Vectors, Matrices, and
Associative Memory

Computational Models of Neural Systems
Lecture 3.1

David S. Touretzky
September, 2019

09/23/19

A Simple Memory

Key Memory

1

4.7 Result

Key X Memory

Computational Models of Neural Systems

Storing Multiple Memories

Memory
A ®
0 1 0 /@
o Jof) —==

\/

Each input line activates a particular memory.

09/23/19 Computational Models of Neural Systems

Mixtures (Linear Combinations)
of Memories

Memory
(K,+K)2

-
;o

v
3.6

09/23/19 Computational Models of Neural Systems

Memories As Vectors

This memory can store
three things.

M = (4.7, 2.5, 5.3)

Basis unit vectors:

K, = (1,0,0) = xaxis
I_<73 = (0,1,0) = y axis
I?; = (0,0,1) = =z axis

09/23/19 Computational Models of Neural Systems

Length of a Vector

<!

Let |V]| = length of V.
Then |lcv|| = c||V]

<

= a unit vector in the direction of V.

<!

09/23/19 Computational Models of Neural Systems

09/23/19

Dot Product: Axioms

Let v be a vector and u be a unit vector.

Two axioms for dot product:

- - (—» —») - -

=V, - CV

Computational Models of Neural Systems

Dot Product: Geometric Definition

: : U = unit vector

09/23/19 Computational Models of Neural Systems

Dot Product of Two Arbitrary Vectors

N, v
vl V2 - ||v1|| ||v2|| COSO :
Proof: 0 T/’Z
- vz -
v, = |[—| IVl
v,]
I Unit vector
- vz —

<!

<!

|
<i
N

= I9,]l coso| |7,

= |IV,[l [[v,]l cos©

09/23/19 Computational Models of Neural Systems

09/23/19

Dot Product: Algebraic Definition

Let Vv = (v,,v,) and w = (w,,w,)

Can we reconcile these two definitions?
See the proof in the Jordan (optional) reading.

Computational Models of Neural Systems

10

09/23/19

Length and Dot Product

vy = |l
Proof:
v-v = [[V]| [[V]| cos©
The angle 6 = 0, so cos® = 1.

vy = IVl IVl = (VI
And also:
vV =vv +vv = |V
X X y oy
so we have:
I = W2+ v
X y

Computational Models of Neural Systems

11

Associative Retrieval as Dot Product

—

M

1 0 0 -
0 1 0 /
0 0 1 /

\
Retrieving memory A is equivalent to computing K, - M

This works for mixtures of memories as well:

—_>

K,, = 0.5K,+05K,

09/23/19 Computational Models of Neural Systems

09/23/19

Orthogonal Keys

The key vectors are mutually orthogonal.

K, = (1,0,0)
K, = (0,1,0)
K_. = (0,0,1)
K, K,=10 + 01 + 00 = 0
6, = arccos 0 = 90°

We don't have to use vectors of form ¢...,0,1,0,...).

Any set of mutually orthogonal unit vectors will do.

Computational Models of Neural Systems

13

09/23/19

Keys Not Aligned With the Axes

K, = (1,0,00 K, = (0,1,0) K_ = (0,0,1)

Rotate the keys by 45 degrees about the x axis, then 30 degrees
about the z axis.
This gives a new set of keys, still mutually orthogonal:

J =< 087, 049, 0 >

J. = < =035 061, 071 >
J = < 035, —0.61, 0.71 >

J - J = (0.87)° + (049) + (0)° = 1
)

(0.87)-(—0.35) + (0.49)-(0.61) + 0-(0.71) =

-
-
|

Computational Models of Neural Systems

0

14

Setting the Weights

How do we set the memory weights when the keys are mutually orthogonal

unit vectors but aren't aligned with the axes?

