Marr's Theory of the Hippocampus Part II: Effect of Recurrent Collaterals

#### Computational Models of Neural Systems Lecture 3.4

David S. Touretzky October, 2019

#### Two Layer Model



#### Two Layer Model Insufficient?

- Marr claimed the two layer model could not satisfy all the constraints he had established concerning:
  - number of stored memories *n*
  - number of cells
  - sparse activity:  $n \alpha_{i} \alpha_{i-1} \leq 1$
  - but patterns not too sparse for effective retrieval
  - number of synapses per cell:  $S_i \alpha_i N_i \ge 20 N_{i-1}$
- But this was really because he assumed the number of output cells was just 10<sup>4</sup>.
- He switched to a three layer model, with neocortical cells, evidence cells (codons), and output cells.
- The output cells had recurrent collaterals.

#### The Three-Layer Model

Noisy cue X



# The Collateral Effect

- Let P<sub>i</sub> be a population of cells forming a simple representation.
- Each cell can learn about 100 input events.
- Population as a whole learns  $n = 10^5$  events.
- Hence  $\alpha_i$  must be around 10<sup>-3</sup>.
- We require  $n \alpha_{i} \alpha_{i-1}$  to be at most 1. Estimated value based on the above is 0.1.
- Hence we can let  $P_{i-1} = P_i$  and use recurrent collaterals to help clean up the simple representation.
- Result: external input to P<sub>i</sub> need not be sufficient by itself to reproduce the entire simple representation.

### Parameters of the Three-Layer Model

- $P_1$  has 1.25 × 10<sup>6</sup> cells divided into 25 blocks of 50,000.
- $P_2$  has 500,000 cells divided into 25 blocks of 20,000.
- P<sub>3</sub> has a single block of 100,000 cells.
- Let number of synapses/cell  $S_3 = 50,000$ .
- Let x<sub>i</sub> be number of active synapses on a cell, i.e., the number used to store one event.
- $n \alpha_i$  is the expected number of events a cell encodes.
- Probability of a synapse being potentiated is:

$$\Pi_{i} = 1 - (1 - x_{i}/S_{i})^{n\alpha_{i}}$$

#### Parameters of the Three-Layer Model

$$\Pi_{i} = 1 - (1 - x_{i}/S_{i})^{n\alpha_{i}}$$

$$x_i = \sum_{r \ge R_i} P_i(r) \cdot r$$

- P<sub>i</sub>(r) is the probability that a cell in layer *i* has exactly r active afferent synapses.
- From the above, we have  $L_3 = \alpha_3 N_3 = 217$ , and  $\alpha_3 = 0.002$ .
- If we want useful collateral synapses in  $P_3$ , must have  $n(\alpha_3)^2 \leq 1$ .
- So with  $n = 10^5$  events, we have  $\alpha_3 = at most 0.003$ .

## Retrieval With Partial/Noisy Cues

- Let  $P_{30}$  be the simple representation of  $E_0$  in  $P_3$ .
- Let  $P_{31}$  be the remaining cells in  $P_{3}$ .
- Let  $C_0$  be the active cells in  $P_{30}$  representing subevent X.
- Let  $C_1$  be the active cells in  $P_{31}$  (noise).
- Note that  $C_0 + C_1 = \text{pattern size } L_3$ .



#### **Collateral Connections**



- The statistical threshold is the ratio  $C_0:C_1$  such that the effect of collaterals is zero:  $C_0:C_1 = C_{0'}:C_{1'}$
- Collaterals help when statistical threshold is exceeded.
- Calculating  $C_{0'}:C_{1'}$  is a bit tricky because there is both a subtractive and a divisive threshold; see Marr §3.1.2.

