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A Simple Memory

4.7

1

Key

4.7

Memory

Result = Key × Memory
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Storing Multiple Memories

4.7

2.5

5.3

Memory
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Each input line activates a particular memory.
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Mixtures (Linear Combinations)
of Memories
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5.3

Memory
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 K
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Memories As Vectors

M
x

M = 〈4.7, 2.5, 5.3〉

K
A

= 〈1, 0,0 〉 = x axis

K
B

= 〈0, 1,0〉 = y axis

K
C

= 〈0,0, 1〉 = z axis

Basis unit vectors:

This memory can store 
three things.

K A

KC
M

y

M
z

M
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Length of a Vector

v

c v

Let ∥v∥ = length of v .

Then ∥cv∥ = c∥v∥

v

∥v∥
= a unit vector in the direction of v .
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Dot Product: Axioms

d

u

v

Let v⃗  be a vector and u⃗  be a unit vector.

Two axioms for dot product:

v⃗⋅⃗u = d

c v⃗1⋅ v⃗2 = c( v⃗1⋅v⃗2) = v⃗1⋅c v⃗2
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Dot Product: Geometric Definition

d

u = unit vector

v

v⃗⋅ u⃗ = d = r cos θ

r = ∥v⃗∥

v⃗ ⋅ u⃗ = ∥v⃗∥ cosθ



r
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Dot Product of Two Arbitrary Vectors

v
1
⋅ v

2
= ∥v

1
∥ ∥v

2
∥ cos 

Proof:

v
2

=  v2

∥v
2
∥ ∥v

2
∥

v1
⋅ v2

= v1
⋅

v
2

∥v
2
∥ ∥v2

∥

= ∥v1
∥ cos  ∥v2

∥

= ∥v
1
∥ ∥v

2
∥ cos

v
1

v
2

Unit vector
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Dot Product: Algebraic Definition

Let v⃗ = 〈v1 , v2〉   and  w⃗ = 〈w1 ,w2〉

v⃗⋅w⃗ = v1 w1 + v2 w2

But also:
v⃗⋅w⃗ = ∥v⃗∥ ∥w⃗∥ cos θ

Can we reconcile these two definitions?
See the proof in the Jordan (optional) reading.
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Length and Dot Product

v ⋅ v = ∥v∥
2

Proof:

  v⋅v = ∥v∥ ∥v∥ cos

  The angle  = 0 , so cos  = 1.

  v⋅v = ∥v∥ ∥v∥ = ∥v∥
2

And also:

  v⋅v = v
x
v

x
 v

y
v

y
= ∥v∥

2

so we have:

  ∥v∥ = v
x

2
 v

y

2
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Associative Retrieval as Dot Product

4.7

2.5

5.3

M
K

A

1

0

0

K
B

0

1

0

K
C

0

0

1

Retrieving memory A is equivalent to computing K⃗ A⋅ M⃗

This works for mixtures of memories as well:
K⃗ AB = 0.5 K⃗ A+0.5 K⃗ B
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Orthogonal Keys

The key vectors are mutually orthogonal.

K
A

= 〈1, 0, 0〉

K
B

= 〈0,1, 0〉

K
C

= 〈0, 0,1〉

K
A
⋅K

B
= 1⋅0  0⋅1  0⋅0 = 0


AB

= arccos 0 = 90o

We don't have to use vectors of form 〈 ,0,1,0,〉 .

Any set of mutually orthogonal  unit vectors  will do.
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Keys Not Aligned With the Axes

K
A

= 〈1,0,0〉         K
B

= 〈0,1, 0 〉         K
C

= 〈0,0,1〉

Rotate the keys by 45 degrees about the x axis, then 30 degrees

about the z axis.

This gives a new set of keys, still mutually orthogonal:

J
A

=  0.87 , 0.49, 0 

J
B

=  −0.35, 0.61, 0.71 

J
C

=  0.35 , −0.61, 0.71 

J
A

⋅ J
A

= 0.87
2

 0.49
2

 0 
2

= 1

J
A

⋅ J
B

= 0.87⋅−0.35  0.49⋅0.61  0⋅0.71 = 0
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Setting the Weights
How do we set the memory weights when the keys are mutually orthogonal

unit vectors but aren't aligned with the axes?
M = mA

J
A   mB

J
B   mC

J
C 

Prove that this is correct:

  J
A
⋅M = m

A
 because:

  

