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Overview

● Pattern separation

– Pulling similar patterns apart reduces memory interference.

● Pattern Completion

– Noisy or incomplete patterns should be mapped to more 
complete or correct versions.

● How can both functions be accomplished in the same 
architecture?

– Use conjunction (codon units; DG) for pattern separation.

– Learned weights plus thresholding gives pattern completion.

– Recurrent connections (CA3) can help with completion, but 
aren't used in the model described here.
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Information Flow

● Cortical projections from many areas form an EC 
representation of an event.

● EC layer II projects to CA3 (both directly and via DG), 
forming a new representation better suited to storage 
and retrieval.

● EC layer III projects to CA1, forming an invertible 
representation that can reconstitute the EC pattern.

● Learning occurs in all these connections.

Cortex
perforant path

mossy fibers



10/07/19 Computational Models of Neural Systems 4

Features of Hippocampal Organization

● Local inhibitory interneurons in each region.

– May regulate overall activity levels, as in a kWTA network.

● CA3 and CA1 have less activity than EC and subiculum. 
DG has less activity than CA3/CA1.

– Less activity means representation
is more sparse, hence can be more
highly orthogonal.
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Connections in the Rat

● EC layer II (perf. path) projects diffusely to DG and CA3.

– Each DG granule cell receives 5,000 inputs from EC.

– Each CA3 pyramidal cell receives 3750-4500 inputs from EC. 
This is about 2% of the rat's 200,000 EC layer II neurons.

● DG has roughly 1 million granule cells.
CA3 has 160,000 pyramidal cells; CA1 has 250,000.

● DG to CA3 projection (mossy fibers) is sparse and 
topographic. CA3 cells receive 52-87 mossy fiber 
synapses.

● NMDA-dependent LTP has been demonstrated in 
perforant path and Schaffer collaterals. LTP also 
demonstrated in mossy fiber pathway (non-NMDA).

● LTD may also be present in these pathways.
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Model Parameters

● O'Reilly & McClelland investigated several models, 
starting with a simple two-layer k-WTA model (like Marr).
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Measuring the Hits a Unit Receives

● How many input patterns?

● What is the expected number
of hits H

a
 for an output unit?

● What is the distribution
of hits, P(H

a
) ?

Hypergeomtric (not binomial; we're drawing without replacement)
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Hypergeometric Distribution

● What is the probability of getting exactly H
a
 hits from an 

input pattern with k
i
 active units, given that the fan-in is 

F and the total input size is N
i
?
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Determining the kWTA Threshold

● Assume we want the output layer to have an expected 
activity level of a

o
.

● Must set the threshold for output units to select the tail 
of the hit distribution.  Call this H

a
t.

● Use the summation to choose H
a
t 

to produce the desired value of a
o
. 

o
= ∑

H
a
=H

a

t

min k
i
, F 

P H
a
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Pattern Overlap

● In order to measure pattern separation properties of the 
two-layer model, consider two patterns A and B.

– Measure the input overlap W
i
 = number of units in common.

– Compute the expected output overlap W
o
 as a function of W

i
.

● If W
o
 < W

i
 the model is doing pattern separation.

● To calculate output overlap we need to know H
ab

, the 

number of hits an output unit receives for pattern B 
given that it is already known to be part of the 
representation for pattern A.
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Distribution of H
ab

● For small input overlap, the patterns are virtually 
independent, and H

ab
 is distributed like H

a
.

● As input overlap increases, H
ab

 moves rightward (more 

hits expected), and narrows: output overlap increases.

● But the relationship
is nonlinear.
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Visualizing the Overlap

     a) Hits from pattern A.          b) H
ab

 = overlap of A&B hits
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Prob. of b Hits And Specific Values
for H
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Estimating Overlap for Rat 
Hippocampus

● We can use the formula for P
b
 to calculate expected 

output overlap as a function of input overlap.

● To do this for rodent hippocampus, O'Reilly & 
McClelland chose numbers close to the biology but 
tailored to avoid round-off problems in the overlap 
formula.
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Estimated Pattern Separation in CA3
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Sparsity Increases Pattern Separation

Pattern separation 
performance of a 
generic network 
with activity levels 
comparable to EC, 
CA3, or DG. 
Sparse patterns 
yield greater 
separation.
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Fan-In Size Has Little Effect
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Adding Input from DG

● DG makes far fewer connections (64 vs. 4003), but they 
may have higher strength.  Let M = mossy fiber 
strength.

● Separation in DG better
than in CA3 w/o DG.

● DG connections help
for M ≥ 15.

● With M=50, DG
projection alone is
as good as DG+EC.
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Combining Two Distributions

● CA3 has far fewer inputs from DG than from EC.

