Introduction to visual computation and
the primate visual system

. Problems in vision

*  Basic facts about the visual system

*  Mathematical models for early vision

e Marr’s computational philosophy and proposal
e 2.5D sketch example stereo computation
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What make vision difficult?

1. Projection of 3D scene into 2D array of numbers -
recovering the lost dimension

2. Variability of object manifestations -- invariance

3. Multiple causes for generating images --
disambiguation

4. Occlusion and clutters - figure-ground, attention.

What does it mean to understand something
computationally?

1. Computational theory
2. Algorithms

3. Implementations.

Marr (1981) Vision.

David Marr (1945-1980)




Computational theory

* What is the goal of the computation?
*  Why is it appropriate?

* What is the logic of the strategy by which it can
be carried out?

1.  Computational constraints

2. Prior knowledge

Representation and algorithms

* How can the computational theory be implemented?
* What is the representation for the input and output?

*  What is the algorithm for the transformation?




Representation and algorithms
* How can the computational theory be implemented?

* What is the representation for the input and output?

* What is the algorithm for the transformation?

Processes and representations

Hardware implementation

* How can the representation and algorithm be
realized physically?




What is known about the visual system at the time?
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Cajal’s microscopic study of the retina




On-off center surround receptive fields of intact retina, cells responded
primarily to contrast and to moving stimuli rather than diffused light.
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Laplacian of Gaussian operator

* DOG (difference of Gaussians)
of ratio 1:1.6 best approximates
a Laplacian of Gaussian filter (
Marr and Hildreth,1980)

Laplacian of Gaussian
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Difference of Gaussian smoothed images

Retinal receptive fields and resolution
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Organization of visual pathways from retina to cortex
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LGN anatomy

6 layers sandwiched together:

Layers 1 and 2: magnocellular (M) layers, large
cells, fast processing and conducting, motion,
gross features, monochromatic, transient respons

Layer 3,4,5,6: parvocellular (P) layers, small cell
bodies, thin fibre, high-resolution, fine details,
sustained responses, color coded.

Between layers: unmyelinated neural dendrites and
axons, also contains interlaminar or koniocellular
(K) layer. Functionally distinct third channels.

lateral geniculate nucleus

(LGN)

parvocellular

magnocellular

optic tract

layers 1and 2
- magnocellular

layers 3-6
- parvocellular

layers 2,3and 5
- ipsilateral eye
layers 1,4 and 6

- contralateral eye

= 1 mm

optic radiations
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Functional difference between magnocellular and
parvocellular LGN neurons

Parvo Magno
Color sensitivity High (cones) Low (cones+rods)
Contrast sensitivity Low High
Spatial resolution High Low
Temporal resolution Slow Fast
Receptive field size Small Large

LGN monocular retinotopic maps
from both eyes

Input from the right hemi-retina of each eye
project orderly to different layers of the right
LGN to create 6 complete representations of
the left visual hemi-field
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What are the differences between retinal and LGN neurons?

Broad attributes resemble retinal ganglian cells
Contrast gain control strengthened.

. RF with a center and a larger surround.

Biphasic temporal kernel in both center and surround.
LGN receives feedback, but not retina.

DA

Simple cell's
receptive field

Lateral geniculate Simple cell

nucleus cell Hubel al’ld Wiesel

1 Bar stimulus 2 Spot stimulus
Light Light
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Ocular dominance columns and hypercolumns

Cortical blobs
concerned with color

Cortical columns
concerned with
form and movement

Cells tuned to a variety of visual
cues: color, orientation, disparity,
motion direction.

The actual topological map revealed »
by optical imaging.
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Gabor filters are spatial frequency analyzers

AlP Nigls Bohr Library

Daugman (1985) and others proposed simple cells can be modeled by
Gabor filters. Jones and Palmer (1988) confirmed Gabor fit.

2D Receptive Field

2D Gabor Function

Difference
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V1 neurons modeled as Gabor wavelets, wavelets can
efficiently encode images

‘Tiling of spatal frequency plane by Gabor-watelets

Lee (1996) Image representation using 2D Gabor wavelets. PAMI. 18(10): 959-971.

Gabor wavelet like structures can be learned as sparse efficient codes
from natural image patches -- Olshausen and Field (1996),

15



Visual areas in the visual system

Cortical areas flat map
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Object detector neurons in IT
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Marr’s proposal on visual processing

Digitized Image

~

Primal Sketch

Filtering, Edge detection, Chunking

\ Depth, surfaces, occlusion, figure-ground

2 1/2 D Sketch

\ 3D structural model and parts

3D Model

Comparison with memory prototypes

N

Object Recognition
/Scene Description

Marr’s proposal on visual processing

Digitized Image

~

VI1,V2

Primal Sketch

V2,V4

IT

Filtering, Edge detection, Chunking

\ Depth, surfaces, occlusion, figure-ground

2 1/2 D Sketch

\ 3D structural model and parts

3D Model

Comparison with memory prototypes

N

Object Recognition
/Scene Description
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Julesz random dot stereogram

Stereo Correspondence is Hard
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Computing 2.5D sketch -- e.g. stereopsis

Computational constraints

1. Compatibility: Black dots can match only black dots.

Uniqueness: Almost always, a black dot from one image can
match no more than one black dot from the other image.

3. Continuity: The disparity of the matches varies smoothly
almost everywhere over the image.

Marr and Poggio (Marr 1976).

Kork

(a)
Left and right eyes
Continuous lines = line of sights
Intersection = possible disparity values
Dotted diagonal lines = lines of constant disparity (planar surface).
How to implement the rules?
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Iterative (Relaxation) Algorithm

t+1 t t 0
c, =of Ecx,,y,,d. s Ecx,,y.,d, +C°

x'y,d'EeS(x,y,d) x',y,d'€0(x,y,d)

where C, , denotes the state of the cell corresponding to the
position (x,y) , disparity d and time #. It is binary.

S(x,y,d) is the local excitatory neighborhood, and O(x,y,d)

is the inhibitory neighborhood. ¢ is the inhibitory constant, and
o is the threshold function. C° is all the possible matches,
including false targets, within the prescribed disparity range,
added at each iteration to speed up convergence, can simply use

to initialize.

See also Samonds, Potetz and Lee (2007) NIPS for neural evidence of the
computational constraints at work during stereo computation.
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Computing 2.5D sketch -- e.g. shape from shading

a) Original Input b) Linear Constraint Nodes
Mean Squared Error = 108

Potetz (2007)

3D model

Blanz and Vetter (1999)
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Summary

Why vision is difficult?

What Marr and we know about the biological visual system?
Contrast, edges and Laplacian and Gabor filters.
Pandemonium model and Fukushima’s neocognitron
Marr’s computational philosophy and proposal

Some outstanding realizations of Marr’s vision.

Next lecture: how the hierarchical visual system might
compute?

Readings

Van Essen, D. Anderson, C, Felleman, DJ (1992) Information
processing in the primate visual system: an integrated systems
perspective. Science, vol. 225, no. 5043, pp. 419-423. -

Marr, D. (1982) Vision, chapter 1. San Francisco: W. H. Freeman.*

Marr, D., and Poggio, T. (1976) Cooperative computation of stereo
disparity. Science, vol. 194, n0.462, pp. 283-287.
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