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Marr's Theory

● Marr suggested that the cerebellum is an associative memory.

● Input: proprioceptive information (state of the body).

● Output: motor commands necessary to achieve the goal 
associated with that context.

● Learn from experience to map states into motor commands.

● Wants to avoid pattern overlap, to keep patterns distinct.
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Albus' Theory

● Albus suggested that the cerebellum is a function approximator.

● Similar to an associative memory, but uses pattern overlap and 
interpolation to approximate nonlinear functions.

● Could explain how the cerebellum generalizes to novel input 
patterns that are similar to those for previously practiced 
motions.
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Associative Memory: Store a Pattern

Set all these
synapses 
to 1

The input and output patterns don't have to be the same length, although
in the above example they are.
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Associative Memory: Retrieve the Pattern

net activation
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Associative Memory: Unfamiliar Pattern

net activation
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Storing Multiple Patterns

Input patterns 
must be dissimilar: 
orthogonal or 
nearly so. (Is this
a reasonable 
requirement?)
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False Positives Due to Memory Saturation

net activation
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Responding To A Subset Pattern
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Training the Cerebellum
● Mossy fibers (input pattern)

– Input from spinal cord, vestibular nuclei, and the pons.

– Spinocerebellar tracts carry cutaneous and proprioceptive information.

– Much more massive input comes from the cortex via the pontine nuclei 
(the pons) and then the middle cerebellar peduncle.  More fibers in this 
peduncle than all other afferent/efferent fiber systems to cerebellum.

● Climbing fibers (teacher)

– Originate in the inferior olivary nucleus.

– The “training signal” for motor learning.

– The UCS for classical conditioning.

● Neuromodulatory inputs from raphe
nucleus, locus ceruleus, and 
hypothalamus.
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Purkinje Cells

● The principal cells of the cerebellum.

● Largest dendritic trees in the brain: 
about 200,000 synapses.

● These synapses are where the associative
weights are stored.

● Albus argues that basket and stellate cells
should also have trainable synapses.

– Beginning in the 1990s, evidence for various types of synaptic 
adaptation and long-term plasticity in stellate cell inputs and 
outputs has accumulated.

● Purkinje cells have recurrent collaterals that contact Golgi cell 
dendrites and other Purkinje cell dendrites and cell bodies.

● Purkinje cells make only inhibitory connections.



09/08/19 Computational Models of Neural Systems 13

Input Processing

● If mossy fiber inputs made direct contact with Purkinje cells, the 
cerebellum would have a much lower memory capacity due to 
pattern interference.

● Also, for motor learning, subsets of an input pattern should not 
produce the same results as a supserset input.  Subsets must 
be recoded so that they look less similar to the whole.

● “cup in hand”, “hand near mouth”, “mouth open”
● “cup in hand”, “mouth open” (don't rotate wrist!)

● Solution: introduce a layer of processing before the Purkinje 
cells to make the input patterns more sparse and less similar to 
each other (more orthogonal). 

● Similar to the role of the dentate gyrus in hippocampus.
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Mossy Fiber to Parallel Fiber Transformation:
“Conjunctive Coding”

● Same number of active lines, but a larger population of units, 
produces greater sparsity (smaller a) and less overlap between 
patterns.

a
i
 = 3/8 = 0.375

a
o
 = 3/29 = 0.103
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Recoding Via Granule Cells
● Mossy fibers synapse onto 

granule cells.

● Granule cell axons (called 
parallel fibers) provide input to 
Purkinje cells.

● Golgi cells are inhibitory 
interneurons that modulate the 
granule cell responses to 
produce 'better” activity patterns.
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Golgi Cells

● Golgi cells monitor 
both the mossy fibers 
(granule cell inputs) 
and the parallel fibers 
(granule cell outputs).

● Mossy fiber input 
patterns with widely 
varying levels of 
activity result in 
granule cell patterns 
with roughly the same 
level of activity, thanks 
to the Golgi cells.

(sample parallel fibers)

(sample mossy fibers)

modulate mossy fiber
to granule cell connections
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The Glomerulus

axon

axon

dendrite

dendrite

MF = mossy fiber
Gr = granule cell
GC = Golgi cell
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Basket and Stellate Cells

● Inhibitory interneurons that supply short-range, within-beam 
inhibition (stellate) and long-range, across-beam inhibition 
(basket).
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The Matrix Memory

● Weights: modifiable synapses from granule cell parallel fibers 
onto Purkinje cell dendrites.

● Thresholding: whether the Purkinje cell chooses to fire.