# Collateral Effect in P<sub>3'</sub>

- Let **b** be an arbitrary cell in  $P_{3'}$ .
- $Z_{31}$  is probability of a recurrent synapse onto **b**.
- Number of <u>active</u> recurrent synapses onto **b** is distributed as Binomial( $L_3$ ;  $Z_{3'}$ ) with expected value  $L_3Z_{3'}$ .
- Probability that **b** has exactly *x* active synapses onto it:

$$P_{3'}(x) = \begin{pmatrix} L_{3} \\ x \end{pmatrix} \cdot Z_{3}^{x} \cdot (1 - Z_{3})^{L_{3} - x}$$

• **b** is either in  $P_{_{30}}$  or not. We'll consider each case:

- Suppose **b** is in  $P_{_{31}}$ , so not in  $P_{_{30}}$ .
- Of the x active synapses onto b, the number of facilitated synapses r is distributed as Binomial(x; Π<sub>3</sub>,).
- Probability that exactly r of the x active synapses onto
   b have been modified when b is in P<sub>31</sub> is:

$$Q_{3'1}(r) = \begin{pmatrix} x \\ r \end{pmatrix} \cdot \Pi_{3'}^r \cdot (1 - \Pi_{3'})^{x-r}$$

- Suppose **b** is in  $P_{30}$ .
- All afferent synapses from other cells in  $P_{_{30}}$  onto **b** will have been modified.
- <u>Active</u> synapses onto **b** are drawn from two distributions:
  - Binomial( $C_0$ ;  $Z_{3'}$ ) for cells in  $P_{30}$  modified with probability 1
  - Binomial( $C_1$ ;  $Z_3$ ) for cells in  $P_{31}$  modified with probability  $\Pi_{31}$
- Approximate this mixture with a single distribution for the number of modified active synapses:
  - Binomial(x;  $(C_0 + C_1 \Pi_3)/(C_0 + C_1)$ )

 Let C be the expected fraction of synapses onto b in the subevent X that have been modified:

$$C = \frac{C_0 + C_1 \Pi_{3'}}{C_0 + C_1}$$

• Probability that r of x active synapses have been modified when **b** is in  $P_{30}$  is:

$$Q_{3'0}(r) = \begin{pmatrix} x \\ r \end{pmatrix} \cdot C^r \cdot (1-C)^{x-r}$$

• Note: this differs from Marr's formula 3.3.

• If all cells in P<sub>3</sub>, have threshold R, then:



Statistical threshold is the ratio where

 $C_0 : C_1 = C_{0'} : C_{1'}$ 

subject to

$$C_0 + C_1 = C_{0'} + C_{1'} \approx L_3$$

be above threshold

# **Dealing With Variable Thresholds**

- In reality, cells in  $P_{_3}$  do not have fixed thresholds R. They have:
  - A subtractive threshold T
  - A divisive threshold f
- Combined threshold:

R(b) = max(T, fx)

- Can calculate C0<sup>\*</sup> and C1<sup>\*</sup> using R(b) instead of R.
- Details are in Marr §3.1.2.

#### Results

- More synapses help:  $Z_{3'} = 0.2$  gives a statistical threshold twice as good as  $Z_{3'} = 0.1$ .
- Good performance depends on adjusting T and f.
   (f should start out low and increase; T should decrease to compensate.)
- Collaterals can have a *big* effect.
- Recovery of  $E_0$  is almost certain for inputs that are more than 0.1  $L_3$  above the statistical threshold.
- Example: Marr table 7:  $L_3 = 200$ , threshold is 60:140.
- In general: collaterals help whenever  $n\alpha^2 \le 1$ . (Sparse patterns; not too many stored memories.)

