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Place Cells Are Found
Throughout the Hippocampal System

● Place cells discovered in 
CA1 in rats by O'Keefe 
and Dostrovsky (1971)

● Continuous firing fields 
with gaussian falloff.

● Place fields cover the 
physical space, forming a 
“cognitive map” of the 
environment.

Sharp (2002)

John O'Keefe
2014 Nobel 
Laureate in 

Physiology or 
Medicine
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The Hippocampus as a Cognitive Map

● Psychologist E. C. Tolman coined the term “cognitive 
map” to describe an animal's mental representation of 
space.

– Tolman, EC (1948) Cognitive maps in
rats and men.
Psych. Review 55(4):189-208.

● O'Keefe and Nadel's book about place cells
drew its title from Tolman's phrase.

– O'Keefe, J and Nadel, L. (1978) The Hippocampus as a 
Cognitive Map. Oxford University Press.

– Now online at http://www.cognitivemap.net
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Properties of Place Fields

● Appear instantly in a new environment, but take 
10-20 minutes to fully develop.

● Can be controlled by distal visual cues.  (Rotate the 
cues and the fields will rotate.)

● Persist in the dark – so not dependent on visual input.

– Driven by path integration?

● Only about 1/3 of place cells have fields in a typical 
small environment.

● Cells have unrelated fields in different environments.
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Place Fields in a Cylindrical and 
Square Arena

● Roughly gaussian

● Modest peak firing rates (5-10 Hz)

● Largely unrelated fields in the two environments

Lever et al., 2002
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Place Fields On A Maze

Cell 1 Cell 2

Slide courtesy of Anoopum Gupta

Slide courtesy of Anoopum Gupta
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Neural activity 
during behavior

Slide courtesy of Anoopum Gupta
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Theta Phase Precession

Slide courtesy of Anoopum Gupta
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Decoded Paths

Brown et al., 1998
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Eleanor Maguire:
Spatial Memory in Humans

● London cab drivers undergo 2-3 years of training to 
learn “The Knowledge” of London's complex streets.

● Cab drivers have larger posterior hippocampi than 
controls.  Experienced drivers show greater 
enlargement than new drivers.

● When remembering complex routes,
drivers show elevated activity in right
posterior hippocampus; no increase
when answering questions about
historical landmarks.
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Head Direction Cells (Ranck, 1989)

Figures from Sharp (2002)
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Place and Head Direction Systems

Sharp (2002)
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From (Johnston & 
Amaral, 1998)

PR: perirhinal cortex; POR: postrhinal cortex; EC: entorhinal cortex; PrS: presubiculum; 
PaS: parasubiculum; DG: dentate gyrus; CA: Cornu amonis; S: subiculum; RSP: 
retrosplenial cortex; Par/Oc: parietal/occipital cortex

Place cells

Head direction
cells

Rodent Navigation Circuit
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Path Integration in Rodents

Mittelstaedt & Mittselstaedt (1980): gerbil pup retrieval
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Redish & Touretzky Model
of Rodent Navigation

Place cells learn and maintain the correspondence 
between local view representations and path integrator 
coordinates.

Redish (1997)
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Hippocampal State:
A Moving Bump of Activity

Activity packet reconstructed 
from firing patterns of around 
100 cells recorded 
simultaneously by Wilson & 
McNaughton (1993)

Samsonovich & McNaughton (1997)
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2D Attractor Bump Simulation

● In 1972, Amari, and Wilson & Cowan demonstrated 
continuous attractor bumps in a recurrent network.

● 25 years later:  Samsonovich & McNaughton (1997): 
2D attractor bump model of place cells.

● Bumps are easy to simulate and visualize in MATLAB.
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How to make a bump (1D version)

Local excitation plus global inhibition:

wij = exp−i− j2


2 

f i=max 0,−wEIg∑
j

wijf j

g=max 0,−wIIg∑
j

wIE f j
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How to make a bump (1D version)

Same weights for every unit (shifted):
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Gothard et al. (1996): bump jumps

From (Gothard et al., 1996)
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Watch the bump jump!

Cross-correlation plots of the ensemble activity patterns 
show  a “jump” on the map as a discontinuity.

From (Gothard et al., 1996)
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Samsonovich & McNaughton Model

Visual input

Place cells

Integrator cells

Motor
system

Head direction
system

offset connections
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Where is the Path Integrator?
● Early theories (McNaughton) placed it in hippocampus.

● Redish & Touretzky: it can't go there, because multiple 
maps make it too hard to update position.

● Fyhn et al. (Science, 2004) found the PI in medial 
entorhinal cortex: “grid” cells.

