
Vectors, Matrices, and
Associative Memory

Computational Models of Neural Systems
Lecture 3.1

David S. Touretzky
September, 2019

09/23/19 Computational Models of Neural Systems 2

A Simple Memory

4.7

1

Key

4.7

Memory

Result = Key × Memory

09/23/19 Computational Models of Neural Systems 3

Storing Multiple Memories

4.7

2.5

5.3

Memory

K
A

1

0

0

K
B

0

1

0

K
C

0

0

1

Each input line activates a particular memory.

09/23/19 Computational Models of Neural Systems 4

Mixtures (Linear Combinations)
of Memories

4.7

2.5

5.3

Memory

0.5

0.5

0

3.6

 K
A
 K

B
/2

09/23/19 Computational Models of Neural Systems 5

Memories As Vectors

M
x

M = 〈4.7, 2.5, 5.3〉

K
A

= 〈1, 0,0 〉 = x axis

K
B

= 〈0, 1,0〉 = y axis

K
C

= 〈0,0, 1〉 = z axis

Basis unit vectors:

This memory can store
three things.

K A

KC
M

y

M
z

M

09/23/19 Computational Models of Neural Systems 6

Length of a Vector

v

c v

Let ∥v∥ = length of v .

Then ∥cv∥ = c∥v∥

v

∥v∥
= a unit vector in the direction of v .

09/23/19 Computational Models of Neural Systems 7

Dot Product: Axioms

d

u

v

Let v⃗ be a vector and u⃗ be a unit vector.

Two axioms for dot product:

v⃗⋅⃗u = d

c v⃗1⋅ v⃗2 = c(v⃗1⋅v⃗2) = v⃗1⋅c v⃗2

09/23/19 Computational Models of Neural Systems 8

Dot Product: Geometric Definition

d

u = unit vector

v

v⃗⋅ u⃗ = d = r cos θ

r = ∥v⃗∥

v⃗ ⋅ u⃗ = ∥v⃗∥ cosθ

r

09/23/19 Computational Models of Neural Systems 9

Dot Product of Two Arbitrary Vectors

v
1
⋅ v

2
= ∥v

1
∥ ∥v

2
∥ cos

Proof:

v
2

= v2

∥v
2
∥ ∥v

2
∥

v1
⋅ v2

= v1
⋅

v
2

∥v
2
∥ ∥v2

∥

= ∥v1
∥ cos ∥v2

∥

= ∥v
1
∥ ∥v

2
∥ cos

v
1

v
2

Unit vector

09/23/19 Computational Models of Neural Systems 10

Dot Product: Algebraic Definition

Let v⃗ = 〈v1 , v2〉 and w⃗ = 〈w1 ,w2〉

v⃗⋅w⃗ = v1 w1 + v2 w2

But also:
v⃗⋅w⃗ = ∥v⃗∥ ∥w⃗∥ cos θ

Can we reconcile these two definitions?
See the proof in the Jordan (optional) reading.

09/23/19 Computational Models of Neural Systems 11

Length and Dot Product

v ⋅ v = ∥v∥
2

Proof:

 v⋅v = ∥v∥ ∥v∥ cos

 The angle = 0 , so cos = 1.

 v⋅v = ∥v∥ ∥v∥ = ∥v∥
2

And also:

 v⋅v = v
x
v

x
 v

y
v

y
= ∥v∥

2

so we have:

 ∥v∥ = v
x

2
 v

y

2

09/23/19 Computational Models of Neural Systems 12

Associative Retrieval as Dot Product

4.7

2.5

5.3

M
K

A

1

0

0

K
B

0

1

0

K
C

0

0

1

Retrieving memory A is equivalent to computing K⃗ A⋅ M⃗

This works for mixtures of memories as well:
K⃗ AB = 0.5 K⃗ A+0.5 K⃗ B

09/23/19 Computational Models of Neural Systems 13

Orthogonal Keys

The key vectors are mutually orthogonal.

K
A

= 〈1, 0, 0〉

K
B

= 〈0,1, 0〉

K
C

= 〈0, 0,1〉

K
A
⋅K

B
= 1⋅0 0⋅1 0⋅0 = 0

AB

= arccos 0 = 90o

We don't have to use vectors of form 〈 ,0,1,0,〉 .