— - -

M=\mJ,/|+ mJ |+ m.J_
Prove that this is correct:
7A-Z_/.7 = m, because:
7A-l_/.7 = J 7AmA + 7BmB + 7Cmc
= (7.3 }m, + (7.3 }m, + (7.3)m
1 0 0

09/23/19 Computational Models of Neural Systems 15

09/23/19

Setting the Weights

=< 087, 049, 0 >
=< —035 061, 071 >
=< 035, —061, 071 >
mJ = (51, 061, 55)
Jy —0.35 -
0.61 ’
0.71 /
y
Computational Models of Neural Systems 2.5 16

Storing Vectors: Each Stored
Component Is A Separate Memory

Ml M2 M3 E

KA KB KC
S e e e
e e e

0 1 0
= g

0 0 1

K, retrieves (2.5, 20, 0.5, —9) v

09/23/19 Computational Models of Neural Systems 17

Linear Independence

* A set of vectors is linearly independent if no element
can be constructed as a linear combination of the
others.

* In a system with n dimensions, there can be at most n
linearly independent vectors.

 Any set of n linearly independent vectors constitutes a

basis set for the space, from which any other vector can
be constructed.

A
Linearly \\\‘
independent
Not linearly Linearly
independent (all independent

3 vectors lie in
the x-y plane)

09/23/19 Computational Models of Neural Systems 18

Linear Independence Is Enough

* Key vectors do not have to be orthogonal for an
associative memory to work correctly.

« All that is required is linear independence.

- However, since K,-K,#0 we cannot set the weights as
simply as we did previously.

« Matrix inversion is one solution:

K = <KA’ K3, Kc>
m = <mA’ Mg, mc>
M=ii- K[

 Another approach is an iterative algorithm: Widrow-
Hoff.

09/23/19 Computational Models of Neural Systems 19

The Widrow-Hoff Algorithm

1. Let initial weights M_ = 0.

2. Randomly choose a pair m_, K, from the training set.

—_— —

M K.

1

3. Compute actual output value a

4. Measure the error: e = m—a.

—_ —_

5. Adjust the weights:]_/.7“+ = M + n-ekK

1) t i

6. Return to step 2.

 Guaranteed to converge to a solution if the key vectors
are linearly independent.

* This is the way simple, one layer neural nets are
trained.

* Also called the LMS (Least Mean Squares) algorithm.
» |dentical to the CMAC training algorithm (Albus).

09/23/19 Computational Models of Neural Systems 20

High Dimensional Systems

* In typical uses of associative memories, the key vectors
have many components (large # of dimensions).

« Computing matrix inverses is time consuming, so don't
bother. Just assume orthogonality.

* If the vectors are sparse, they will be nearly orthogonal.

 How can we check?

© = arccos

 Angle between <1,1,1, 1, 0,0,0, 0,0,0, 0,0,0>
<0,0,0,1,1,1,1, 0,0,0, 0,00> is 76°.

 Because the keys aren't orthogonal, there will be
Interference resulting in “noise” in the memory.

- Memory retrievals can produce a mixture of memories.

09/23/19 Computational Models of Neural Systems 21

Eliminating Noise

« Noise occurs when:

- Keys are linearly independent but not strictly orthogonal.

- We're not using LMS to find optimal weights, but instead relying
on the keys being nearly orthogonal.

* If we apply some constraints on the stored memory
values, the noise can be reduced.

« Example: assume the stored values are binary: 0 or 1.

* With noise, a stored 1 value might be retrieved as 0.9
or 1.3. A stored 0 might come back as 0.1 or -0.2.

* Solution: use a binary output unit with a threshold of
0.5.

09/23/19 Computational Models of Neural Systems 22

09/23/19

Thresholding for Noise Reduction

Computational Models of Neural Systems 23

Partial Keys

 Suppose we use sparse, nearly orthogonal binary keys
to store binary vectors:

K,=<1,1,1,1,00,0,0> K =<000,0,1,1,1,1>
* |t should be possible to retrieve a pattern based on a
partial key: <1,0,1,1,0,0,0,0>

 The threshold must be adjusted accordingly.

* Solution: normalize the input to the threshold unit by
dividing by the length of the key provided.