J
A
⋅M = J

A
⋅J A

m
A

 J
B
m

B
 J

C
m

C 

= J A
⋅J

A ⋅m
A

 J A
⋅J

B ⋅m
B

 J A
⋅J

C ⋅m
C

1 0 0
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Setting the Weights

m
A
=4.7       J

A
= 0.87, 0.49, 0 

m
B
=2.5       J

B
= −0.35, 0.61, 0.71 

m
C
=5.3       J

C
= 0.35 , −0.61, 0.71 

M = ∑
k

m
k
J

k
= 〈5.1, 0.61, 5.5〉

5.1

0.6

5.5

−0.35

0.61

0.71

2.5

J
B
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Storing Vectors: Each Stored 
Component Is A Separate Memory

4.7

2.5

5.3

10

20

30

0.6

0.5

0.4

M
1

M
2

M
3

K
A

1

0

0

K
B

0

1

0

K
C

0

0

1

M
4

-8

-9

-7

K B  retrieves 〈2.5, 20, 0.5, −9〉
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Linear Independence

● A set of vectors is linearly independent if no element 
can be constructed as a linear combination of the 
others.

● In a system with n dimensions, there can be at most n 
linearly independent vectors.

● Any set of n linearly independent vectors constitutes a 
basis set for the space, from which any other vector can 
be constructed.

Linearly 
independent

Linearly 
independent

Not linearly 
independent (all 
3 vectors lie in 
the x-y plane)
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Linear Independence Is Enough

● Key vectors do not have to be orthogonal for an 
associative memory to work correctly.

● All that is required is linear independence.

● However, since                 we cannot set the weights as 
simply as we did previously.

● Matrix inversion is one solution:

● Another approach is an iterative algorithm: Widrow-
Hoff.

K
A
⋅K

B
≠0

K = ⟨ K⃗ A , K⃗ B , K⃗C ⟩

m⃗ = ⟨m A , mB , mC⟩

M⃗ = m⃗ ⋅ (K )
−1
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The Widrow-Hoff Algorithm

● Guaranteed to converge to a solution if the key vectors 
are linearly independent.

● This is the way simple, one layer neural nets are 
trained.

● Also called the LMS (Least Mean Squares) algorithm.

● Identical to the CMAC training algorithm (Albus).

1. Let initial weights M
0

= 0.

2. Randomly choose a pair m
i
,K

i
 from the training set.

3. Compute actual output value a = M
t
⋅K

i
.

4. Measure the error: e = m
i
−a .

5. Adjust the weights: M
t1

= M
t

 ⋅e⋅K
i

6. Return to step 2.
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High Dimensional Systems

● In typical uses of associative memories, the key vectors 
have many components (large # of dimensions).

● Computing matrix inverses is time consuming, so don't 
bother. Just assume orthogonality.

● If the vectors are sparse, they will be nearly orthogonal.

● How can we check?

● Angle between <1,1,1, 1, 0,0,0, 0,0,0, 0,0,0>
                         <0,0,0, 1, 1,1,1, 0,0,0, 0,00> is 76o.

● Because the keys aren't orthogonal, there will be 
interference resulting in “noise” in the memory.

– Memory retrievals can produce a mixture of memories.

 = arccos
v⋅w

∥v∥⋅∥w∥
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Eliminating Noise

● Noise occurs when:

– Keys are linearly independent but not strictly orthogonal.

– We're not using LMS to find optimal weights, but instead relying 
on the keys being nearly orthogonal.

● If we apply some constraints on the stored memory 
values, the noise can be reduced.

● Example: assume the stored values are binary: 0 or 1.

● With noise, a stored 1 value might be retrieved as 0.9 
or 1.3.  A stored 0 might come back as 0.1 or –0.2.

● Solution: use a binary output unit with a threshold of 
0.5.
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Thresholding for Noise Reduction

threshold 
device
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Partial Keys

● Suppose we use sparse, nearly orthogonal binary keys 
to store binary vectors:

         K
A
 = <1,1,1,1,0,0,0,0>    K

B
 = <0,0,0,0,1,1,1,1>

● It should be possible to retrieve a pattern based on a 
partial key:   <1,0,1,1,0,0,0,0>

● The threshold must be adjusted accordingly.

● Solution: normalize the input to the threshold unit by 
dividing by the length of the key provided.
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Scaling for Partial Keys

threshold = 0.5 



K
A1

K
A2

K
A3

K
A4

K
B1

K
B2

K
B3

K
B4
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Warning About Binary Complements

● The binary complement of <1,0,0,0> is <0,1,1,1>.
The binary complement of <0,1,0,0> is <1,0,1,1>.

● In some respects, a bit string and its complement are 
equivalent, but this is not true for vector properties.

● If two binary vectors are orthogonal, their binary 
complements will not be:

– Angle between <1,0,0,0> and <0,1,0,0> is 90o.