May-Britt and Edvard Moser, 
2014 Nobel Laureates in 
Physiology or Medicine
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Multiple Maps in Hippocampus

Samsonovich & McNaughton's “charts” proposal:



  

How to make multiple maps (1D 
case)

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 13 9 15 1 14 11 8 16 3 2 12 10 5 4 7

2

Shuffle
the

units
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Multiple Maps Can Co-Exist
In An Attractor Network

Because activity patterns are sparse, the weight matrix is 
also sparse.  Interference isn't too bad.
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Skaggs & McNaughton (1998): Partial 
Remapping in Identical Environments

light

(Skaggs & McNaughton, 1998)
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Identical Environments,
Similar Fields in Both Boxes

Skaggs & 
McNaughton 
(1998), Fig. 2.

Same cell;
two sessions
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Task-Dependent Hippocampal 
Remapping

Oler and Markus (2000) recorded from DG, 
CA3, and CA1 while animals ran either on a 
Figure-8 or Plus maze.
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Task-Dependent Remapping

Some but 
not all 
fields 
remapped 
depending 
on which 
task was 
being 
performed
.
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Experience-Dependent Remapping

In some circumstances, rats don't remap right away:

● Onset may be delayed.

– So cannot be direct result of a sensory change.

– Must reflect some internal change in the rat's 
representation of its environment: learning.

● Rate may be gradual.

– The time course of remapping tells us something about 
the experience-dependent learning process.

● Extent may be partial or complete.

● What learning algorithm is reponsible for these 
experience-dependent changes?
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Bostock et al. (1991): Delayed Abrupt 
Complete Remapping

● Train in cylinder with white card, then alternate 
exposure to white and black cards.

● Most rats did not remap upon first exposure to black 
card.

● But once a rat remapped, it continued to do so.

Train Alternate
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Tanila et al. (1997): Gradual Remapping
● Discordant responses:  some cells followed local cues, 

some followed distal, some remapped. The extent of 
remapping appeared to increase over several days.  
(Based on data summed over rats.)

● Is the rat becoming more certain that the two 
environments are reliably different?
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Does Remapping Matter?

● Masters & Skaggs:  remapping coincides with insight 
into a task:

● One rat quickly remapped & learned the task; one 
never did.  One rat didn't remap until day 11, when it 
suddenly “got” the task.  Cause or effect?

Brain stim.
Reward
location
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Theta vs Replay Sequences
Theta Replay

Occur during attentive behavior
Theta oscillation is present
Tied to the animal’s location
Forward sequence
Few neurons are active
Relatively short paths 
represented
Experience encoding and recall

Occur during awake rest
Sharp wave ripples present
Not always tied to the animal’s location
Forward or backward sequence
Many neurons are often active
Highly variable path lengths 
represented
Memory consolidation, learning of 
cognitive maps

Slide courtesy of Anoopum Gupta
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Forward Replay

Gupta, van der Meer, Touretzky, Redish, 2010
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Backward Replay

Gupta, van der Meer, Touretzky, Redish, 2010
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Configural Learning

● Sutherland and Rudy suggested that hippocampus 
learns complex configurations of cues.

● After lesion, animals can still do tasks that depend on 
only one cue at a time.

● But tasks that depend on relationships among cues are 
impaired.  Examples:

– eight-arm radial maze

– Morris water maze
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Spatial Working Memory

● Apparatus: 8-arm radial 
maze with food cups at 
each arm end

● All food cups are baited 
at the beginning of each 
trial

● During each trial, rats 
must remember which 
arms have already been 
visited. A second arm 
visit provides no reward. 

● Rats with hippocampal 
lesions are severely 
impaired at this task 
(Neave et al., 1997)

food cups
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Morris Water Maze

● Large pool filled with milky 
(opaque), cold water.

● A submerged platform is 
located at a fixed position in 
the pool.

● Distal landmarks outside 
the pool are located around 
the room; they never move.

● The rat is released from a 
random starting position 
and must swim to the 
platform to get out of the 
water.
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Morris Water Maze

Sutherland and Rudy 
(1988):

● Rats with fornix lesions 
can still navigate to a 
visible platform.

● But they are impaired at 
learning to find the 
hidden platform.

● Finding the hidden 
platform presumably 
requires recognizing a 
configuration of cues.
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Morris Water Maze Revisited

● Rats with 48 training trials prior to lesioning the 
hippocampus showed no deficit (Morris et al., 
1990).

Hippocampal lesion causes a learning deficit!

● Lesioned rats can gradually learn to find a hidden 
platform using successively smaller platforms 
(Schallert et al., 1996):

Hippocampal lesions cause impairment 
only when learning the whole path at once!
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Sequence Learning
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What Does the Hippocampus Do?

● Builds sparse random representations of 
complex configurations of sensory and 
behavioral information.

● Learns spatiotemporal associations between 
these, within appropriate context, e.g., for:
– Learning paths to a goal
– Learning odor sequences

● Retains representations for later use / 
consolidation.
– Replay of paths during sleep
– Recall of task state after delay:

● DMS and DNMS tasks
● Trace conditioning
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