● But the DG input has greater variance in hit distribution.

● When combining two equally-weighted distributions, the 
one with the greater variance has the most effect on 
the tail.

● For 0.25 input overlap:

– DG hit distribution has std. dev. of 0.76

– EC hit distribution has std. dev. of 15.

– Setting M=20 would balance the effects of the two projections.

● In the preceding plot, the M=20 line appears in 
between the M=0 line (EC only) and the “M only” line.
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Without Learning, Partial Inputs Are
Separated, Not Completed

Less separation 
between A and 
subset(A) than 
between patterns A 
and B, because 
there are no noise 
inputs. 

But W
o
 is still less 

than W
i
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Pattern Completion

● Without learning, completion cannot happen.

● Two learning rules were tried:

– WI: Weight Increase (like Marr)

– WID: Weight Increase/Decrease

● WI learning multiplies weights in H
ab

 by (1+L
rate

).

● WID learning increases weights as per WI, but also 
exponentially decreases weights to units in F-H

a
 by 

multiplying by (1-L
rate

).

● Result: WID learning improves both separation and 
completion.
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WI Learning and Pattern Completion
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WI Learning Reduces Pattern 
Separation
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WI Learning Hurts Separation

No learning
  (learning rate = 0)

Learning rate = 0.1

Percent of 
possible

improvement



10/07/19 Computational Models of Neural Systems 25

WID Learning Has A Good Tradeoff
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WI vs. WID Learning

Sweet 
spot

Learning
rate
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Hybrid Systems

● Multiple completion stages don't help (cf. Willshaw & 
Buckingham's comparison of Marr models.)

– With noisy cues, completion produces a somewhat noisy result 
which would lead to further separation at the next stage.

● MSEPO — mossy fibers only for separation (learning).

– Perhaps partial EC inputs aren't strong enough to drive DG.

● FM —fixed mossy system: no learning on these fibers.

– Learning reduces pattern separation.  Real mossy fibers 
undergo LTP, but it's not NMDA-dependent (so non-Hebbian).

● FMSEPO — combination of FM + SEPO.

– Optimal tradeoff between separation and completion.
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Performance of Hybrid Models
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What Is the Mossy Fiber Pathway 
Doing?

● Adds a high variance signal to the CA3 input, which...

● Selects a random subset of CA3 cells that are already 
highly activated by EC input.

● This enhances separation when recruiting the 
representations of stored patterns.

● But it hurts retrieval with partial or noisy cues.

– So don't use it.  Use MSEPO or FMSEPO.
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Conclusions

● The main contribution of this work is to show how 
separation and completion can be accomplished in the 
same architecture.

● The model uses realistic figures for numbers of units 
and connections.

● Fan-in size doesn't seem to matter.

● WID learning is necessary for a satisfactory tradeoff 
between separation and completion.

● DG contributes to separation but perhaps not to 
completion.
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Limitations of the Model

● Simplified anatomy: the model only included ECCA3
and ECDGCA3 connections.

● No CA3 recurrent connections.

● No CA1.

● Only a single pattern stored at a time:

– Store A, measure overlap with B.

– No attempt to measure memory capacity.

● A more realistic model would be too hard to analyze.
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Possible Different Functions 
of CA3 and CA1

Measured by IEG (Immediate Early Genes): 
Arc/H1a catFISH method

Expose rats to two environments 30 
minutes apart. Environments can be 
(i) identical , (ii) similar but with 
changes to local or distal cues, or (iii) 
completely different.

Guzowski, Knierim, and Moser (2004)
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Hasselmo's Model: Novelty Detection

EC

CA1 CA3

Medial
Septum

ACh

fimbria/fornix

pp

Sch

Acetycholine reduces synaptic efficacy (prevent 
CA3 from altering CA1 pattern) and enhances
synaptic plasticity.
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Pattern Separation in Human Hippocampus

● Bakker et al., Science, March 2008: fMRI study

● Subjects were shown 144 pairs of images that differed 
slightly, plus additional foils.  Asked for an unrelated 
judgment about each image (indoor vs. outdoor object).

● Three types of trials: (i) new object, (ii) repetition of a 
previously seen object, (iii) slightly different version of a 
previously seen object: a lure.
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Eight ROIs Found

● Couldn't resolve DG vs. CA3 so treated as one region.

● Regions outlined above:   CA3/DG   CA1   Subiculum

● Areas of significant activity within MTL shown in white.

● New objects, repetitions, and lures were reliably 
discriminable.  Generally, repetitions  lower activity.
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Bias Scores for ROIs

● bias = (first – lure) / (first – repetition)

● Scores close to 1  completion; 0  separation.

● CA3/DG shows more pattern separation than other 
areas.
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