Any set of mutually orthogonal unit vectors will do.

09/23/19 Computational Models of Neural Systems 14

Keys Not Aligned With the Axes

K
A

= 〈1,0,0〉 K
B

= 〈0,1, 0 〉 K
C

= 〈0,0,1〉

Rotate the keys by 45 degrees about the x axis, then 30 degrees

about the z axis.

This gives a new set of keys, still mutually orthogonal:

J
A

= 0.87 , 0.49, 0

J
B

= −0.35, 0.61, 0.71

J
C

= 0.35 , −0.61, 0.71

J
A

⋅ J
A

= 0.87
2

 0.49
2

 0
2

= 1

J
A

⋅ J
B

= 0.87⋅−0.35 0.49⋅0.61 0⋅0.71 = 0

09/23/19 Computational Models of Neural Systems 15

Setting the Weights
How do we set the memory weights when the keys are mutually orthogonal

unit vectors but aren't aligned with the axes?
M = mA

J
A mB

J
B mC

J
C

Prove that this is correct:

 J
A
⋅M = m

A
 because:

J
A
⋅M = J

A
⋅J A

m
A

 J
B
m

B
 J

C
m

C

= J A
⋅J

A ⋅m
A

 J A
⋅J

B ⋅m
B

 J A
⋅J

C ⋅m
C

1 0 0

09/23/19 Computational Models of Neural Systems 16

Setting the Weights

m
A
=4.7 J

A
= 0.87, 0.49, 0

m
B
=2.5 J

B
= −0.35, 0.61, 0.71

m
C
=5.3 J

C
= 0.35 , −0.61, 0.71

M = ∑
k

m
k
J

k
= 〈5.1, 0.61, 5.5〉

5.1

0.6

5.5

−0.35

0.61

0.71

2.5

J
B

09/23/19 Computational Models of Neural Systems 17

Storing Vectors: Each Stored
Component Is A Separate Memory

4.7

2.5

5.3

10

20

30

0.6

0.5

0.4

M
1

M
2

M
3

K
A

1

0

0

K
B

0

1

0

K
C

0

0

1

M
4

-8

-9

-7

K B retrieves 〈2.5, 20, 0.5, −9〉

09/23/19 Computational Models of Neural Systems 18

Linear Independence

● A set of vectors is linearly independent if no element
can be constructed as a linear combination of the
others.

● In a system with n dimensions, there can be at most n
linearly independent vectors.

● Any set of n linearly independent vectors constitutes a
basis set for the space, from which any other vector can
be constructed.

Linearly
independent

Linearly
independent

Not linearly
independent (all
3 vectors lie in
the x-y plane)

09/23/19 Computational Models of Neural Systems 19

Linear Independence Is Enough

● Key vectors do not have to be orthogonal for an
associative memory to work correctly.

● All that is required is linear independence.

● However, since we cannot set the weights as
simply as we did previously.

● Matrix inversion is one solution:

● Another approach is an iterative algorithm: Widrow-
Hoff.

K
A
⋅K

B
≠0

K = ⟨ K⃗ A , K⃗ B , K⃗C ⟩

m⃗ = ⟨m A , mB , mC⟩

M⃗ = m⃗ ⋅ (K)
−1

09/23/19 Computational Models of Neural Systems 20

The Widrow-Hoff Algorithm

● Guaranteed to converge to a solution if the key vectors
are linearly independent.

● This is the way simple, one layer neural nets are
trained.

● Also called the LMS (Least Mean Squares) algorithm.

● Identical to the CMAC training algorithm (Albus).

1. Let initial weights M
0

= 0.

2. Randomly choose a pair m
i
,K

i
 from the training set.

3. Compute actual output value a = M
t
⋅K

i
.

4. Measure the error: e = m
i
−a .

5. Adjust the weights: M
t1

= M
t

 ⋅e⋅K
i

6. Return to step 2.

09/23/19 Computational Models of Neural Systems 21

High Dimensional Systems

● In typical uses of associative memories, the key vectors
have many components (large # of dimensions).

