Dynamics of Parallel Fibers and Purkinje Cells

Computational Models of Neural Systems Lecture 2.5

David S. Touretzky September, 2019

The Beam Hypothesis (Eccles)

- Activation of granule cells should lead to activation of a beam of Purkinje cells along the parallel fiber axis.
- Activity should travel along the beam at the parallel fiber conduction velocity.
- But people haven't found these beams.

Testing the Beam Hypothesis

Computational Models of Neural Systems

Purkinje Cell Response to Lip Stimulation: No Beam

- Activates a 500 \times 500 μm patch of granule cells: about 30,000 inputs to each PC.
- Strong PC response immediately above the active granule cells, but no response further along the beam.

Alternative Explanations for Lack of Beam Response

- Desynchronization of parallel fiber activity due to varying conduction velocities? (Llinas 1982)
 - Distal PCs don't get enough *simultaneous* activation to fire.
- Insufficient synaptic input? (Braitenberg et al. 1997)
 - Distal PCs don't get enough *total* activation to fire: not enough granule cells were stimulated.
- Feedforward inhibition! (Santamaria et al., 2007)

Can FF Inhibition Eliminate the Beam Response?

- Santamaria et al., *J. Neurophys.* 97:248-263, 2007
- Hypothesis: feedforward inhibition from basket and stellate cells suppresses activation of Purkinje cells along the beam.
- Modeling:
 - Use computer simulations to see if they can reproduce the effects the hypothesis purports to explain.
- Experiment:
 - Use GABA_A receptor blockers to remove inhibition and see what happens.

Granule Cell, Purkinje Cell, and Molecular Layers

Synapses from Granule Cells Are Present Throughout the Molecular Layer

Scaling Issues

- Real Purkinje cells have around 150,000 synapses.
- The simulation used only 1,600 granule cells / parallel fibers.
- How to maintain realistic Purkinje cell responses?
 - Scale the synaptic input to compensate.
 - In this case, the firing rate of parallel fiber synapses was increased.
- The model also used 1,695 inhibitory interneurons.
 - Close to a realistic value, so no scaling required.

Distribution of Stellate and Basket Cells

AP Propagation Along Granule Cell Axons

- AS: ascending segment
- 80 cells distributed over 50 μm², firing simultaneously
- Volley is increasingly desynchronized as time progresses due to:
 - time to travel along ascending segment to reach bifurcation point
 - parallel fiber propagation velocity varying with depth

Propagation velocity varies linearly with depth

Propagation Time vs. Distance Traveled

Computational Models of Neural Systems

Network <u>Simulation</u> Using Wide Range of Conduction Velocities

- Strong response immediately above the active granule cells.
- But cells further down the beam <u>do</u> respond. Doesn't fit the experimental data.

Adding Feedforward Inhibition to the Model

Reduction in firing due to BC/SC inhibition

Feedforward inhibition eliminates the beam response.

Comparison To Real Data

Computational Models of Neural Systems

Granule Cell Reponses to Upper Lip Stimulation

Purkinje Cell Response 1400 μm Away (IUL Stim.)

09/23/19

Blocking Inhibition By Adding GABAzine

Adding GABAzine

Estimating Propagation Velocities Using Two PCs

Estimating Propagation Velocities

Blocking GABA_A Receptors Doesn't Increase Purkinje or Granule Cell Excitability: <u>Bicuculline</u>

Blocking GABA_A Receptors Doesn't Increase Purkinje or Granule Cell Excitability: <u>Gabazine</u>

Simulation Parameters

- Purkinje cell conductances (from previously published model)
- Range of granule cell axon propagation times (0.15 to 0.5 m/s)
- Number of <u>basket cell</u> synapses as a function of distance from the active granule cells
- Number of <u>stellate cell</u> synapses as a function of distance from the active granule cells
- Temporal delays for basket and stellate cell activation

Table S1

Conductances for the voltage and Ca2+ dependent channels in the PC model.

Parameters A, F, and H are in mV. For KC and BK factor z is in μ M and B in ms.

10 Purkinje Cell Conductances

NAME	Vr	Gate	P	A	в	C	D	E	۲	G	н
NaF	45	m	3	35	0	5	-10	7	0	65	20
		h	1	0.23	1	80	10	7.5	0	-3	-18
NaP	45	m	3	200	1	-18	-16	25	1	58	8
CaP	135	m	1	8.5	1	-8	-12.5	35	1	74	14.5
		h	1	1.50x10-₃	1	29	8	5.5x10-₃	1	23	-8
CaT	135	m	1	2.6	1	21	-8	0.18	1	40	4
		h	1	2.50x10-3	1	40	8	0.19	1	50	-10
Kh	-30										
Kdr	-85	Sc				6					52
KM	-85	9. 19		2- 5-							
KA	-85	m	4	1.4	1	27	-12	0.49	1	30	4
		h	1	1.75x10-₂	1	50	8	1.3	1	13	-10
KC	-85	m	1	7.5, α _m is constant			0.11	0	-35	14.9	
		z	2	4	10						
K2	-85	m	1	25, α _m is constant			7.5x10.₂	0	5	10	
		Z	2	0.2	10						

Propagation Times, and Purkinje Cell Responses

Fastest pf conduction velocity: 0.5 m/s Slowest pf conduction velocity: 0.15 m/s

Each symbol denotes a parameter set that was run for 250 trials.

