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Synaptic Plasticity Is A Major Research Area

* Long Term Potentiation (LTP)
* Reversal of LTP

* Long Term Depression (LTD)
* Reversal of LTD

* Short-Term Potentiation

e and more...

Thousands of papers!
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Types of Plasticity in Hippocampus

‘ LTP ‘
NMDA receptor dependent ‘ ‘ NMDA receptor independent‘
STP | LTP,,, | Paired-pulse facilitation |
E-S potentiation | Post-tetanic pot. (PTP) |

(E-S = epsp spike)

—|  Non-HebbianLTP | —]  Mossy fiber LTP |

Bliss & Collingridge 1993

10/28/19 Computational Models of Neural Systems



Short-Term Plasticity

* Could serve a spike filtering function.

* Synapses with low probability of transmitter release are more
likely to show facilitation.

— Acts as a high pass filter: high frequency spike trains will be
transmitted more effectively.

e Synapses with a high probability of transmitter release are more
like to show depression.

— Acts as a low pass filter: occasional spikes are transmitted without
change, but high frequency spike trains are attenuated.
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Properties of LTP

Input specificity
— Only active input pathways potentiate.
e Associativity

- A strong stimulus on one pathway can enable LTP at another pathway
receiving only a weak stimulus.

- Baxter & Byrne called this “heterosynaptic” LTP
e Cooperativity

- Simultaneous weak stimulation of many pathways can induce LTP.

Rapid induction

- Brief high-frequency stimuli can quickly potentiate a synapse.
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Cooperativity
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LTP in the Perforant Path of Hippocampus
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Specificity and Associativity
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The NMDA Receptor
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Resting membrane
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Magnesium block: very

little NMDA current
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Malenka 1999
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Fluorescence Imaging of Calcium in Dendritic Spine

Calcium influx in a CA1 pyramidal
cell in response to HFS
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Response to Single Stimulus

Dendrite

f L
Pre-synaptic
terminal [
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— Bliss & Collingridge 1993
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Response to High Frequency Spike Train
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— Bliss & Collingridge 1993
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Evidence that NMDA Receptor Contributes to LTP

* Blocking NMDA receptors blocks LTP even
though the cell is firing.

* Activation of NMDA receptors causes Ca**
to accumulate in dendritic spines.

» Buffering Ca** using calcium chelators
Inhibits LTP.

» Adding Ca** directly to the cell enhances
synaptic efficacy, mimicking LTP.

* But stability of LTP may depend on other
mechanisms (MGIuR; 2™ messenger).
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Phases of LTP

Short Term Potentiation (STP): 10—-60 minutes
Early stage LTP (LTP1): 1-3 hours

— blocked by kinase inhibitors but not protein synthesis inhibitors

Late stage LTP2: several days ™)

- blocked by translational inhibitors but

iIndependent of gene expression dependent on

protein synthesis

Late stage LTP3: several weeks

— Involves expression of
Immediate Early Genes (IEGS)
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Early Phase LTP

MMDA receptor
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AMPA Receptor trafficking

NMDAR AMPAR

NMDAR AMFAR

Citria & Malenka (2008)

Computational Models of Neural Systems

18



Calmodulin

* Calcium-binding protein involved in
many metabolic processes

* Small: approx. 148 amino acids
* Can bind up to 4 calcium atoms

e Ca® could come from NMDA
current or release from internal
stores

* The Ca**/calmodulin complex
activates CamKaI|
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CaMKIll

e Calcium/calmodulin-dependent
protein kinase Il: 2 rings of 6 subunits;
accounts for 1-2% of protein in the brain

 Activated by binding Ca*/calmodulin complex.

* Must be phosphorylated to induce LTP.
* Acts on AMPA receptors & many other things.
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Figure 2. Reguiation of

CaMeli. John Lisman et
al. Nature 2002 3: 179-
190

At basal Calcium ion
concentrations, the
kinase will be biocked,
because the autainhibitory
domain stays bound to
the catafytic domain. Ca*/
Calmoduiin binding will
activate the kinase [2].
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CaMKIlI Activation by Calmodulin
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O Catcalmodulin
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Short-Term CaMKIl Auto-Phosphorylation

* If intracellular concentration of Ca**is higher and
Ca“*/calmodulin binds to two adjacent subunits, one can
phosphorylate the other. Lasts several minutes.
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Long-Term CaMKII Auto-Phosphorylation
Can Persist Independent of Calcium If
Auto-Phosphorylation Rate is High Enough

CaMKIl as a “molecular switch” 2 W
a kind of memory device inside —d—
the dendritic spine.
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Retrograde Messengers as a Pre-Synaptic
Mechanism for LTP

NO = nitric oxide

- AA = arachidonic acid
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Retrograde Transmission of Endocannabinoids

LTD of excitatory
synapses onto medium
spiny cells in striatum
resulting from
retrograde transmission
of an endocannabinoid
signal.
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Late Phase LTP
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LTP and LTD
* Most synapses that exhibit LTP also show LTD.