● Computing matrix inverses is time consuming, so don't
bother. Just assume orthogonality.

● If the vectors are sparse, they will be nearly orthogonal.

● How can we check?

● Angle between <1,1,1, 1, 0,0,0, 0,0,0, 0,0,0>
 <0,0,0, 1, 1,1,1, 0,0,0, 0,00> is 76o.

● Because the keys aren't orthogonal, there will be
interference resulting in “noise” in the memory.

– Memory retrievals can produce a mixture of memories.

 = arccos
v⋅w

∥v∥⋅∥w∥

09/23/19 Computational Models of Neural Systems 22

Eliminating Noise

● Noise occurs when:

– Keys are linearly independent but not strictly orthogonal.

– We're not using LMS to find optimal weights, but instead relying
on the keys being nearly orthogonal.

● If we apply some constraints on the stored memory
values, the noise can be reduced.

● Example: assume the stored values are binary: 0 or 1.

● With noise, a stored 1 value might be retrieved as 0.9
or 1.3. A stored 0 might come back as 0.1 or –0.2.

● Solution: use a binary output unit with a threshold of
0.5.

09/23/19 Computational Models of Neural Systems 23

Thresholding for Noise Reduction

threshold
device

09/23/19 Computational Models of Neural Systems 24

Partial Keys

● Suppose we use sparse, nearly orthogonal binary keys
to store binary vectors:

 K
A
 = <1,1,1,1,0,0,0,0> K

B
 = <0,0,0,0,1,1,1,1>

● It should be possible to retrieve a pattern based on a
partial key: <1,0,1,1,0,0,0,0>

● The threshold must be adjusted accordingly.

● Solution: normalize the input to the threshold unit by
dividing by the length of the key provided.

09/23/19 Computational Models of Neural Systems 25

Scaling for Partial Keys

threshold = 0.5

K
A1

K
A2

K
A3

K
A4

K
B1

K
B2

K
B3

K
B4

09/23/19 Computational Models of Neural Systems 26

Warning About Binary Complements

● The binary complement of <1,0,0,0> is <0,1,1,1>.
The binary complement of <0,1,0,0> is <1,0,1,1>.

● In some respects, a bit string and its complement are
equivalent, but this is not true for vector properties.

● If two binary vectors are orthogonal, their binary
complements will not be:

– Angle between <1,0,0,0> and <0,1,0,0> is 90o.

– Angle between <0,1,1,1> and <1,0,1,1> is 48.2o.

09/23/19 Computational Models of Neural Systems 27

Matrix Memory Demo

09/23/19 Computational Models of Neural Systems 28

Matrix Memory Demo

09/23/19 Computational Models of Neural Systems 29

Matrix Memory Demo

09/23/19 Computational Models of Neural Systems 30

Matrix Memory Demo

09/23/19 Computational Models of Neural Systems 31

Matrix Memory Demo: Interference

09/23/19 Computational Models of Neural Systems 32

Matrix Memory Demo

09/23/19 Computational Models of Neural Systems 33

Matrix Memory Demo: Sparse Encoding

09/23/19 Computational Models of Neural Systems 34

Dot Products and Neurons

● A neuron that linearly sums its inputs is computing a
dot product of the input vector with the weight vector:

● The output y for a fixed magnitude input x will be
largest when x is pointing in the same direction as the
weight vector w.

S

x1 x2 x3

w
1
 w

2
 w

3

y

w

x
y = x⋅w = ∥x∥ ∥w∥ cos

09/23/19 Computational Models of Neural Systems 35

Pattern Classification by Dot Product

From Kohonen et al. (1981)

09/23/19 Computational Models of Neural Systems 36

Hetero-Associators

● Matrix memories are a simple example of associative
memories.

● If the keys and stored memories are distinct, the
architecture is called a hetero-associator.

From Kohonen et al. (1981)

Hebbian Learning
Hetero-Associator

09/23/19 Computational Models of Neural Systems 37

Auto-Associators

● If the keys and memories are identical, the architecture
is called an auto-associator.

● Can retrieve a memory based on a noisy or incomplete
fragment. The fragment serves as the “key”.