– Angle between <0,1,1,1> and <1,0,1,1> is 48.2o.
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Matrix Memory Demo
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Matrix Memory Demo
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Matrix Memory Demo
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Matrix Memory Demo
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Matrix Memory Demo: Interference
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Matrix Memory Demo
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Matrix Memory Demo: Sparse Encoding
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Dot Products and Neurons

● A neuron that linearly sums its inputs is computing a 
dot product of the input vector with the weight vector:

● The output y for a fixed magnitude input x will be 
largest when x is pointing in the same direction as the 
weight vector w.

S

x1      x2      x3

w
1
       w

2
  w

3

y

w

x
y = x⋅w = ∥x∥ ∥w∥ cos
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Pattern Classification by Dot Product

From Kohonen et al. (1981)
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Hetero-Associators

● Matrix memories are a simple example of associative 
memories.

● If the keys and stored memories are distinct, the 
architecture is called a hetero-associator.

From Kohonen et al. (1981)

Hebbian Learning
Hetero-Associator
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Auto-Associators

● If the keys and memories are identical, the architecture 
is called an auto-associator.

● Can retrieve a memory based on a noisy or incomplete 
fragment.  The fragment serves as the “key”.

From Kohonen et al. (1981)
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Feedback in Auto-Associators
● Supply an initial noisy or partial key K

0
.

● Result is a memory K
1
 which can be used as a better key.

● Use K
1
 to retrieve K

2
, etc.  A handful of cycles suffices.
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Matrix and Vector Transpose

[
a b c

d e f

g h i ]
T

= [
a d g

b e h

c f i ]

u = [
u

1

u
2

u
3
]              uT

= [u1
u

2
u

3 ]

column vector

row vector
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A Matrix is a Collection of Vectors
One way to view the matrix

[
u

1
v

1
w

1

u
2

v
2

w
2

u
3

v
3

w
3
]

is as a collection of three column vectors:

[
u

1

u
2

u
3
]      [

v
1

v
2

v
3
]      [

w
1

w
2

w
3
]

In other words, a row matrix of column vectors:

[u      v      w ]
For many operations on vectors, there are equivalent operations on

matrices that treat the matrix as a set of vectors.
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Inner vs. Outer Product

Column vector u  is N ×1

Inner product:    1×N  × N ×1  1×1

        uT
u = u

1
⋅u

1
  u

N
⋅u

N
= ∥u∥

2

Outer product:  N ×1 × 1×N   N ×N

     u uT
 = [

u
1
u

1
u

1
u

2
u

1
u

3

u
2
u

1
u

2
u

2
u

2
u

3

u
3
u

1
u

3
u

2
u

3
u

3
] = [u1 u   u

2u   u
3u ]
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Weights for an Auto-Associator

● How can we derive the auto-associator's weight matrix?

– Assume the patterns are orthogonal

– For each pattern, compute the outer product of the pattern with 
itself, giving a matrix.

– Add up all these outer products to find the weight matrix.

● Note: at most n patterns can be stored in such a 
memory, where n is the number of rows or columns in 
the weight matrix.

● Note: the input patterns are not unit vectors (see next 
slide), but we can compensate for that by using the 
division trick.

M = ∑
p

p pT

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Weight Matrix by Outer Product

Let u ,v , w  be an orthonormal set.

Let M = u uT
  v vT

  w wT


M = [u1
uv

1
vw

1
w u

2
uv

2
vw

2
w u

3
uv

3
vw

3
w ]

Therefore:

M u = [ u
1
u ⋅u u

2
u ⋅u u

3
u ⋅u ]

= [ u
1
u⋅u  u

2
u⋅u  u

3
u⋅u ]

= [ u
1

u
2

u
3

]

= u

For orthogonal unit vectors, the outer product of the vector with

itself is exactly the vector's contribution to the weight matrix.
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Eigenvectors

Let M  be any square matrix.

Then there exist unit vectors u  such that M u = u .

Each u  is called an eigenvector of the matrix.

The corresponding   is called an eigenvalue.

● We can think of any matrix as an auto-associative 
memory. The “keys” are the eigenvectors.

● Retrieval is by matrix-vector multiplication.

● The eigenvectors are the directions along which, for a 
unit vector input, the memory will produce the locally 
largest output.

● The eigenvalues indicate how much a key is “stretched” 
by multiplication by the matrix.
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Other Ways to To Get Pattern Cleanup

● Recurrent connections are not required.  Another 
approach is to cascade several associative memories.
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Retrieving Sequences

● Associative memories can be taught to produce 
sequences by feeding part of the output back to the 
input.
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Summary

● Orthogonal keys yield perfect memories via a simple 
outer product rule.

● Linearly independent keys yield perfect memories if 
matrix inverse or the Widrow-Hoff (LMS) algorithm is 
used to derive the weights.

● Sparse patterns in a high dimensional space are nearly 
orthogonal, and should produce little interference even 
using the simple outer product rule.

● Sparse patterns also seem more biologically plausible.
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