09/23/19 Computational Models of Neural Systems

24

09/23/19

Scaling for Partial Keys

=

>
~

=

S

=

&

=

S

=

o
~

=

o)
N

=

o
N

y

w bbbbbbbit

threshold = 0.5

Computational Models of Neural Systems

25

Warning About Binary Complements

* The binary complement of <1,0,0,0> is <0,1,1,1>.
The binary complement of <0,1,0,0> is <1,0,1,1>.

* In some respects, a bit string and its complement are
equivalent, but this is not true for vector properties.

* If two binary vectors are orthogonal, their binary
complements will not be:

- Angle between <1,0,0,0> and <0,1,0,0> is 90°.
- Angle between <0,1,1,1> and <1,0,1,1> is 48.2°.

09/23/19 Computational Models of Neural Systems

26

09/23/19

Matrix Memory Demo

Figure 1: Matrix Memory

File

Edlit

Wiew Insert Tools Window Help

4 ETH --» HYU
- Das --* FIS

| HNE

--» TOL

- 0JM --% GOV

I OFF

--» ENT

A MPW --: BOBE
A LIY —--> AaV7

T

-—» HF35

- T4U --:> LUH

| 4T --» FHER
- OFE --: EEI
- MBA --> IAK
| TCA --> ERA
-l AF0 --> BER

Feset

2
@O
=
7]
D

S

Raricdarm

Threshold =0

Computational Models of Neural Systems

27

Matrix Memory Demo

File Edit “iew Insert Tools Window Help

W ETH —-> HYU |
d DAE --> FIS
4 HNB --> 70L
0T —--> GOV
| ORF --: ENT
| MPW --: E(OE
A LIYT --> avT
A TWM --> NFS
1 147 --» LUH
- MAT --> FXR
| OFE --: EEI
- MBA --> IAK
| TCA --> ERA
-l AF0 --> BER

Threshold = &

Fardam
| ew |

BN
B
B
B
B
B
B
B
B
B
B
B
B
=
==

09/23/19 Computational Models of Neural Systems

28

09/23/19

Matrix Memory Demo

Figure 1: Matrix Memory

File Edit “iew Insert Tools Window Help

® ETH --> HYU
B Az —--> FIS
| HNE --> TQL
A 0JM —--> GOV
- ORF --: ENT
| MPW --: EQE
A LIT --» AVT
 TWM --> NFS
- 147 --: LUH
1 MAT --> FER
- OFE --: EEI
- MBA --> IAK
| TCA --> ERA
-l AF0 --> BER

Fardam
| ew |

5
= Hh
o [i1]

[] [[

-
[?— 3
i -=E|—I 4
S
0 F— 3
-
—

Threshold = &

Computational Models of Neural Systems

29

Matrix Memory Demo

File Edit “iew Insert Tools Window Help

0T —--> GOV
| ORF --: ENT
| MPW --: E(OE
A LIYT --> avT
A TWM --> NFS
1 147 --» LUH
- MAT --> FXR
| OFE --: EEI
- MBA --> IAK
| TCA --> ERA
-l AF0 --> BER

[[o T [

z

|
a i
1] -

=
i
=

Threshold = &

Fardam
Feset m

09/23/19 Computational Models of Neural Systems

30

Matrix Memory Demo: Interference

09/23/19

File Edit “iew Insert Tools Window Help

HVE --> 0L |
034 ——> GOV _|
| ORF --: ENT
| MPW --: E(OE
A LIYT --> avT
A TWM --> NFS
1 147 --» LUH
- MAT --> FXR
| OFE --: EEI
- MBA --> IAK
| TCA --> ERA
-l AF0 --> BER

g
o]
<

S

Threshold =3
Randorn

E o
=
EREELEEEE R)