* Hypothesis: the balance between phosphatases and kinases
determines potentiation vs. depression.
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Ocular Dominance Formation in Area 17 (V1)

* Most neurons in area 17 show some ocular dominance (OD)
* Ciritical period for OD formation in kittens: up to 3 months

* OD column formation depends on activity of visual receptors
- Demonstrated through ocular deprivation experiments

* Also depends on postsynaptic
activity; NMDA-dependent
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BCM Rule and Ocular Dominance in Area 17 (V1)

* Monocular deprivation experiments:

~ Brief period of MD shifts Ao 2100
dominance to the open eye '

80

B0

- OD changes take only a
few hours to start

Recorded neurons (%)

- Deprived eye responses can be
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Ocular dominance

e Binocular deprivation (BD) does not decrease synaptic efficacy
In 2 month old kittens.
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Bear et al. Model of Synaptic Plasticity in Area 17
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Sliding Threshold

When closed eye reopened, A
OD distribution quickly '

restored.

Hypothesis: sliding threshold ¢ o0

for synaptic modification. 0,
— 2 -

E)M = <Cc> B

Sign of weight change

depends on level of & 0
postsynaptic activity. 0 (2)
M
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BCM Rule
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BCM Rule Can Cause Increase or Decrease
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Need for Inhibitory Inputs

* Absence of presynaptic activity from deprived eye would cause
weights to go to 0; how could they ever grow again?

* Solution: inhibition from interneurons makes it appear that the
weights are zero, but in reality they're just small.

— [ 4l r gr
c = m-d + m'd -I-ZLU.CJ.
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What Does This Model Explain?

* Binocular deprivation (BD) doesn't reduce synaptic efficacy
because the cortical cells aren't firing.

- Explanation: BCM learning requires at least some postsynaptic activity.

* Bicucculine (GABA blocker) restores deprived eye responses in
minutes.

- Explanation: synaptic strengths for deprived eye need not decrease to
zero. Just need to get low enough to be balanced by cortical inhibition.
Bicucculine shuts off this inhibition.
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How Might the Threshold 6 be Altered?

* Could level of CaMKIIl auto-phosphorylation determine the
threshold 6_?

* Auto-phosphorylation increases the affinity of CaMKI| for
calmodulin by 1000-fold.

— Could act as a calmodulin buffer

-

& e //

Change in EPSP siope (%)

Frequency of conditioning stimulation (Hz)
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How Might the Threshold 6 be Altered?

- 0 Is supposed to be a function of postsynaptic cell spike rate,
not activity level local to the dendritic spine.

e So for this theory to be correct, spike rate information must
propagate back to all spines. How does it do it?
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Synaptic Tagging and Capture

How are synapses tagged for long term potentiation, which involves structural changes?

Weak tetanization: tagging but no PRPs, only E-LTP expression
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Strong tetanization: tagging and PRPs, L-LTP expression

PRP = plasticity-related products
E-LTP = early-stage LTP Nature Reviews | Neuroscience

L-LTP = late-stage LTP Redondo & Morris (2011)
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Synaptic Tagging and Capture

Potentiation of a weakly-stimulated synapse can be rescued by PRPs transported
cell-wide as a result of strong stimulation at other synapses.

Weak tetanization

EPSP 0-30 min ( ; 10 minto 2 h ; 0 minta2h After 2 h
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Spike-Timing-Dependent Synaptic Plasticity

« Markram et al., Science, 1997 A

* Pair of thick-tufted layer 5
pyramidal cells

* Synapses:
- black to red (green dots)
— red to black (blue dots)

e Paired pre- and postsynaptic
spiking (5 spike pairs at 10 Hz,
repeated 10 to 15 times spaced
4 seconds apart)
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Spike-Timing-

Dependent Plasticity

B C
M /50 min
Pre. APSJ
Onset
EPSPs '“l \60 mV _| \2 mv
1.5mV
100 ms 100 ms
D
[
= - EPSPs EPSPs
§250 and APs . ' .
G200 7 - “,‘,“g};.,ia.,
e il K :Qo' V'.". o\ Q\?&,i‘?&%
.B o.‘ M.: .' .0.:.'(‘2’5.1 AR ‘0:..‘; " N
31007 Rffy W‘ﬁ‘? EATAMILI
£ “’o’o :. °o .".::ég : o"°o. ‘o
®© ’ ’ . A
a 507 .
n L L B L L ML B
T 0O 10 20 30 40 50 60
Time (min)

10/28/19

Computational Models of Neural Systems

41



Timing Window for STDP
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