From Kohonen et al. (1981)

09/23/19 Computational Models of Neural Systems 38

Feedback in Auto-Associators
● Supply an initial noisy or partial key K

0
.

● Result is a memory K
1
 which can be used as a better key.

● Use K
1
 to retrieve K

2
, etc. A handful of cycles suffices.

09/23/19 Computational Models of Neural Systems 39

Matrix and Vector Transpose

[
a b c

d e f

g h i]
T

= [
a d g

b e h

c f i]

u = [
u

1

u
2

u
3
] uT

= [u1
u

2
u

3]

column vector

row vector

09/23/19 Computational Models of Neural Systems 40

A Matrix is a Collection of Vectors
One way to view the matrix

[
u

1
v

1
w

1

u
2

v
2

w
2

u
3

v
3

w
3
]

is as a collection of three column vectors:

[
u

1

u
2

u
3
] [

v
1

v
2

v
3
] [

w
1

w
2

w
3
]

In other words, a row matrix of column vectors:

[u v w]
For many operations on vectors, there are equivalent operations on

matrices that treat the matrix as a set of vectors.

09/23/19 Computational Models of Neural Systems 41

Inner vs. Outer Product

Column vector u is N ×1

Inner product: 1×N × N ×1 1×1

 uT
u = u

1
⋅u

1
 u

N
⋅u

N
= ∥u∥

2

Outer product: N ×1 × 1×N N ×N

 u uT
 = [

u
1
u

1
u

1
u

2
u

1
u

3

u
2
u

1
u

2
u

2
u

2
u

3

u
3
u

1
u

3
u

2
u

3
u

3
] = [u1 u u

2u u
3u]

09/23/19 Computational Models of Neural Systems 42

Weights for an Auto-Associator

● How can we derive the auto-associator's weight matrix?

– Assume the patterns are orthogonal

– For each pattern, compute the outer product of the pattern with
itself, giving a matrix.

– Add up all these outer products to find the weight matrix.

● Note: at most n patterns can be stored in such a
memory, where n is the number of rows or columns in
the weight matrix.

● Note: the input patterns are not unit vectors (see next
slide), but we can compensate for that by using the
division trick.

M = ∑
p

p pT

09/23/19 Computational Models of Neural Systems 43

Weight Matrix by Outer Product

Let u ,v , w be an orthonormal set.

Let M = u uT
 v vT

 w wT

M = [u1
uv

1
vw

1
w u

2
uv

2
vw

2
w u

3
uv

3
vw

3
w]

Therefore:

M u = [u
1
u ⋅u u

2
u ⋅u u

3
u ⋅u]

= [u
1
u⋅u u

2
u⋅u u

3
u⋅u]

= [u
1

u
2

u
3

]

= u

For orthogonal unit vectors, the outer product of the vector with

itself is exactly the vector's contribution to the weight matrix.

09/23/19 Computational Models of Neural Systems 44

Eigenvectors

Let M be any square matrix.

Then there exist unit vectors u such that M u = u .

Each u is called an eigenvector of the matrix.

The corresponding is called an eigenvalue.

● We can think of any matrix as an auto-associative
memory. The “keys” are the eigenvectors.

● Retrieval is by matrix-vector multiplication.

● The eigenvectors are the directions along which, for a
unit vector input, the memory will produce the locally
largest output.

● The eigenvalues indicate how much a key is “stretched”
by multiplication by the matrix.

09/23/19 Computational Models of Neural Systems 45

Other Ways to To Get Pattern Cleanup

● Recurrent connections are not required. Another
approach is to cascade several associative memories.

09/23/19 Computational Models of Neural Systems 46

Retrieving Sequences

● Associative memories can be taught to produce
sequences by feeding part of the output back to the
input.

09/23/19 Computational Models of Neural Systems 47

Summary

● Orthogonal keys yield perfect memories via a simple
outer product rule.

● Linearly independent keys yield perfect memories if
matrix inverse or the Widrow-Hoff (LMS) algorithm is
used to derive the weights.

● Sparse patterns in a high dimensional space are nearly
orthogonal, and should produce little interference even
using the simple outer product rule.

● Sparse patterns also seem more biologically plausible.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

