the
simulations) before the lesion. Initially after the lesion (1 post), simulations and rabbits pro-
duced responses with a short-latency onset. With additional training, response timing
gradually recovered to normal levels (6 post). In the simulations, this recovery was possible
because the Purkinje cells that were spared by the lesion underwent additional learning
(LTP at gr —Pkj synapses), acquiring even more robust increases in responding early in the
CS and thus suppressing the short-latency component.
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of these predictions illustrates how bottom-up simulations
can also be useful in guiding empirical research.

Summary

Computer simulations are beginning to contribute to our
understanding of cerebellar information processing, both
in terms of reproducing key behavioral features of cerebel-
lar tasks and in terms of making empirically testable pre-
dictions. In particular, simulations of eyelid conditioning

Fig. 5. Competition between acquisition and extinction contributes to the ISl effect  have focused empirical studies on key issues while also serv-
in the simulations. (a) Summary of data from two studies that examined the IS func- ing as a rough measure of progress—how well our under-

tion in rabbits?829, Learning was fast and robust with ISlIs of 200 ms (black line) and
400 ms (orange line). For the 800 ms ISI (purple line), learning was weaker, and for
the 2 s ISI (pink line), there was little evidence of learning. (b) When the simulations
are trained with these same ISls, the rates of learning are comparable to those

standing of different cerebellar components combines to
explain how the cerebellum accomplishes temporally spe-
cific motor learning. Because the temporally specific learn-

shown in (a). In the simulations, learning declines as the 15! is lengthened because in 1N in eyelid conditioning is a common property Shareq by
each training trial, the portion of the CS not reinforced by the US-climbing fiber ~0ther forms of cerebellar tasks®?, these studies are also like-
(that is, LTP at gr — Pkj synapses, green bar) grows relative to the portion that is rein- |y to reveal general features about the input/output trans-

forced by the US-climbing fiber (that is, LTD at gr — Pkj synapses, red bar).

formation of the cerebellum. Thus, given the remarkably
uniform synaptic organization of the cerebellum through-

learning. Under conditions of coarse temporal coding by the gran-
ule cells, the simulation generated properly timed responses by learn-
ing to respond at the appropriate time through the induction of LTD
while learning to suppress responses when they were not required
through the induction of LTP.

These suggested mechanisms make empirically testable predic-
tions. We recently tested the behavioral effects predicted for partial
lesions of the cerebellar cortex®. Initially after a lesion that removed
[50% of the simulated Purkinje cells, the simulation displayed mal-
adaptive responses with a very short latency after tone onset (Fig.
4a). This characteristic disruption of response timing shows that
part of what the simulated Purkinje cells had learned to do before
the lesion was to suppress responding during the early parts of the
tone. With further training in the simulations, the onset of the
response recovered to pre-lesion levels, indicating a spared capaci-
ty of the remaining Purkinje cells to further suppress responding
through the induction of LTP at gr - Pkj synapses active during the
early parts of the tone (Fig. 4a). We observed the same character-
istic pattern of responding in rabbits after small, electrolytic lesions
of the cerebellar cortex3® (Fig. 4b). These data are consistent with
the predicted importance of LTP at gr - Pkj synapses in generating
temporally specific learning by suppressing responses during the
unreinforced parts of the tone.

The hypothesized competition between the LTP that is induced
during the early parts of the tone and the LTD that occurs during the
air puff-activated climbing fiber input also offers a new explana-
tion for the ISI effect (Fig. 5). Essentially, as the duration of the
tone—air puff interval increases, opportunities for LTP induction
during the tone, before the air puff activates climbing fibers, come
to outweigh those for LTD induction. Thus, as the tone-air puff
interval lengthens, gr — Pkj synapses that are active through large
portions of the tone undergo more LTP than LTD, which prevents
them from contributing to the pause in Purkinje cell activity
required for generating responses. This hypothesis makes several
predictions that could be tested by manipulating the amount of
LTP experienced by gr — Pkj synapses during each conditioning trial.
For example, extending the tone past the air puff while keeping the
tone—air puff interval constant may increase the opportunities for
LTP relative to LTD. This manipulation is thus expected to retard
learning for a particular set of tone—air puff intervals. In contrast,
selectively blocking LTP while leaving LTD unaffected is expected
to allow normally ineffective tone—air puff intervals to support
robust conditioning. As with top-down simulations, the specificity
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out its different regions, it is possible that what the eyelid
region of the cerebellum computes during eyelid conditioning is
similar to the computation carried out by other cerebellar regions
during other cerebellar tasks. In this context, the development of a
computer simulation constrained by the anatomy and physiology of
the cerebellum and capable of reproducing key behavioral aspects of
the growing list of cerebellar tasksl~ represents an important chal-
lenge for future computational studies.
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Viewpoint « What does ‘understanding’ mean?

