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Outline

● The bee brain

● Classical conditioning in honeybees

– identification of VUMmx1 (ventral unpaired median neuron maxillare 1)

– properties of VUMmx1

● Bee foraging in uncertain environments

– model of bee foraging

– theory of predictive Hebbian learning

● Dopamine neurons in the macaque monkey

– activity of dopamine neurons

– generalized theory of predictive Hebbian learning

– modeling predictions
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The Bee Brain

● Honeybees have about one million neurons in about 1 mm3.

– Fruit flies have only about 100,000 neurons

– Ants have about 250,000 neurons.

● The mushroom bodies are thought to be involved in learning 
and memory.
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http://web.neurobio.arizona.edu/gronenberg/nrsc581
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Anatomy of the Bee Brain

● MB: Mushroom body

● AL: Antenna lobe

● KC: Kenyon cells

● oSN: Olfactory sensory 
neurons

● MN17: motor neuron involved
in PER
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Questions

● What are the cellular mechanisms responsible for classical 
conditioning?

● How is information about the unconditioned stimulus (US) 
represented at the neuronal level?

● What are the properties of neurons mediating the US?

– Response to US

– Convergence with the conditioned stimulus (CS) pathway

– Reinforcement in conditioning

● How to identify such neurons?
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Experiments on Honeybees

● Bees fixed by waxing dorsal thorax
 to small metal table.

● Odors were presented in a 
gentle air stream.

● Sucrose solution applied briefly 
to antenna and proboscis.

● Proboscis extension was seen
after a single pairing of
the odor (CS) with sucrose (US).
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Measuring Responses

● Proboscis extension reflex (PER) was recorded as an 
electromyogram from the M17 muscle involved in the reflex.

● Neurons were tested for responsiveness to the US.
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VUMmx1 Responds to US

● Unique morphology: arborizes in 
the suboesophageal ganglion 
(SOG) and projects widely in 
regions involved in odor (CS) 
processing

● Responds to sucrose with a long 
burst of action potentials which 
outlasts the sucrose US.

● Neurotransmitter is octopamine: 
related to dopamine.

OE = Oesophagus
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VUMmx1
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Stimulating VUMmx1 Simulates a US

● Introduce CS then inject depolarizing current into VUMmx1 in 
lieu of applying sucrose.

● Try both forward and backward conditioning paradigms.

Schematic 
diagram.

Not real 
data!
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Open bars: sucrose US
Shaded bars: VUMmx1 stimulation
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Learning Effects of VUMmx1 Stimulation

● After learning, the odor alone stimulates VUMmx1 activity.

● Temporal contiguity effect: forward pairing causes a larger 
increase in spiking than backward pairing.

● Differential conditioning effect:

– Differentially conditioned bees respond strongly to an odor (CS+) 
specifically paired with the US, and significantly less to an unpaired
odor (CS–).
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Differential Conditioning of Two Odors

spontaneous PER

(carnation and orange blossom)
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Discussion
● Main claims:

– VUMmx1 mediates the US in associative learning

– A learned CS also activates VUMmx1.

– Physiology is compatible with structures involved in complex forms of 
learning.

● Questions:

– Is VUMmx1 the only neuron mediating the US?
● Serial homologue of VUMmx1 has almost identical branching pattern.
● Response to electrical stimulation is less than response to sucrose, so 

perhaps other neurons also contribute to the US signal.

– Can VUMmx1 mediate other conditioning phenomena, e.g., blocking, 
overshadowing, extinction?

– It's know that honeybees can exhibit second order conditioning and 
negative patterning (configural learning). Is VUMmx1 involved?

– Do different CS or US stimuli induce similar responses?
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Bee Foraging

● Real's (1991) experiment:

– Bumblebees foraged on artificial blue and yellow flowers.

– Blue flowers contained 2 ml of nectar.

– Yellow flowers contained 6 ml in one third of the flowers and no nectar in 
the remaining two thirds.

– Blue and yellow flowers contained the same average amount of nectar.

● Results:

– Bees favored the constant blue over the variable yellow flowers even 
though the mean reward was the same.

– Bees forage equally from both flower types if the mean reward from 
yellow is made sufficiently large.
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Montague, Dayan, and Sejnowski (1995)

● Model of bee foraging behavior based on VUMmx1.

● Bee decides at each time step whether to randomly reorient.
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Neural Network Model

S: sucrose sensitive neuron; R: reward neuron;
P: reward predicting neuron; d: prediction error signal
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TD Equations

d(t) = r (t) + γV (t) − V (t−1)

     Let γ = 1:  no discounting

d(t) = r (t) + V (t) − V (t−1)

= r (t) + V̇ (t)

V (t) = ∑
i

wixi(t)

V̇ (t) = ∑
i

wi [xi(t) − xi(t−1) ]

= ∑
i

wi ẋi(t)

d(t) = r (t) + ∑
i

wi ẋi(t)
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Bee Foraging Model

xY , xB ,xN  encode change in scene

V̇ (t) = wbxb(t) + wyxy (t) + wn xn(t)

d(t) = r (t) + V̇ (t)

Δwi(t) = λ xi(t−1) ⋅ d(t)
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Parameters

wB  and wY  are adaptable; wN  fixed at -0.5

Probability of reorienting:  Pr(d(t)) =
1

1+exp(m⋅d(t)+b)

Learning rate λ = 0.9

Volume of nectar reward
determined by empirically
derived utility curve.
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Theoretical Idea

● Unit P is analogous to VUMmx1.

● Nectar r(t) represents the reward, which can vary over time.

● At each time t, d(t) determines the bee's next action: continue 
on present heading, or reorient.

● Weights are adjusted on encounters with flowers: they are 
updated according to the nectar reward.

● Model best matches the bee when
λ = 0.9.

● Graph shows bee response to switch
in contingencies on trial 15.
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An Aside: Honeybee Operant Learning

http://web.neurobio.arizona.edu/gronenberg/nrsc581
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Dopamine

● Involved in:

– Addiction

– Self-stimulation

– Learning

– Motor actions

– Rewarding situations
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Responses of Dopamine Neurons in Macaques

● Burst for unexpected
reward

● Response transfers to
reward predictors

● Pause at time of
missed reward
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1.5 to 3.5 second delay
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Correct and Error Trials
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Predictive Hebbian Learning Model
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Model Behavior

Extinction phase
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TD Simulation 1
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TD Simulation 2
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Card Choice Task

Magnitude of reward is a function of the % choices from deck A in the last 40 draws.
Optimal strategy lies to the right of the crossover point, but human subjects generally 
get stuck around the crossover point

Deck A

Deck B
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Card Choice Model

“Attention” alternates between decks A and B.  Change in predicted reward 
determines P

s
, the probability of selecting the current deck.  The model tends to get 

stuck at the crossover point, as humans do.
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Conclusions

● Specific neurons distribute a signal that represents information 
about future expected reward (VUMmx1; dopamine neurons).

● These neurons have access to the precise time at which a 
reward will be delivered.

– Serial compound stimulus makes this possible.

● Fluctuations in activity levels of these neurons represent errors 
in predictions about future reward.

● Montague et al. (1996) present a model of how such errors 
could be computed in a real brain.

● The theory makes predictions about human choice behaviors in 
simple decision-making tasks.
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