Exploring the Parameter Space

Parameter	Range	Notes
Minimum granule cell layer activation	2% of total number of granule cells	Activates a PC beam along the full length of parallel fibers if not compensated by feed-forward inhibition. Could be smaller when using higher numbers of parallel fibers in the simulation (Figure S1).
Basket cell synapses	1-16	Fast decay as distance increases from site of stimulation.
Stellate cell synapses	0-30	Increasing as a function of the distance to site of stimulation. Not always required on top of stimulation site.
Basket cell synaptic delay	1-5 ms	Shorter as distance increases from site of stimulation.
Stellate cell synaptic delay	1-5 ms	Wide range outside the areas closest to site of stimulation.

Basket Cell Synapses and Delay

Range of temporal delays between pf excitation and activation of feedforward basket-type inhibition.

Stellate Cell Synapses and Delay

Distribution of Synapses Onto Purkinje Cells

Notice that parallel fiber skew increases with distance.

PC Dendritic Conductances Along A Beam

granule cell, basket cell (short range inhibition), stellate cell (long range inhibition)

- 15,000 parallel fibers; 0.5% are stimulated
- Used <u>slower conduction velocities</u> for rats: 0.20 to 0.27 m/s
- Random excitation/inhibition to cause 40 Hz spontaneous firing
- Conduction delay and # of BC & SC synapses are shown.
- Same results as for 0.15 m/s to 0.5 m/s conduction velocities.

Conclusions

- Ascending segment excitation arrives too quickly to be blocked by feed-forward inhibition, so PCs directly above the active granule cells will fire due to PF inputs.
- Further along the beam, parallel fiber excitation is blocked by feed-forward inhibition, at 0-400 μ m by <u>basket</u> cells, and further out by <u>stellate</u> cells.
 - Aside: although all vertebrates possess a cerebellum, basket-type inhibitory connections are found only in birds and mammals, which have the highest granule cell to Purkinje cell ratios.
- Granule cell synapses made by the ascending segment vs. the parallel fiber segment should be viewed as functionally distinct.

Activation and Modulation

Santamaria et al.'s Conclusions

- Why have parallel fibers synapse onto PCs if their effects are blocked by feedforward inhibition?
- Hypothesis:
 - Unlike the ascending segment synapses, parallel fiber synapses are not intended to make the PC fire.
 - Parallel fibers modulate the state of the Purkinje cell dendrite and control its response to excitation from ascending segment synapses.
- A similar hypothesis has been made about cortical pyramidal cells:
 - Perhaps the majority of cortical excitatory synapses serve to modulate dendritic dynamics rather than drive somatic output.
- The paper is a powerful illustration of how modeling and experiments can interact.

D'Angelo et al.: Modeling the Cerebellar Microcircuit

- More realistic models are feasible now, due to:
 - better data about cell types, connectivity, physiology
 - increased computer power
- Zebrin stripes not considered in earlier models:
 - Different types of Purkinje cells, distinguished by molecular markers such as zebrin, form anatomical subregions (striations) and have different response and learning properties
 - Z+ Purkinje cells have slower spontaneous firing (40Hz) than Zcells (90-100 Hz).
 - Z+ and Z- cells have different pf-PC synaptic plasticity characteristics (response to pf stimulation frequency).
 - Golgi cell somata and dendrites are restricted to the same zebrin stripe of Purkinje cells..

Zebrin Stripes in Mouse Cerebellum

Dasterdji et al. (2012) Frontiers in Neuroanatomy

Cerminara et al. (2015) Nature Reviews Neuroscience.

Zebrin Staining in Wallaby Cerebellum

Marzban, Hassan & Hoy, Nathan & R Marotte, Lauren & Hawkes, Richard. (2012). Antigenic Compartmentation of the Cerebellar Cortex in an Australian Marsupial, the Tammar Wallaby Macropus eugenii. Brain, behavior and evolution.

09/23/19

D'Angelo et al.: Modeling the Cerebellar Microcircuit (cont.)

- More than 15 types of plasticity in cerebellum
- Oscillations in inferior olive, granule cell layer
- Waves of activation across Pk cells?
- Gap junctions between nearby Golgi cells, IO cells, stellate cells can lead to synchronization of oscillations
- Recurrent connections DCN<->GrC and DCN<->IO

Conclusions

- Cerebellum anatomy and physiology are more complex than early models assumed.
- The cerebellum's circuitry is not as uniform as originally assumed. There are regional differences:
 - In distribution of cell types.
 - In Purkinje cell learning properties.
- Temporal dynamics (oscillations, frequency response) play an important role that early models don't address.