Computational Models of Neural Systems

31

09/23/19

Matrix Memory Demo

File

Edlit

View Insert Tools Window Help

- 0JH

--» GOV

--» ENT

W ey

--» BOE |

A LIV —-> AWT

T

e e

1 147 --» LUH
- MAT --> FXR
| OFR --> REO
| MEBA --> IAE
.| TCA --> FRA
-l AF0 --> BER

Feset

- |
Denze

S

Rarcdarm

[[[T T i [

O £ W
i i e e e
T

Threshold = &

- I
i _EI— et '
4 >— - 3
I : ¥ F—F—%
4 - - 3
4

Computational Models of Neural Systems

32

Matrix Memory Demo: Sparse Encoding

Figure 1: Matrix Memory

File Edit “iew Insert Tools Window Help

- -t

[e 3

-

O b

¥ I-_+_-I- -“ T

+
+

—

Threshold = 6
Ranclam ts in m
R EXE

09/23/19 Computational Models of Neural Systems 33

Dot Products and Neurons

* A neuron that linearly sums its inputs is computing a
dot product of the input vector with the weight vector:

@y
AN
Xi X X3
 The output y for a fixed magnitude input x will be

largest when x is pointing in the same direction as the
weight vector w.

b

\%%

y = %w = [[X]| W] cos®

<

09/23/19 Computational Models of Neural Systems 34

Pattern Classification by Dot Product

09/23/19

g

FIG. 4.5. Demonstration of classification by optimal associative mapping. Each
of the 10 pattern classes employed consisted of pictures of one person photo-
graphed from five different angles, ranging from +45° to —45°. Image vectors
with components consisting of discrete picture elements were used as pattern
vectors; eight intensity levels were defined for each picture element. A distinct unit
vector was associated with each person. Parts (a) and (b) show two prototypes
from one pattern class (no. 3), and Parts (e) and (f) show two prototypes from
another pattern class (no. 6). Part (d) shows a test image of the person in (a) and
(b), taken from an angle not used among the prototypes. In the histogram of the
recollection, (c), the position of the largest component correctly reveals the
number of the class. Parts (g) and (h) repeat the same with another class.

Lomputational iviodaels Or1 INeural >ystems

From Kohonen et al. (1981)

35

Hetero-Associators

 Matrix memories are a simple example of associative
memories.

* If the keys and stored memories are distinct, the
architecture is called a hetero-associator.

forcing Lstimuli

o o
I" M M

0

vy

>
me
o .

stimulus

|

[

patterned . q
{ l q

PsWsPsls

A
g Hebbian Learning

Hetero-Associator
From Kohonen et al. (1981)

L.

/"
responses

FIG. 4.1. Associative network with a set of connected neurons shown schemati-
cally. s; = elements of the stimulus pattern; r; = elements of the response pattern;
fi = elements of the forcing stimulus pattern, which are absent during recall; m ;
= synaptic connections.

09/23/19 Computational Models of Neural Systems

36

Auto-Associators

* If the keys and memories are identical, the architecture
Is called an auto-associator.

 Can retrieve a memory based on a noisy or incomplete
fragment. The fragment serves as the “key”.

From Kohonen et al. (1981)

% : o : BB .

FIG. 4.6. Demonstration of autoassociative recall. Parts (a) through (d) show 4
of the 100 prototype images used to construct the autoassociative projector. When
an incomplete or noisy version of a prototype, (e) and (g), respectively, served as
the key pattern, the recollection resulting in the optimal autoassociative mapping is
09/23/19 then shown to reconstruct the original appearance in (f) and (h), respectively.

Feedback in Auto-Associators
- Supply an initial noisy or partial key K .
- Result is a memory K, which can be used as a better key.

- Use K| to retrieve K, etc. A handful of cycles suffices.

patterned \.‘1 \-Ir
: % m; G "
stimulus \' :'i-,L

o s o i

- a

b _d
responses
09/23/19 Computational Models of Neural Systems 38

09/23/19

Matrix and Vector Transpose

. - . .
a b c a d g
d e f = |b e h
K h i C f i |
u
- T
u — u2 u -— [Ul Ll2 UBI
Ll3 row vector

column vector

Computational Models of Neural Systems 39

09/23/19

A Matrix is a Collection of Vectors

One way to view the matrix

4, vy w,
U, Vv, W,
Uy V3 W,

is as a collection of three column vectors:

U Vi Wi
U, Vs W,
Uy Vy Ws

In other words, a row matrix of column vectors:

- - -

u Vv w

For many operations on vectors, there are equivalent operations on

matrices that treat the matrix as a set of vectors.