● Threshold setting: stellate and basket cells sample the input 
pattern on the parallel fibers and make inhibitory connections 
onto the Purkinje cells.

● Marr thought the synapses started out with zero or small 
weights that increased with learning (LTP).

● Albus' contribution: synapses should initially have high weights, 
not zero weights.  Learning reduces the weight values (LTD).

● Since Purkinje cells are inhibitory, reducing their input means 
they will fire less, thereby dis-inhibiting their target cells.
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Marr's Notation for Analyzing His Model

am is the fraction of active mossy fibers

ag  is the fraction of active granule cells (parallel fibers)

Nm , Ng are numbers of mossy fibers/granule cells

Nmam  = expected # of active mossy fibers

Ngag  = expected # of active granule cells

A fiber that is active with probability a  transmits
   −log2a  bits of information when it fires

Nmam×−log2am  = information content of a mossy fiber pattern

Ngag×−log2ag  = information content of a granule cell pattern

    (but assumes fibers are uncorrelated, which is untrue)



09/08/19 Computational Models of Neural Systems 21

Marr's Constraints on Granule Cell Activity

1. Reduce saturation: tendency of the memory to fill up.

ag < am

2. Preserve information.  The number of bits transmitted
should not be reduced by the granule cell encoding step.

−Ngag(logag) ≥ −Nmam(logam)

−ag(logag) ≥ −
Nm

Ng

am(logam)

3. Pattern separation: overlap is an increasing function of a ,
so we again want ag < am
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Golgi Inhibition Selects Most Active Granule Cells
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Summary of Cerebellar Circuitry

● Two input streams:

– Mossy fibers synapse onto granule cells whose parallel fibers project to 
Purkinje cells

– Climbing fibers synapse directly onto Purkinje cells

● Five cell types: (really 7 or more)

1. Granule cells (input pre-processing)

2. Golgi cells (regulate granule cell activity)

3. Purkinje cells (the principal cells)

4. Stellate cells

5. Basket cells

● One output path: Purkinje cells to deep cerebellar nuclei.

● But also recurrent connections: Purkinje → Purkinje

              Feed-forward inhibition of Purkinje cells
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New Cell Types Investigated Since Marr/Albus

● Lugaro cells (LC): an inhibitory interneuron (GABA) that targets 
Golgi, basket and stellate cells as well as Purkinje cells. May be 
involved in synchronizing Purkinje cell firing.

● Unipolar brush cells (UBC): excitatory interneurons → granule 
cells
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Tyrrell and Willshaw's Simulation (1992)

● C programming running on a Sun-4 workstation (12 MIPS 
processor, 24 MB of memory)

● Tried for a high degree of anatomical realism.

● Took 50 hours of cpu time to wire up the network!
Then, 2 minutes to process each pattern.

● Simulation parameters:

– 13,000 mossy fiber inputs, 200,000 parallel fibers

– 100 Golgi cells regulating the parallel fiber system

– binary weights on the parallel fiber synapses

– 40 basket/stellate cells

– 1 Purkinje cell, 1 climbing fiber for training
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Tyrrell & Willshaw Architecture
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Geometrical Layout
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Golgi Cell Arrangement

Marr

Albus
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Golgi Cell Estimate of Granule Cell Activity
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Golgi Cell Regulation of Granule Cell Activity
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Granule Cells Separate Patterns
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Pattern Separation by Granule Cells

Let's look at how two patterns are transformed by the granule cells.

Mossy fibers: input pattern.
Parallel fibers: output pattern.

Mossy Fibers               Parallel Fibers
 a

M
 = 3/6 = 0.5              a

G
 == =4/10 == =0.4

 1 1 1 0 0 0      ®      1 0 1 1 0 0 0 1 0 0            

 0 1 1 0 0 1      ®      0 0 1 0 1 1 0 0 0 1

 =q
M
 = 2 / 6 = 0.33          q

G
 = 6 / 8 = 0.75

Patterns have become more sparse:   a
G
 =< =a

M

Patterns have also become more distinct:   q
G
 > q

M
.
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Tyrell & Willshaw's Conclusions

● Marr's theory can be made to work in simulation.

● Memory capacity: 60-70 patterns can be learned by a Purkinje 
cell with a 1% probability of a false positive response to a 
random input.

● Several parameters had to be guessed because the anatomical 
data were not yet available.

● A few of his assumptions were wrong, e.g., binary synapses.

● But the overall idea is probably right.

● The theory is also compatible with the cerebellum having a role 
in classical conditioning.
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Marr's 3 System-Level Theories
● Cerebellum

– Long-term memory but strictly “table lookup”.