When Ed Lewis in my department won a Nobel Prize a few years ago, our chair organized a party. On my way there, | overheard an
illustrious chemist offer, “Hey, at least one smart biologist,” making his colleagues chuckle. Nothing new in academia, the land of the high-
minded yet curiously parochial primate. Why bring this up? Because science starts with human interactions: if we want theory and
experimental neuroscience to strengthen each other, we must hope for people with different cultures, expertise, perspectives and footwear
to leave their prejudices at the door and learn to better appreciate each other’s strengths. This is not easy to achieve when human nature
makes us shun the unfamiliar, when the structure of academic institutions imposes borders between disciplines, and when reductionist
approaches alone undeniably produce so much concrete knowledge. So, if reductionism works so well—as it has in the history of
neuroscience—why should we care about bringing theory (and theorists) into the kitchen? It all boils down, it seems to me, to a classical
philosophical question: what does ‘understanding’ mean? Upon reflection, it is depressing, if not scandalous, to realize how rarely | ask
myself this. As an experimentalist, | would consider most of what my lab does as descriptive; at best, we try to tie one observation to
another through some causal link. Most of what we try to explain has a mechanistic underpinning; if not, a manuscript reviewer, editor or
grant manager usually reminds us that is what this game is about. And we all go our merry way filling in the blanks. This is, in my view,
where theorists most enrich what we do. Theorists, through their training, bring a different view of explanatory power. Causal links
established by conventional, reductionist neurobiology are usually pretty short and linear, even when experiments to establish those links
are horrendously complex: molecule M phosphorylates molecule N, which causes O; neuron A inhibits neuron B, ‘sharpening’ its response
characteristics. This beautiful simplicity is the strength of reductionism and its weakness. To understand the brain, we will, in the end, have
to understand a system of interacting elements of befuddling size and combinatorial complexity. Describing these elements alone, or even
these elements and all the links between them, is obviously necessary but, many would say, not satisfyingly explanatory. More precisely,
this kind of approach can only explain those phenomena that reductionism is designed to get at. It is the classical case of the lost key and
the street lamp; we often forget that the answers to many fundamental questions lie outside of the cone of light shed by pure analysis (in
its etymological sense). | am interested in neuronal systems. In most cases, a system'’s collective behavior is very difficult to deduce from
knowledge of its components. Experience with many systems of neurons under varied regimes could, in theory, eventually give me a good
intuitive knowledge of their behavior: | could predict how system S should behave under certain conditions. Yet my understanding of it
would be minimal, in the sense that | could not convey it to someone else, except by conveying all my past experience. This is one of the
many places where theorists can help me. Much of what we need to provide a deeper understanding of these distributed phenomena may
already exist in some corner of the theory of dynamical systems, developed by mathematicians, physicists or chemists to understand or
describe other features of nature. If it does not, maybe it can be derived. But the first step is to map my biological system onto the existing
theoretical landscape. This is where the challenge (and fun) lies—and where sociological forces must be tamed. In brief, neuroscience is, to
me, a science of systems in which first-order and local explanatory schemata are needed but not sufficient. Reductionism, by its nature,
takes away the distributed interactions that underlie the global properties of systems. Theoretical approaches provide different means to
simplify. We must thus learn to understand, rather than avoid complexity: simplicity and complexity often characterize less the object of
study than our understanding of it. Maybe one day, neuroscience textbooks will finally start slimming down....
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