#### Marr's Performance Estimate

- Input patterns:  $L_1 = 2500$  units active out of 1.25 million (25 blocks of 50,000; 100 active units in each block)
- Output patterns:  $L_3 = 217$  units out of 100,000.
- With  $n = 10^5$  stored events, accurate retrieval from:
  - 30 active fibers in one block, all of which are in  $E_0$
  - $_{\rm -}$  100 active fibers in one block, of which 70 are in  $\rm E_{_0}$  and 30 are noise
- With  $n = 10^6$  stored events, accurate retrieval from:
  - 60 active fibers in one block, all of which are in  $E_0$
  - 100 active fibers in one block, of which 90 are in  $E_0$

#### Willshaw and Buckingham's Model

- Willshaw and Buckingham implemented a simplified 1/100 scale model of Marr's architecture
- Didn't bother partitioning  $P_1$  and  $P_2$  into blocks.
- $P_1 = 8000$  cells,  $P_2 = 4000$  cells, and  $P_3 = 1024$  cells.
- For two-layer version, omit P<sub>2</sub>.
- Performance was similar for both architectures.
- Memory capacity was roughly 1000 events.
  - Partial cue of 8% gave perfect retrieval 66% of the time.
  - In two-layer net, 16% cue gave perfect retrieval 99% of the time.
  - In three-layer version, 25% cue gave 100% perfect retrieval.

#### **Three-Layer Model Parameters**

$$\alpha_1 = 0.03$$
  $\alpha_2 = 0.03$   $\alpha_3 = 0.03$   
 $N_1 = 8000$   $N_2 = 4000$   $N_3 = 1024$   
 $S_2 = 1333$   $S_3 = 2666$ 

calc.:

| L <sub>1</sub> =240 | $L_{2} = 120$  | $L_{3} = 30$     |
|---------------------|----------------|------------------|
|                     | $Z_2 = 0.17$   | $Z_{3} = 0.67$   |
|                     | $\Pi_2 = 0.41$ | $\Pi_{3} = 0.41$ |

#### Two vs. Three Layers

- Dashed line is two layer; solid is three layer.
- Open circles: partial cue. Solid circles: noisy cue.
- Two and three layer models perform similarly.



#### Effects of Memory Load



#### Computational Models of Neural Systems

# **Division Threshold**



- I cell supplies divisive inhibition based on the number of active input lines that synapse onto the pyramidal cell, independent of whether they've been modified.
- P cell measures number of active synapses that have been modified, S. Has absolute threshold T (not shown).
- Cell should fire if S > fA and S > T.

#### How to Set the Thresholds?

- Maximal similarity strategy: choose T and f that cause the smallest number of cells to be in the wrong state. (May not be biologically realizable.)
- Staircase strategy: start with small f and high T. Lower T until enough cells become active. Then raise f slightly and lower T to restore the activity level. Repeat until can no longer maintain activity level or f = 1.
- Competitive strategy: set f = 0 and lower T until the required activity level is reached. This is a k-winner-take-all strategy.
- Measure performance as: # of perfectly recalled patterns divided by total # of patterns. Used 1000 patterns in most experiments.

### **Comparing Threshold Setting Methods**



24

## Effect of Collaterals

- Marr estimates that the collaterals should have made their full contribution to recovering the event in about 3 cycles. Additional cycles would provide no benefit.
- McNaughton's commentary:
  - Oscillating cycle of excitation and inhibition in hippocampus, known as the theta rhythm: around 7 Hz (140 msec cycle).
  - Hippocampal cell output is phase-locked to the theta rhythm.
  - Assume pattern completion takes place in the ¼ cycle where excitation is increasing: 35 msec window.
  - Conduction delay and synaptic delay total 6–8 msec.
  - This leaves room for just 4–6 cycles in that 35 msec window: very close to Marr's prediction.

#### **Assessment of Marr's Theory**

- Strong points:
  - Sparse, topographic connectivity: more biologically realistic.
  - Multiple inhibitory mechanisms: subtraction and division.
  - Predicts when recurrent collaterals will help retrieval.
  - Anticipated many important findings: LTP, division operations, information transfer during sleep.
- Weak points:
  - Ignores the trisynaptic circuit (EC → DG → CA3 → CA1). It seems like  $P_1$  is neocortex,  $P_2$  is EC, and  $P_3$  is CA3.
  - Says nothing about DG or CA1. Ignores the direct perforant path input to CA1.
  - Claim that three layers of cells are necessary was unjustified.
  - Unanswered question: how are memories transferred from hippocampus to the neocortex?