– Pattern completion from partial cues not desirable

● Hippocampus

– Learning is only temporary (for about a day), not permanent.

– Retrieval based on partial cues is important.

● Cortex

– Extensive recoding of the input takes place: clustering by 
competitive learning.

– Hippocampus used to train the cortex during sleep.
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Albus' CMAC Model

● Cerebellar Model Arithmetic Computer, or
Cerebellar Model Articulation Controller

● Function approximator using distributed version of table lookup.
In machine learning this is called “kernel density estimation”.

S
1
 and S

2
 far apart 

in pattern space: 
table entries don't 
overlap.

Mossy fiber 
pattern space
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Similar Patterns Share Representations

Mossy fiber 
pattern space

PF → Pk 
synaptic 
weights
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Learning a Sine Wave
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Learning a Sine Wave
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Learning 2D Data
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Coarsely-Tuned Inputs Resemble Mossy Fibers
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Coarse Tuning in 2D
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Coarse Coding Using Overlapped Representations

Granule cell
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2D Robot Arm Kinematics

Arm and shoulder 
joints each have 180 
range of motion.
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Higher Dimensional Spaces

Motor control is a high dimensional problem.
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CMAC Learning Rule

1. Compare output value p with desired value p*.

2. If they are within acceptable error threshold, do nothing.

3. Else add a small correction D to every weight that was summed 
to produce p:

g  is a gain factor ≤ 1
A is the set of active weights

D = g ⋅
p*

−p
∣A∣

If g=1 we get one-shot learning.
Safer to use g<1 to ensure stability.
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CMAC = LMS (Least Mean Square) Learning

● CMAC learning rule:

● LMS learning rule:

● Same rule!

● LMS could be used to store linearly independent patterns in a 
matrix memory.

D = g ⋅
p*

−p
∣A∣

wi =  ⋅ d−y ⋅xi

Implicit: rule only applies
to active units
(units in set A)

Explicit: learning
rate depends on

unit's activity level
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Albus: Why Should Purkinje Cells Use LTD?

1. Learning must be Hebbian, i.e., depend on Purkinje cell activity, 
not inactivity.

2. Climbing fiber = error signal.
Climbing fiber fires ® Purkinje cell should not fire.

3. Parallel fibers make excitatory connections.

So: reducing the strength of the parallel fiber synapse when 
climbing fiber fires will reduce the Purkinje cell's firing.
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Application to Higher Order Control?

Cerebrocerebellum?

Spinocerebellum?
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Compare Marr and Albus Models

Marr:
● Focus on single Purkinje cell 

recognizing N patterns

● Binary weights (incorrect)

● Binary output

● Assumes learning by LTP

Albus:
● Focus on PCs collectively 

approximating a function

● Continuous weights

● Continuous-valued output

● Requires learning by LTD

Both use granule cells to recode input, decrease overlap.

Both use static input and output patterns; no dynamics.
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Newer Simulations using GPUs

● Mauk  lab (2013): large scale simulation of cerebellum

– 1024 mossy fibers; 1024 Golgi cells

– 220 (1,048,576) granule cells (vs. 50 billion in humans)

– 32 Purkinje cells

– 128 basket cells; 512 stellate cells

– Simulated on an Nvidia GTX580 GPU

– Eyeblink conditioning, pole balancing tasks

● Yamazaki & Igarashi (2013): real-time spiking simulation

– 102,000 granule cells

– 1024 Golgi cells, 16 Purkinje cells, 16 basket cells

– Runs in real-time on Nvidia GeForce GTX580

– Robot arm control application
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Complications

● PF → Pk synapses show LTP as well as LTD

● Connectivity is more complex than these models provide for:

– Pk cells project to other Pk cells

– Deep cerebellar nuclei (DCN) cells project to Golgi cells

– Deep cerebellar nuclei cells inhibit cells in the inferior olive

– Inferior olive cells are electrotonically coupled

– Unipolar brush cells excite granule cells

● Plasticity is not limited to PF → Pk synapses

– Plasticity of connections onto interneurons

– Plasticity within DCN

● DCN is complex

– At least 6 cell types

– Multiple neurotransmitters (glutamate, GABA, glycine)
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Experimental Issues to Consider

Why do some papers report results that conflict with others?

● It's easier to record in slice than in intact animals.

– But slices are missing some input pathways because those axons 
get severed.

– Slice experiments require artificial stimuli; experiments done with 
intact animals can use natural stimuli.

● Recording in intact animals may require anesthesia.

– Anesthesia alters the behavior of neurons.

● Although the cerebellum is common to vertebrates, there may 
be differences between species.
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