Computational Models of Neural Systems 40

09/23/19

Inner vs. Outer Product

Column vector u is N X1
Inner product: (1XN) X (NX1) —» 1X1

(@i = uu o U U = [odlg

Computational Models of Neural Systems

41

Weights for an Auto-Associator

« How can we derive the auto-associator's weight matrix?

- Assume the patterns are orthogonal

- For each pattern, compute the outer product of the pattern with
itself, giving a matrix.

- Add up all these outer products to find the weight matrix.
M = 2 p(p)
p

* Note: at most n patterns can be stored in such a
memory, where n is the number of rows or columns in
the weight matrix.

* Note: the input patterns are not unit vectors (see next
slide), but we can compensate for that by using the
division trick.

09/23/19 Computational Models of Neural Systems 42

09/23/19

Weight Matrix by Outer Product

Let u,v,w be an orthonormal set.

Let M = (') + v(V') + w(w')

M = uu+v.v+w w ui+v,v+ww ut+v.v+ww
Therefore:
Mu = [(uwu)d (ut)d (uu)d

|
-

For orthogonal unit vectors, the outer product of the vector with
itself is exactly the vector's contribution to the weight matrix.

Computational Models of Neural Systems 43

Eigenvectors

Let M be any square matrix.
Then there exist unit vectors u such that Mu = Au.
Each u is called an eigenvector of the matrix.

The corresponding A is called an eigenvalue.

 We can think of any matrix as an auto-associative
memory. The “keys” are the eigenvectors.

* Retrieval is by matrix-vector multiplication.

 The eigenvectors are the directions along which, for a
unit vector input, the memory will produce the locally
largest output.

 The eigenvalues indicate how much a key is “stretched”

by multiplication by the matrix.

09/23/19 Computational Models of Neural Systems

44

Other Ways to To Get Pattern Cleanup

* Recurrent connections are not required. Another
approach is to cascade several associative memories.

09/23/19

forcing stimuli
bao Phaod o T T
P - - Y) & & P <
y ok [] [[
EEES
| R
q II o N N > |
q k| 0| N o q | q q
k| q N | .: NI N 4 3
IADIADIND IS DIADADIED!
|
i
Y 'r‘ Y Y responses Y Y *

FIG. 4.2. The modular associative network with recurrent feedback. f; = ele-
ments of the forcing or afferent stimulus pattern; r; = elements of the response
pattern that are fed back into the network at shorter and longer distances. The
vertical dotted lines separate the two subsystems shown, and the horizontal solid
lines represent the surfaces of the laminar network.

Computational Models of Neural Systems

45

Retrieving Sequences

* Associative memories can be taught to produce
seguences by feeding part of the output back to the

Input.
N (i =L
T —————— —— =i

Autoass.
BT memory
—_—| hnetwork

[C

FIG. 4.4. A system for the associative recall of sequences. A = forcing input
vector; B = constant background or context pattern; C = response pattern, the
recollection from autoassociative memory; D = feedback pattern, equal to the
response at a previous instant, with the time difference given by the delay.

Delay |

09/23/19 Computational Models of Neural Systems 46

Summary

* Orthogonal keys yield perfect memories via a simple
outer product rule.

* Linearly independent keys yield perfect memories if
matrix inverse or the Widrow-Hoff (LMS) algorithm is
used to derive the weights.

* Sparse patterns in a high dimensional space are nearly
orthogonal, and should produce little interference even
using the simple outer product rule.

* Sparse patterns also seem more biologically plausible.

09/23/19 Computational Models of Neural Systems 47

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

